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BOUNDARY CONVERGENCE IN
NON-NONTANGENTIAL AND NONADMISSIBLE
APPROACH REGIONS

MATS ANDERSSON and HASSE CARLSSON

§0. Introduction.

Let u(x,y) = Pf(x,y) be the Poisson integral in the upper halfspace
Rt ={(x,y); xeR"y >0} of a function fel”(R"), p= 1. The question
whether u(x, y) has boundary limits has been extensively studied. To state this
problem more precisely we let Q be an open set in R%*! having (0,0) as a limit
point and put Q* = x + Q for x = (x,0)e R". Then the question is for which Q,
(1) lim u(x,y) = f(xo), a.e. xoe R", f e LP(R"). €

Q%o (x,y)—(x0,0)

The classical result of Fatou states that (1) holds if Q is the cone
C, = {(x,y)e R%"%; |x| < ay}; i.e. u has nontangential boundary values almost
everywhere. It was proved by Littlewood [L] that (1) cannot hold if 2 contains
a tangential curve ending at the origin. However, Nagel and Stein showed in
[NS] that there are many approach regions 2 not contained in any C, for which
(1) holds, i.e. we may have non-nontangential convergence. The conditions on
Q are

a) Q+C,cQ
and
b) I{x; (x,y)e 2} < Cy".

In §1 we provide an alternative proof of Nagel-Stein’s result; in fact we show
that if Q satisfies a) and b), then the distribution functions of the maximal
functions corresponding to Q and C,, respectively, are equivalent, so everything
is reduced to the nontangential case. Thus we also get e.g. a generalization to real
HP-spaces, p < 1.
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In §2 we discuss the same problem in bounded domains in R" with C2-bound-
ary. It turns out that if Q = Q*° satisfies conditions as a) and b) for some x,€ D
and if * is some smooth move of Q*° for x near x,, then an analogous result
holds for {Q*}.

It follows from the theory of harmonic functions in R2" that holomorphic
functions in H?(D) for smooth domains D in C" and p = 1, have nontangential
boundary limits a.e. However, convergence holds for all p > 0 and in larger
regions, the so-called admissible approach regions, that allow parabolic tangen-
tial approach in the complex tangential directions. It is a natural problem to find
ananalogue of Nagel-Stein’s theorem in the complex case. This problem has been
considered by Sueiro [Su2] in the case of the generalized halfspace and the ball.

In §3 we treat the complex case and find an analogous generalization of
admissible convergence, “nonadmissible” convergence, in strictly pseudoconvex
smooth domains in C".

Finally in §4 we consider a specific example, the generalized halfspace in C",
and deduce a local fact about strictly pseudoconvex boundaries which we use in

§3.

§1. Non-nontangential boundary values in the upper halfspace.

As usual the existence of boundary limits follows from estimates for the corre-

sponding maximal function. If Qis a region in E%* ! having 0 as a limit point and

Q* = x + Q for xe R", we define the maximal function by Mgu(x) = sup |u|, for
gx

any measurable function u in R%*!. In particular, M u is the nontangential
maximal function of u. Let Q¥(t) = {x'e R"(x,t)e 2%}, Q(t) = Q°(¢) and let Pf
denote the Poisson integral of f. In [NS] Nagel and Stein proved

THEOREM 1. Suppose that for some a, Q satisfies

a) Q+C,cQ
and
b) () = Ct".

Then the map fr> MgaPf is of weak type (1,1) and strong type (p,p) if
1<p= +o0.

ExampLE 1. Let y be any tangential curve ending at 0. If p; = (x;,y;) is
a sequence of points on y and x; — Orapidly enough, then @ = U p; + C, satisfies

J
a) and b) but clearly Q is not contained in any cone. Thus we have
non-nontangential convergence.
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ReMARk 1. Nagel and Stein also proved a converse of Theorem 1; namely if
Qis any set such that M, Pis of weak type (1, 1)and @ = @ + C, then |(t)| < Ct".

