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VALUED GROUPS

MIKKO SAARIMAKI and PEKKA SORJONEN

1. Introduction.

For ordered groups the theories of convergence and extensions are well-known
even in the non-commutative case; see €.g. [2], [4] and [9]. In these theories the
metric notion comes from the order in question, which also induces the natural
valuation. On the other hand, a notion of a general group valuation extending
the natural valuation of an ordered group has been introduced, for the Abelian
case see [3] and for the non-Abelian case see [9]. But, almost nothing has been
done in studying the metric properties of groups with this general valuation. Here
we start a systematic study of these valued groups. In this paper we consider
fundamental topological properties of group valuations, sequences and
pseudo-convergence. This article forms a ground work for the study of continu-
ous and immediate extensions of valued groups and their embeddings into
Hahn-like products; see [13] and [14].

Our definition of a valuation is basically the same as in [9]. It is a definite
function from a (generally non-Abelian) group to an ordered set with a least
element mapping the neutral element to the least element and satisfying the
ultrametric inequality. Contrary to [9] a valuation is not required to be surjec-
tive. Some ideas used in Section 2 and 3 have been derived from [1], where
real-valued ultrametric functions on commutative groups are considered.

Our concept of group valuation is much more general than that of [5], where
valuations are real-valued functions on finite groups satisfying a special condi-
tion on commutators. In spite of certain similarity of the names “valued groups”
used in this paper and “valuated groups” used in [11] these notions have very
little in common. So-called p-valuations considered also in [11] are special cases
of our valuation.

Since the group operationis allowed to be non-commutative and the valuation
is not necessarily a natural valuation of an ordered group, it is clear that this
general valuation theory brings new difficulties. Even basic valuation theoretical
results require thus a careful re-examination. The non-commutativity brings also
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some side dependencies. Such is for example the fact that the topology, which is
also now naturally induced by the ultrametric valuation on the base group, need
not be a group topology. An analogous situation occurs in considering the
topology induced by a valuation of a skew field; see [6] or [7].

In Section 2 the definition of a general group valuation is given and the basic
properties of these valuations are studied. The main result is Theorem 2.4 which
gives several different criteria for a valuation to make the group into a topologi-
cal group. Furthermore, we introduce various types of valuations, such as
topological, uniformly topological, normal, conjugation isotonic or conjugation
invariant and study the relations between them. The quotient groups are exam-
ined in Section 3. Here the non-surjectivity of the valuation allows for certain
natural results which may not been obtained otherwise. Sequences and sub-
sequences are introduced in Section 4. Here we also present some probably new
results on cofinality types of ordered sets; see especially Theorem 4.8. We use
them in Corollary 4.9 and Theorem 4.10 to characterize subsequences and index
sets of Cauchy sequences. The theory of pseudo-convergence is set forth in
Section 5. Particularly it is shown in Theorem 5.7 that a right proper Cauchy
sequence has a right pseudo-Cauchy subsequence. Herewith we not only general-
ize the commutative case in [9], Lemma 11, p. 44, but also rectify its incomplete
proof. In the course of the proof the earlier results about the cofinality types are
needed.

2. Valuations.

Let G denote a not necessarily commutative group, which will be written
additively, and let I" denote an ordered set, which has a least element 0. Denote
the set I'\{0} by I'*.

2.1. DEFINITION. A mapping |'|: G — I is a semi-valuation, if
(1) 10/ = 0;
() lg — hl = max{|gl,|h[} for all g,heG.

A semi-valuation || is called definite, if |g| = O implies g = 0. A valuation is
a definite semi-valuation. If|-| is a (semi-)valuation, the triple (G, I',|-]), or simply
G, is called a group with (semi-)valuation.

Note that we do not suppose that semi-valuations or valuations are surjective.

A natural example of a group with valuation is an ordered group with the
natural valuation, which maps every element to its Archimedean class; see e.g.
[9], §1.4. A general method for forming new groups with valuations is the Hahn
product: Let A be an ordered set and for each a € 4 let(G,, I',,||,) be a group with
semi-valuation. For g €I1, G, set supp(g) = {« € 4:|g9()|, + 0}. Define further:
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G = {ge[] G.: supp(g) is dually well ordered in 4},
A

r = {0} @ (3. I'*) (Ordered sum),
A

ol = {0, if supp(g) = 0,
9= 19(@)),, if supp(g) + ® and a = max supp(g).
The set H(4; G,) = H(4; G,, T,,|'l) = (G, T, |'|) is a group with semi-valuation; it
is called a Hahn group (with semi-valuation).
In the following we represent basic properties of semi-valuations; the proofs
follow in the same way as in [9], §1.4, or [1], 1.1.

2.2. PROPOSITION. A semi-valuation has the following properties:

(1) 1—gl = Ig| for all g€ G;

(2) lg + hl < max{lg|,|h|} for all g,heG;

() lg + hl = max{lgl, |hl}, if |gl + |hl;

4) 13- 1 il < max{|g,|:k = 1,2,...,n}; furthermore, equality holds if there is
exactly one index j such that |g;| = max {|gi|:k = 1,2,...,n}.

2.3. COROLLARY. A mapping ||: G — I" with |0| = 0 is a semi-valuation if and
only if it satisfies the first two items in Proposition 2.2.

For y e I' we define the open (resp. closed) ball with center 0 and radius y by the
formulae

B, = B(0;y) = {geG:lg| <},
B, = B(0;y) = {geG:lg| < 7}.

The sets B, for ye I'* and B, for y e I' are subgroups of G. The open and closed
balls determine the semi-valuation completely in the following way: Let G be
a group, I' an ordered set with a least element 0 and let (B,),r* and (B)),.r be
increasing chains of subgroups of G such that

(1) B, = B, for every yeI'*;

(2) B, = B, for every y,6€I’ withy < §;

(3) for every g G there exists y e I' such that ge B\B, (B, = §).

For each g e G choose the element y € I' according to the condition (3) and define
lgl = y. Then || is a semi-valuation of G and the subgroups B, and B, are exactly
the O-centered open and closed balls with respect to this semi-valuation.

If the center of a ball is not 0, then we get right and left hand side balls:

B.(g;7) = {heG:lh—g| <y} =B, +g;
Bi(g;y) ={heG:|—g + hl <y} =g + B,.
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The corresponding closed balls are defined similarly. These sets are not
necessarily subgroups.

The pseudo-metric functions (g, k) — |h — g| and (g, h) = |—g + h| induce two
in general different topologies 7, and 7, on G in such a way that the balls B,(g; y),
yeI'™*, and By(g; ), y € I'*, resp., form fundamental systems of neighbourhoods of
a point g € G. These topological spaces are homeomorphic by x - — x, and they
are Hausdorff if and only if the semi-valuation [-| is a valuation.

Note that the group G with the topology 7, or 1, is not necessarily a topological
group. Examples can be found in [12]. In case the group G is a topological group
with respect to t,, the semi-valuation || is said to be topological. The following
result gives criteria for a semi-valuation to be topological; cf. [6], where an
analogous result is given in the case of a valued division ring.

2.4. THEOREM. Let || be a semi-valuation. The following conditions are equival-
ent:

(1) The semi-valuation || is topological.

(2) The group G is a topological group with respect to ,.

(3) The left translations g — a + g are all T,-continuous.

(4) The topology 1, is finer than the topology t,.

(5) The topologies t, and 1, are same.

(6) Every right open ball contains a left open ball with the same center.

(7) Given any g€ G and any y e I'* there exists 6 € I'* such that the conjugate
g + Bs — g is contained in B,.

PROOF. We shall show that the following diagram of implications holds true:

1 =0)
(L
Q== =@<=0

Itisclear that (2)implies (1) because the mapping g — —g is a homeomorphism
between the topologies 7; and 7,. The implication (1) = (3) is trivial.

The 7,-continuity of the left translation g — a + g in 0 means that for all ye I'*
we can find e I'* such that a + B; = B, + a, which is equivalent with (7).

The condition (7) can be written in the form — By(g;d) = B,(—g;7y), which
means that the mapping g — —g is 7,-continuous in g. Furthermore, if g,he G
and y e I'*, then by (7) there exists € ]0, y] such that —h + B; + h = B,. Hence

which means that the mapping (g, h) — g + h is t;-continuous. Thus the condi-
tion (7) implies the condition (2).

The equivalencies (7) <> (6) and (6) <>(4) are easy to check. To prove the last
claim (4) <> (5) note first that 1, is finer than t, if and only if for every ge G and
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yeI™* there exists 6 e I'* such that B,(—g;0) = B,(—g;y) or B; + g < g + B,.
This in turn means that B,(g; ) < Bi(g;7), i.e., 7, © 1.

There are several different invariance properties of a semi-valuation which are
closely related to the semi-valuation being topological.