Conditions a) and b) clearly implies

i) t— Q1) is increasing,

o . 1

i) if B,(t) N Q(t) + @ then pe Q(Ct), <w1th C=1+ ;> ,
and

iii) |€(t)] = Cr".

Here B,(t) is the Euclidean ball with center p and radius t. The conditions are in
fact essentially equivalent since if @ satisfies i)-iii), then & = Q + C, satisfies a)
and b). Hence Theorem 1 is a consequence of the following proposition that
states that the distribution functions of My and M, are equivalent.

PROPOSITION 1. Suppose that Q satisfies i}-iii). Then

1) l{xeR" Mgu(x) > A}| £ C|{xeR" Mc, u(x) > A}|
and hence
)] | Mou|l Loy = C [|Mc, ullLo@m, P > 0,

for any measurable function u in R""!

REMARK 2. The estimate (1) also follows from the proof of Theorem 1 given by
Sueiro in [Su].

By Proposition 1 we may deduce estimates for M, from known estimates for
M. For instance if we let u = Pf, Theorem 1 follows from the classical estimates
of the nontangential maximal function of Poisson integrals. As another example
we may assume that u e H?(R") and deduce that || Mou|| Logm < C ||ullgegn) P > 0
since the corresponding estimates holds for Mc, u, see [FS, Theorem 9].

To prove (1) we will use the idea, suggested by Carleson in [C, p. 67] that
estimates of maximal functions can be deduced from results about Carleson
measures. In fact, if we let ug be the outer measure in R%*! defined by po(E) =
l{x € R% @ () E+ @}|, then |{x € R Mqu(x) > 1}| = uo({z € RV'%
u(z) > A}). Thus Proposition 1 is a consequence of the following two results.

LeEMMA 1. If i)iii) holds then pg is a Carleson measure.
LEMMA 2. If uis a Carleson measure, then
u({zeR** L u(z)] > A}) < Cl{xeR" Mc, u(x) > }|.

We recall that u is a Carleson measure if u(B,(t) x (0,t)) < Ct". We use,
somewhat incorrectly, the terminology “Carleson measure” also when p only is
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an outer measure. Lemma 2 is well-known and is proved by a standard covering
argument, for details see for instance [G, Ch.1, §5]. It also holds for outer
measures since only subadditivity is needed in the proof. So it only remains to
prove Lemma 1:

H(B,(1) x (0,1) = |{x; 2N B,(t) x (0,2) + O}| = by i)
= |{x;2%t) N B,(t) % O}| < byii) < |{x;pe QX(Ct)}|
= I{x; —Xx€ Q‘P(Ct)}l < byiii) £ Ct".

In the next two paragraphs we generalize this argument to domains in R"” and
C". As the boundaries are homogeneous spaces, Lemma 2 immediately generaliz-
es. The problem therefore reduces to give natural conditions on the approach
regions ©* that guarantee that ug is a Carleson measure

§2. Non-nontangential limits for bounded domains in R".

Let D be a bounded domain in R" with C? boundary. We fix a neighborhood U of
oD in D so small that U can be identified with 6D x [0, ¢). For instance, if n(x) is
the inward normal vector field, x € 0D, then by the inverse function theorem the
map D x [0,¢)e(x,t)— x + tn(x)e D is a C2-diffeomorphism onto some neigh-
borhood U of 0D, and hence realizes such an identification. For x € D we let B.(t)
be the intersection of 0D with the ballin R” of radius t and center x. The cone C; at
xedD is C: ={(x,y)eU;x'eB,(ay)}. If Pf denotes the Poisson integral of
a function feL?(0D), then Mc P is of weak type (1,1) and bounded on L*,
1 <p = + o, see [§,§5]. Here of course Mc u(x) = supcx u].

As in §1, we want to extend this result to approach regions €%, x € 9D, with
x € O that are not contained in any cone CZ. In view of § 1, it is natural to assume
that Q~ satisfies

1) t— Q%2 is increasing,

ii) if B,(t) N Q%) + @, then pe QX(Cy),
and

i) Q%) < Cr".