2.5. DEfFINITION. Let |'|: G — I' be a semi-valuation. It is said to be

(1) conjugation invariant or commutative, if |g + h — g| = |h| for all g, he G;

(2) conjugation isotonic, if |g| < |h| implies |k + g — k| £ |k + h — k| for all
keG;

(3) normal, if |g| < |h| implies |h + g — h| < |h;

(4) uniformly topological, if for all y >0 there exists § >0 such that
g+ B;—gc B,forallgeG.

The alternate name “commutative” comes from the fact that a semi-valuation
is conjugation invariant if and only if the relation |g + h| = |h + g| holds true for
all g, he G. The name “normal” was chosen for the reason that then (and only
then) open balls B, are normal in closed balls B, .

2.6. LEMMA. A semi-valuation |-| on G is conjugation isotonic if and only if it is
strictly conjugation isotonic, i.e. |g| < |h| implies |k + g — k| < |k + h — k| for all
keG.

PrROOF. Let || be conjugation isotonic, and let |g| < |h|. If there were an
element ke G such that |k + g — k| = |k + h — k|, then

fhl=|—-k+*k+h—-—k+ks|-k+((k+g—k+kl=lgl,

which is impossible. Thus |k + g — k| < |k + h — k| for all ke G.

For the converse it is enough to show that |g|=|h| implies
lk + g — k| £k + h— k| for all ke G. Suppose the opposite. Then the same
argument as above shows that |g| > |h|, contrary to the hypothesis.

The natural valuation of an ordered group is an example of a conjugation
isotonic valuation, and hence it is topological; see Theorem 2.8 below. The group
valuations of [5] are examples of conjugation invariant valuations; see [5],
Corollary 1.3. For the semi-valuation of a Hahn group we have

2.7. PROPOSITION. Let (G,TI,||) = H(4;G,, I4,|"|,) be a Hahn group.

(1) The semi-valuation || is conjugation invariant, conjugation isotonic or nor-
mal if and only if every “factor semi-valuation” ||, has the same property.

(2) If the index set A does not have a least element, the semi-valuation || is
uniformly topological.

(3) If ao is a least element of A and the semi-valuation ||, is (uniformly)
topological, the semi-valuation || is also (uniformly) topological.
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Proor. (1) Itis obvious that in each case the condition is necessary. To prove
its sufficiency let a,b,g€ G with |a|eI'y and |b|eI'} be arbitrary. For every
y > o we have

(g+a—9g0) =g +0—4g()=0,
(9 + a— g)@) = g(a) + ala) — g(o) O,
hence
lg +a— gl =lg(@) + a(0) — g(@)l, €T7.

If ||, is conjugation invariant, then |g + a — g| = |a(a)|, = |a|.
Let now ||, be conjugation isotonic. Suppose that |a| < |b|, so that either a < B
or a = f# and |a(a)l, < |b(®)l.- In the latter case

lg +a—gl=lg@) + al@) — g(@). <lg®) + bla) — g(@). =g + b —gl.

In the case a < B the result is obvious, because 'y < I'}.

The case of a normal semi-valuation is handled similarly.

(2) Let yeI'™* be arbitrary. Then y is in I'j for some fe A. Choose a < f and
éerl'¥. Then g + B; — g < B, for all geG, because for all B = f and he B; we
have max supp(h) < a < f < B’ and hence

(g + h—g)(B) = g(B) + h(B) — g(B) = 9(B) + 0 — g(B) = 0.
(3) This follows by modifying the previous proof in an obvious way.

2.8. THEOREM. Let |'|:G — I' be a semi-valuation. The following diagram of
implications holds true:

|| is conjugation invariant = || is uniformly topological

{ y
|| is conjugation isotonic = || is topological
Y
|| is normal

Proor. To prove the implication ”|-| is conjugation isotonic = || is topologi-
cal”,let ge G and y e I'* be arbitrary. If there is k € G such that 0 < |k| < y, define
6=|—-g+k+gl. Then 6 >0 and g + B; — g = B, which by Theorem 2.4
means that G is a topological group. If |k| < y implies that |k| = O, then 7, is
discrete, and thus G is a topological group.

In light of Lemma 2.6 and Theorem 2.4 the rest of the proof is obvious.

In the article [ 12] there are examples which show that a normal semi-valuation
is not necessarily topological and that the natural valuation of an ordered group
is not necessarily uniformly topological.
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3. Valued groups and quotient groups.
Let G be a group, and let ||: G — I be a semi-valuation.

3.1. DEeFINITION. A triple (G, T,|"|), or simply G, where the semi-valuation
|'l:G—TI is topological, is called a semi-valued group. If in addition the
semi-valuation || is a valuation, G is a valued group.

In the following we represent some basic properties of semi-valued and valued
groups.

3.2. PROPOSITION. Let G be a semi-valued group. Then the right and left hand
side open and closed balls are all both open and closed. Furthermore, the
semi-valuation ||: G — I' is continuous with respect to the order topology of I.

The proof is obvious.
3.3. PROPOSITION. A valued group is totally disconnected.

Proor. Let G be a valued group and let X < G have at least two elements
gand h. Choose y = |g — h|. Then the balls B,(g; y) and B,(h; y) are disjoint. In this
case we can represent X as a union of the sets X n B,(g;y) and X\ B,(g; y), which
are mutually disjoint, non-empty and open in X. Thus X cannot be connected.

If X is a subset of G and g € G, then the distance of g to X is
lg, X| = inf{lg — x|:xe X},

provided that the infimum in question exists. This happens always, if the ordered
set I is conditionally complete, i.e., every non-empty subset of I" has the greatest
lower bound in I'. Note that the relation “|g, X| = 0” makes sense in any case.

3.4. PROPOSITION. Let closure be with respect to the 1,-topology. Then
X = {geG:lg, X| = 0}
for all subsets X of G.

Proor. The set X' = {ge G:|g, X| = 0} is ,-closed. Indeed, if g ¢ X', then the
ball B,(g; |g, X|) does not intersect the set X'. This means that the complement of
X' is open.

Furthermore, if a t,-closed set Y includes X, it includes also the set X'.
Otherwise with an element g € X'\ Y there would exist an element x € X such that
lg — x| < y, where y > 0 is so chosen that B,(g;7) = G\Y; but this is impossible
because X N B,(g;7) = 0.

As usual we get the following results.
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3.5. PROPOSITION. Let H be a normal subgroup of G and define |- : G/H — I so
that |g + H" = |g,H| for all g + H e G/H. Suppose that the infima in question
exist. Then || is a semi-valuation, so called quotient semi-valuation. It is
a valuation if and only if H is t,-closed. Furthermore, if (G, I, ||) is a semi-valued
group, the quotient group (G/H, T, |"") is also a semi-valued group and the corre-
sponding 1, -topology is the same as the quotient topology.

3.6. COROLLARY. Let (G, T,||) be a semi-valued group, and define H = ker |*|.
Then H is normal in G and (G/H, T, |"|") is a valued group.

In the previous results it is essential that the valuations are not required to be
surjective. If this requirement is made, then a valued group can have
a non-topological quotient group. As an example, consider the group
G = H x K, where (H, 'y, |"|y) is a valued group and (K, Ik, |"|¢) is a group with
anon-topological valuation both valuations being surjective. Define the ordered
set I" to be the ordered sum I'y @ I'}, and set

lklg, if k % 0,

Ith, I = {w,,, if k = 0.

Then (G, I',|"]) is a valued group with a surjective valuation. On the other hand,
the quotient group G/H equipped with the surjective quotient valuation
['1": G/H — {04} @ I'%, being isomorphic to K, is not topological.

Instead we have the following result, in which it is supposed that the quotient
semi-valuation is coinitial. Generally, a semi-valuation |-|:G — I' is called
coinitial, if the set |G|\{0} is coinitial in I'*, i.e., for all ye I'* there exists an
element ge G such that 0 < [g] < .

3.7. PROPOSITION. Suppose that (G, TI,|"|) is a semi-valued group with surjective
semi-valuation and H is a normal subgroup of G. If the quotient semi-valuation
|'1":G/H - I' exists and is coinitial, then (G/H,|G/H|",|"|"), the quotient
semi-valuation regarded here as a surjective mapping, is a semi-valued group.

Proor. Denote by B,A an open ball with center 0 and radius y in G/H. As the
set I' * = |G/H|"\{0} is coinitial in I'*, the fundamental systems of neighbour-
hoods {B," :yeI'"*} and {B,":ye I'*} define the same topology. On the other
hand, ByA = n(B,) for all yeI'*, where n: G — G/H is the canonical mapping.
Thus the topology induced by the balls BVA is the quotient topology.

4. Sequences.

In this section we suppose that G is a group and |-|: G — I' a semi-valuation.
Let X be a non-empty set. We call (x;) = (x,);c4, Where every x,€ X, a se-
quence in X, if the index set A is a well-ordered set without a last element.