Here Q%(t) = {x' € 0D’ (x', t) € 2*}. Note that the cones C¥ satisfie i}-ii). However,
in order to obtain an analogue of Theorem 1, we also need some continuity in x.
Suppose that to x,x'e® < 0D there are local diffeomorphisms T, mapping
a neighborhood of x in dD to a neighborhood of x'. We also assume that
(x,x', x") = T(x") is smooth, T,,.(x) = x’ and that T, is the identity. We extend
T,y to U by T (x",t) = (T, (x"), t) and assume that Q* = T,,.(2%).

ReMARK 1. Such a family diffeomorphisms T,, always exists locally in
x, x’ € dD. One can for instance use the translation structure induced from some
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local coordinate system on 0D, so that in these coordinates T,,.(x")=
x" + x" — x. However global existence of T,,. is impossible unless the tangent
bundle T(0D) is trivial. Furthermore, to obtain 2 and T,,. as above it is enough
to prescribe Q™ for some x,, satisfying i}-iii), and local diffeomorphisms F, on 6D
with F(x,) = x; if we extend F, to U by F(x',t) = (Fx(x), t) and put Q* = F,(Q"°),
then Q~ also satisfies i}iii) (perhaps with a larger C) and @~ are connected via
7:n:x' = Fx'oFx—l'
Under these assumptions we can prove

PROPOSITION 1. If Q% x € &, are connected via local diffeomorphisms as above
and * satisfies i)-iii), then

|{x € @; Mqu(x) > A}| £ C|{xedD;Mc, u(x) > A}|
and
| Mou|l Loy < C ||Mc,“"u(an)‘
As Lemma 2 in §1 applies in this setting. Proposition 1 follows from
LEMMA 1. If Q% is as in Proposition 1, then pgq is a Carleson measure.
Here ug(E) = |{xe &; Q (N E % @}|. Asinthe proof of Lemma 2 in § 1, we obtain
Ha(B,(t) x (0,1) < [{x; pe 2 (C)}.

Now we cannot deduce that this equals |{x; —x € 2 ?(Ct)}|. However, if we let
F. =T, and G(x,y) = F; '(y), then for fixed y, G(x, ) is defined for x near y.
Since G(y, y) = xo, 0G/0x|p, py + 0G/0Y|(p, py = 0 OF

sewn| __[m0) Tt
0x  |p,p) Y pxo

Hence 0G/0x|,, ) is non-singular and g(x) = g,(x) = G(x, p) is a diffcomorphism.
Thus

ta(B,(t) x (0,1) < |{x; pe Q(Cr)}|
= |{x; pe T, (2*(C)}| = [{x;g(x) € Q*(C1)}|
= |g~ (2% (C)| £ C|2*(Cy)| £ Ct".

§3. Boundary values of HP-functions.

Let D be a bounded strictly pseudoconvex domain of class C? in C". In this
section we will study boundary values of H?-functions in D. For a background to
this problem we refer to [S]. The appropriate analogue of nontangential conver-
gence in this situation is the so-called admissible convergence, i.e. convergence in
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Koranyi cones, which are larger than the standard cones. (We give the precise
definition of the Koranyi cones and the associated maximal function M_ in
a moment.) The basic theorem is, se [S, §9] or [H],

THEOREM A. If D is a bounded C*-domain and f € HP(D), then
IMg, fllLr < Cpll fllue, 0 < p = + 0,
and f has admissible boundary values for almost all x € dD.

In analogy to the non-nontangential approach regions in §1 and §2, we will
generalize this result to nonadmissible approach regions that are strictly larger
than the Koranyi cones. As before we will show that the corresponding maximal
functions are comparable. As a consequence, we obtain a generalization of
Theorem A to these nonadmissible approach regions. As another corollary, we
obtain the result of Sueiro [Su2] about Poisson-Szeg0 integrals in the generaliz-
ed halfspace and the ball.