VALUED GROUPS 273

4.1. DEFINITION. A sequence (g;),., In G is said to converge from right or
r-converge to a point g€ G, if for every yeI'* there exists 1,€A4 such that
lgs—gl <y for all A= A,. In this case we write g =r-lim,g, or simply
g =r-limg,.

A sequence (g9;);c4 in G is said to be a right Cauchy sequence, if for every ye I'*
there exists A,€ A4 such that |g, — g,| <yforall 4, u = A,.

In an analogous way one can define also left convergence and left Cauchy
sequences. If a sequence is both left and right convergent or Cauchy sequence, we
say simply that it is convergent or Cauchy sequence, resp.

It is obvious that the usual results concerning convergence and Cauchy
sequences hold true also in this general one-sided case. In the sequel we list some
of those mainly in order to draw attention to possible side dependencies. The
results are usually formulated only for the right hand case.

4.2. PROPOSITION.

(1) Every right convergent sequence is a right Cauchy sequence.

(2) A sequence(g,)is aright Cauchy sequence if and only if the sequence (—g,) is
a left Cauchy sequence. Analogously (g;) has a right limit g if and only if (—g;) has
a left limit —g.

(3) In a semi-valued group right convergent and left convergent sequences
coincide.

(4) If g and g’ are both right limits of a sequence, then |g — g'| = 0.

(5) Let X be anon-empty subset of G. Then a point x € G is in the 1,-closure of X if
and only if some sequence in X r-converges to x.

PRrROOF. As an example, we prove the third and last assertion.

Let (g,)..4 be a sequence in G which r-converges to a point gin G. If ye I'* is
arbitrary, then by Theorem 2.4 thereis d € I'* such that —g + B; 4+ g = B,. Now,
if ;€ A is so chosen that |g;, — g| < d for all A = 4;, then

~g+g1=—-9g+@i—9g)+9ge—g+Bs+gc<B,

for all A = A Thus (g;),.4 converges from left to g.

Let us prove the last assertion. It is obvious that r-lim x; € X for all r-conver-
gent sequences (x;) in X. Suppose now that x € X. By Proposition 3.4 this means
that for every 1 e I'* there exists a point x; € X such that |x — x;| < 4.

Let usdenote by I'> the set I'* equipped with the dual order of I'*. Assume first
that the set I'” does not have a last element. For an index set 4 we choose
a well-ordered cofinal subset of I'>. Then the sequence (x;);. 4 r-converges to the
point x. If there is a last element e I'>, then it is the smallest element in '*. In this
case |x — x,| = 0, which means that the constant sequence (x;), with x; = x, for
all A belonging to an arbitrary index set, r-converges to x.
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Note that Cauchy sequences do not generally have the symmetry property
analogous to the third item in the previous proposition. Even if the
semi-valuation is conjugation isotonic, right and left Cauchy sequences do not
necessarily coincide; an example may be found in [4], p. 79, where sequences in
ordered groups are considered. On the other hand, in a Hahn group this cannot
happen:

4.3. PROPOSITION. Ifin a Hahn group G = H(A; G,) the index set A does not
have a least element, then G is Cauchy complete. Furthermore, right and left Cauchy
sequences coincide. If there is a least element a, in A, then G is Cauchy complete if
and only if G, is.

Proor. Suppose that the index set 4 does not have a least element. We show
that every right Cauchy sequence has a right limit, which is also a left limit. Let
(9.) be a right Cauchy sequence in G. Thus for all y = y, e I'f = I'* there exists 4,
such that |g;, —g,| <y for all A,u = A,. If fe A with a < f then necessarily
(g — 9,)(B) = Ofor all 4, u = 4,, i.e., the sequence (g,(f)) 4 is constant in Gy. As
the chain A does not have a least element the definition g(f) = lim 4 g;(B) € Gy is
meaningful for every fe A. The same reason, together with the fact that
(g —9.)(B) =0 for all A = 4, and B > a, imply that g is in the Hahn product
H(A; G,) and is a right limit of the sequence (g;). Since equally (—g + g,)(8) =0
for all A = 4, and § > «, the element g is also a left limit of the sequence (g,).

The case where A has a least element can be handled similarly.

4.4. DEFINITION. A sequence (y;)se4 IS @ subsequence of a sequence (x;);c 4, if
there exists a convergent mapping o: 4 — A such that y; = x,, for all e 4.

Recall that a mapping a: 4 — A between two index sets is called convergent, if
forall Ae A thereis d, € 4 such that «(6) = Aforall = ;. Amappingo: 4 — Ais
said to be cofinal, if the range a(4) is cofinal in A, i.e., for an arbitrary A € A there
exists § € 4 with a(d) = A.

For instance, if (x;);. 4 is a sequence, 4 an index set and a: 4 — A an isotonic
and cofinal mapping, then (x,)sc4 is @ subsequence of the sequence (x ;)¢ 4-

In order to characterize the existence of a subsequence we state in the following
some important facts about the cofinality type of index sets. These results are also
needed in the next section, but they might be of independent interest.

The cofinality type cf (4) of an ordered set 4 is the smallest order type OT(4') of
well-ordered, cofinal subsets 4’ of 4.

4.5. LEMMA. Let A and A be index sets and let a: A — A be an isotonic and
surjective mapping. Then OT(4) £ OT(A).
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ProOF. Using the axiom of choice one can find a mapping f: 4 — A such that
of is the identity mapping. Then f is injective and isotonic, which implies the
result.

4.6. LEMMA. Anindex set and its cofinal subsets have the same cofinality type.

PROOF. Let A be an index set, and let 4 = A cofinal. Since the cofinality is
a transitive relation, it is clear that cf(A) < cf(4). For the converse, choose
a cofinal subset A’ of A such that OT(A') = cf(A), and define a cofinal mapping
a: A" — A by a(A) = min{d€ 4:6 = 1}. Using this mapping with Lemma 4.5 we
get

cf(4) = OT(A') = OT(«(A) = cf(4).

4.7. LEMMA. Let A and A be index sets and let a: A — A be an isotonic mapping.
Then there exists a cofinal subset A’ in A such that the restriction a| 5. A’ — a(A) is
bijective.

PrOOF. A direct computation shows that the definition
A ={leA: N <i=al) < (i)}
meets the requirements.

4.8. THEOREM. Let A and A be two index sets. Then the following facts are
equivalent:

(1) cf(4) = cf(A);

(2) there exists a convergent mapping a: A — A,

(3) there exists an isotonic and cofinal mapping B: A — A.

PrOOF. Assume first that cf(4) = cf(A4). Choose cofinal subsets A’ = 4 and
A" < A so that OT(4') = cf(4) and OT(A’) = cf(A). Then there exists an order
isomorphism ay: 4' = A'. Define a mapping a: 4 — A by the formula

o(6) = min {oo(d): '€ 4’ & &' = 8}.

This mapping is easily seen to be convergent.

Suppose now that a convergent mapping o: 4 — A exists. Then the sets
A4;={0,€4:6 2, = a(J) = A} are non-empty and thus the mapping f: 4 — 4
such that f(1) = min 4, is well-defined. One can show that the mapping g is
isotonic and cofinal.

Assume finally that there is an isotonic and cofinal mapping §: 4 — 4. By
Lemma 4.7 there exists a cofinal subset A" of A such that the mapping
Bla: A" > B(A) is an order isomorphism. Thus we have the following chain of
equalities

cf (A) = cf(A') = cf(B(A)) = cf(4).
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We note that it is possible to extend the above list of equivalent statements by
the condition that there is a so-called Tukey function B: A — A that maps cofinal
subsets to cofinal subsets. See e.g. [16], where this condition is shown to be
equivalent to the existence of a convergent mapping a: 4 — A even for directed
sets.

4.9. COROLLARY. Let (x;);.4 be a sequence and A an index set. There exists
a subsequence of (x;) with index set A if and only if cf(4) = cf(A).

A right Cauchy sequence (x;),. 4 is called proper, if there is no index A’ € A such
that |x; — x;,| = Oforall A = 1. Recall that I'> denotes the set I'* equipped with
the dual order of I'*.

4.10. THEOREM. If a right Cauchy sequence (x;);,c, is proper, then
cf(A) = cf ().

ProoF. Choose a well-ordered and cofinal subset I'” of I'”, and define
A, ={AeApz A=|x, — x;] <y}

for all yeI". Since (x,) is a right Cauchy sequence, these sets are all non-empty.
The mapping o: I — A such that a(y) = min 4, is clearly isotonic.

As the sequence (x;) is proper, the set (,.r- 4, is empty. Thus for every 1e A
thereisye I" with A¢ A,. If a(y) < 4, thenforall u = Awould |x, — x| < yhold,
because a(y) isin A,. By the ultrametric inequality this would imply that Aisin A4,,
which is impossible. Thus a(y) = 4, which means that the range of « is cofinal.
Theorem 4.8 implies now the result.