We start by briefly discussing the nonisotropic structure on dD, the associated
Koranyi balls and the admissible approach regions. For each pe dD we have
a preferred (2n — 2)-dimensional real subspace M,, the complex tangent space, of
the real tangent space T,(dD). If J is the complex structure, then
M, = T,(6D) N JT,4D). If D = {p < 0}, then the real 1-form « = Jdp = d°p =
i(0 — 0)p defines M,,i.e. M, = {ve T,(8D); «.v = 0}. That D is strictly pseudicon-
vex means that the quadratic form (the Levi form) do(v, w) = dd(v, w) is positive
definite on M,(dD) for each pe dD. We define a basis of neighborhoods B,(t) in
oD, the Koranyi balls at p, by requiring that B,(t) have length ~./t in the
M,-directions and length ~¢ in the last one. Then |B,(t)] ~ t" and B,(t) is
determined up to equivalence. B,(t) and B)(t) are equivalent if B,(t/C)
B,(t) = B,(Ct)for small t. From now on we fix a choice of B,(t) at each p continu-
ously in p. (Any other such a choice will be equivalent to B,(t) uniformly for p in
compact sets). The Koranyi balls satisfy

(1) if s < t and B,(t) U B,(s) O, then B,(s) = B,(C¢),
and
) |B,(2t)] = C|B,(e)l.

Thus 0D equipped with these balls B,(t) and surface measure is a homogeneous
space, and the standard tools from harmonic analysis such as covering lemmas,
IP-estimates of maximal functions, etc. can be applied.

As in §2 we identify a neighborhood U of 6D with dD x [0, ¢). The admissible
approach regions, or Koranyi cones, are K = {(x/,t); x'€ B,(axt)}. We consider
approach regions €%, x € dD, with x € Q¥ that satisfies
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i) t— Q) is increasing,

i) if Q%¢)() B,(t) + @, then pe Q%(Ct)
and

i) |Q%(t) < Ct".

Here of course 2%(t) = {x' € dD;(x’, t) € 2*}. (Note that the Koranyi cones satisfy
these conditions.) We further assume that Q* are connected via local diffeomor-
phisms T, as in §2. Hence Q* = T,.(22%). However an arbitrary diffeomor-
phismmmm T, will destroy condition ii). Hence we further need to assume that
T, preserves the nonisotropic structure, that is T,,.(B,(t)) is equivalent to B,.(t).
This is equivalent to that dT.,.|, maps M, onto My__(p). Then if Q* satisfies i)-iii),
so will 2. We will show in §4 that such a family T,,. always exists locally if D is
strictly pseudoconvex.

REMARK 1. The requirement is not that T,,. are CR-mappings. For that one
also requires that dT,,|, commute with the complex structure J. This implies that
the Levi form is preserved and this cannot hold in general.

Let Mqau(x) = sup |u|, x e @. We have

o

THEOREM 1. Suppose that D is a strictly pseudoconvex bounded domain with C*
boundary. Further assume that we have a family of regions Q*, x € & = 0D, connec-
ted via Kordnyi ball preserving diffeomorphisms as above. If Q*, x € @, satisfies
i)iii), then for f e H?(D),

IMafllLr@ S Cllf lapw), 0 <p = + 0,
and f has Q-limits for almost all x € &.

ExaMPLE 1. Asin Example 1 in §1, for any tangential curve y we can choose
points p; = (x;, ;) on y such that x; — x, and such that @ = U {(x',y; + y);

J
x'€ B, (y)} satisfies i}-iii). Then if we put Q* = T, (), Q" satisfies the condi-
tions in Theorem 1. In particular, we may choose y so that Q* is not contained in
any K7.

Theorem 1 is a consequence of
PROPOSITION 1. If @, x €@, satisfy the assumptions of Theorem 1, we have
|{x € @; Mqu(x) > A}| £ C|{xe€dD; Mg u(x) > A}|
and
Mau|| o) < C | Mg, u(xX)l|Lo@p), P > O.