5. Pseudo-convergent sequences.

In this section we suppose that G is a group and |-|: G - I is a semi-valuation.
As in the case of usual valuation we can define the notion of pseudo-conver-
gence:

5.1. DErFINITION. A sequence (g;);c4 in G is said to pseudo-converge from right
toa point g € G, if there exists A’ € Asuch that|g, — g| < |g; — glforallu > 1= 1"
In this case we say that g is an rp-limit of the sequence (g;),., and we write
g = rp-lim, g, = rp-limg,.

A sequence (g;);c4 in G is said to be a right pseudo-Cauchy sequence, if there
exists A'e 4 such that |g, — g,| <|g, — gilforallv>pu> 1= 1.

In an analogous way one can define also left pseudo-convergence, and left
pseudo-Cauchy sequences. If a sequence is both left and right pseudo-convergent
or a pseudo-Cauchy sequence, we say that it is pseudo-convergent or
a pseudo-Cauchy sequence, resp.

As in the previous section we usually consider only the right hand side
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properties of these notions, which are of course very similar to the usual situation;
seee.g. [10] or [15]. For the proofs of the following results, see the references just
mentioned or [9].

5.2. PROPOSITION. A right pseudo-convergent sequence is a right pseudo-Cau-
chy sequence.

5.3. PROPOSITION. Let (g,);c4 be a right pseudo-Cauchy sequence in G. Then

(1) the sequence (|g,]), > 1~ in I' is either strictly decreasing or constant;

(2) ma =19, — gal is well defined for u > A = A, and the sequence (1;); 5 5 is
strictly decreasing,

(3) g = rp-lim g, if and only if there exists " = A’ such that |g, — g| = =, for all
Az A

5.4. DErFINITION. The right breadth of a right pseudo-Cauchy sequence (¢,);c 4
is the subgroup B = {geG:|g| < =, VA = 1'}.

5.5. LEMMA. Let g = rp-limg,. Then h = rp-limg, if and only if he B + g.

5.6. PrROPOSITION. If Bis aright breadth of a right pseudo-Cauchy sequence in
G, then the set Z{yel:y < mn; YA 2 A’} has the following properties:

(1) X is a lower segment of I',i.e.,6€X, yel and y < o imply ye Z;

(2) the set |G|\X is not empty;

(3) the set |G|\X does not have a smallest element.

Conversely, if a set X in I' has these three properties, then the set B = {geG:
lgle X} is a breadth of some right pseudo-Cauchy sequence in G.

It is known that pseudo-Cauchy sequences are not necessarily Cauchy se-
quences, and conversely, Cauchy sequences are not necessarily pseudo-Cauchy
sequences; see e.g. [8], p. 32. The following two results clarify further relation-
ships between these two notions.

5.7. THEOREM. A proper right Cauchy sequence has a right pseudo-Cauchy
subsequence.

Proor. Let(g,);.4 be a proper right Cauchy sequence. The set of those indices,
for which the corresponding element of the sequence is not a right limit of the
sequence, is cofinal in A. Furthermore, the corresponding subsequence is also
a proper right Cauchy sequence. Thus we can suppose that no element of the
original sequence equals to a possible right limit of the sequence.

Choose a well-ordered cofinal subset I'y of the set I'” so that OT(I'y) =
cf(I'>). As the right Cauchy sequence (g,) is proper, cf(I'>) = cf(A) by Theorem
4.10. Thus we can find an isotonic cofinal mapping f: 'y — A.

Define for every yeI'; and A€ A
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A,={AeA: Az B(y) & IXV > Ast. g,eB,(g:;7) Yu = A},
Iy={yelg:VueA 3y z pst g, ¢Bg:7)}

These sets are non-empty; the former because the sequence (g, ) is a right Cauchy
sequence and the latter because the sequence does not include its possible right
limit point.

Define further the mappings

n:I'g > A s.t. n(y) =minA,,
¢:A—>Tg st o(d)=minT,.

Both of these have cofinal ranges. In addition, the mapping 7 is isotonic and
ne(l) > A for all Ae A. With the help of these mappings and a transfinite
induction we shall find a cofinal subset 4 = A such that the subsequences (9,)c4
is a right pseudo-Cauchy sequence. The elements of the index set 4 are chosen
using a kind of ping-pong-principle with the sets A4 and I'y as sides and with the
mappings ¢ and #n as players.

For the first elements of 4 we choose

0o = min 4, 01 = np(Jo), 82 = n9(8,) = (np)*(8o)-

Let Ae A, A > &, be arbitrary. We make the following hypothesis for the trans-
finite induction:
(A)for all ue A with u < A the choice between “u belongs to 4” and “u does not
belong to 4” has been made in such a way that for all ue 4 we have:
a) ne(u) < A implies np(p) € 4,
b) u<v<ne(u)andv < iimply v¢ 4;
(A) for all A;,4,€4 with 4; < 4, < A we have g,,¢ B,(9,,; p(41));
(B) for all A9, 44,4, €4 with 4o < A; < 4, < A we have g;, € B,(g,,; 9(40)).
In making the induction step there are the following possibilities:
(1) there exists pe 4 such that y < A and ne(y) > 4;
(2) for all ue A with u < A4 we have no(u) < A, but ne(ue) = A for some uy e 4
with uo < 4;
(3) for all pe 4 with u < A we have no(u) < 4, but

g:¢ () Bigu; o(uo));

po<p1<a
Mo, p1€4

(4) for all ue 4 with u < 1 we have ne(u) < A and
gi€ () Bigu;olo))

po<pu1<i
po,pu1€4
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In the cases (1) and (3) we don’t select the index 4 to the index set 4. Then the
hypotheses (A), (A) and (B) are obviously valid up to the index A. In the cases (2)
and (4) we choose A to the index set 4. In these cases the hypothesis (A) is clearly
valid for 4. The verifications of the hypotheses (A) and (B) require long but
straightforward calculations, which will be omitted.

Using the cofinality properties of the mappings # and ¢ one can show that the
achieved index set 4 is cofinal in A. Furthermore, the construction of 4 guaran-
tees that the subsequence (g,),c4 is indeed a right pseudo-Cauchy sequence.

Note that in [9], Lemma 11, p. 44, a similar result is stated in the case of
a valued Abelian group, but the proof there seems to be incomplete: Using the
notation of the previous proof, the process used in [9] to form the desired
subsequence is picking different elements from the set sequence ({g: A€ 4,}),er,.
This method does guarantee that the achieved sequence is a pseudo-Cauchy
sequence, but it does not guarantee that this sequence is a subsequence of the
original sequence. As one can see from the previous proof the main difficulty is to
get both properties at the same time. That is why we had to replace the simple
picking process by the more complicate ping-pong process. Note also that our
proof uses essentially the results of Section 4 concerning cofinality types of index
sets.

5.8. PROPOSITION. Let (g,),c4 be a right pseudo-Cauchy sequence and B its
right breadth. If (g,) is a right Cauchy sequence, then B = ker |-|. Conversely, if
B = ker ||, then(g,) is a right Cauchy sequence, provided that the semi-valuation is
coinitial.

Proor. Itis obvious that ker || = B always. If (g,) is a right Cauchy sequence
and g e B, then for every yeI'* we have |g| < n; < y for sufficiently large A€ A.
This means that ge ker |-|.

Conversely, suppose that the semi-valuation is coinitial and B = ker|-|. Let
y€ I'* be arbitrary. The coinitiality of the semi-valuation implies that n;. < y for
some A" e A with ” = A". An application of Proposition 5.3 yields

19u — 93l S Tminga, S Tar <
forall A, u > A", i.e., (g,) is a right Cauchy sequence.

Modifying the proofs presented in [9], pp. 45-46, one can prove the following
results:

5.9. PROPOSITION. Let B be a right breadth, which is a normal subgroup of G.
Equip the quotient group G/B with the valuation |-|g: G/B — I,

lgl, if g¢B,

lg + Blp = {0, if geB:
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here I’ denotes the set {0} L (I'\X) and X is as in Proposition 5.6.

(1) If (ga)c is a right pseudo-Cauchy sequence in G with right breadth B, then
(g2 + B)aca is aright Cauchy sequence in G/B.

(2) If (g1 + B)ica is a proper right Cauchy sequence in G/B, then the sequence
(92)1e4 in G has a right pseudo-Cauchy subsequence with breadth B.

(3) Anelement g € G is an rp-limit of a right pseudo-Cauchy sequence (g;) ;. 4 With
breadth B if and only if g + B is a right limit of the sequence (g; + B);c -

5.10. COROLLARY. Suppose that in G all right breadths are normal subgroups.
Then every right pseudo-Cauchy sequence has an rp-limit in G if and only if for
every right breadth B in G the quotient group G/B is Cauchy complete with respect
to the pseudometric given by the valuation |-|g.
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