To prove Proposition 1, we need two lemmas about Carleson measures as in
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§1. The Carleson measure is defined with respect to the Koranyi balls,
WB,(t) x (0,1)) £ C|B,(t). We also define uq(E) = |{x € @; 2* NE + 0}l

LEMMA 1. IfQ*, x € @, satisfy the conditions of Theorem 1, then pg, is a Carleson
measure.

This is proved exactly as Lemma 1 in §2. Finally we have
LEMMA 2. If uis a Carleson measure, then
u({x e D;lu(x)| > A}) £ C|{x € dD; My_u(x) > A}|.

This follows by the same covering argument as proved Lemma 2 in §1; the
covering argument works because of (1) and (2).

§4. Koranyi ball preserving mappings.

In this last paragraph we show that locally on a strictly pseudoconvex boundary,
there always exists a family of diffeomorphisms as in §2 that also preserves the
Koranyi balls. As was noted in §3, the last requirement is equivalent to that the
derivatives preserve the real complex tangent spaces M,.

PROPOSITION 1. Let D € C" be strictly pseudoconvex with C*-boundary. For any
point xo € 0D there is a compact neighborhood & € 0D of x, and local diffeomor-
phisms F,, x € @, such that F,(x,) = x, F,_ is the identity, (x, x") = Fy(x) is smooth
and dF,|,. maps M,. onto Mg_.,.

Before the proof we study an important example.

ExaMPLE 1. Let IT = {(z,,2')eC" |z|* — Imz, <0} be the generalized
halfspace with its strictly pseudoconvex boundary oIT = {(z,,z)eC"
|z'|> = Im z,}. The Heisenberg group H, with underlying manifold R x C" and
noncommutative group structure (t,a):(t,a) = (t + t + 2Ima-a,a + a) acts
on IT from the left by (t,a) (z,,2) = (z; + t + i|a]®> + 2iImz - a2z + a). Note
that for fixed g€ I, (z,,2') — g- (24, Z') is a biholomorphic mapping of IT (and of
C") and hence a CR-mapping from 0I1 to 11, so in particular its derivate maps
M, onto M, ,. Since for each pair po, pedII there is a unique ge H such that
P = g po, Wecan put F,(x) = g- x. Then F, is defined globally on 0IT and we have
proved Proposition 1 in this particular case.

By the linear fractional mapping ¥, where w =  ~!(z) is given by

w; . .
and z; = if2<i<n,
1+w 1+ w;

IT is mapped biholomorphically onto the unit ball B and /|, is a CR-mapping
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from JIT onto the boundary of B minus one single point. Together with Example
1, this shows Proposition 1 for the ball.

Now we consider the general strictly pseudoconvex case. We claim that there is
locally a diffefomorphism  from 0D to JII such that dy/|, maps M,(0D) onto
M ,(0IT). Then the proposition is a consequence of Example 1 above.

Contrary to the case of the ball, it is not possible in general to have y as the
restriction to dD of a biholomorphic mapping, since then it also would be
a CR-mapping.

However, what is relevant for us is that we have a real (2n — 1)-dimensional
manifold X (= dD) and a smooth distribution (subbundle) M of T(X). Such a pair
(X, M) is called a contact manifold if M is nondegenerate. For a discussion of
contact manifolds see [A, appendix 4H]. The nondegeneracy conditions means
that M is as far as possible from being integrable (in the sense of Frobenius
theorem) and can be stated as follows: If a is a 1-form that defines M, i.e. af, L M,
for all x, then for any 0 + ve M, there is a we M, such that dal,.(v,w) £ 0.

If 0D is strictly pseudoconvex, then the Levi form L(v, w)|, = =+ id of,(v, w) is
positive definite, compare p. 9, so in particular da, is nondegenerate on M, and
hence (X, M) is a contact manifold. Now the claim follows from

LEMMA 1 (see [A, appendix 4H)]. Any two contact manifolds are locally con-
tact-diffeomorphic.
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