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WAVELET TRANSFORM AND
TOEPLITZ-HANKEL TYPE OPERATORS*

QINGTANG JIANG AND LIZHONG PENG

§1. Introduction.

Let G denote the affine group. It consists of {(x, y): y > 0,x e R} with the group
law (X', y')(x,y) = (y'x + x',y'y). It is a locally compact nonunimodular group
with right Haar measure dug(x,y) =dxdy/y and left Haar measure
dpy(x,y) = dxdy/y®. It can be identified as the quotient group of SL(2, R) by
SO(2, R) (see [17]). The identification is made by

_ Q\/}x/ﬁ>
g=(x,y) (0 1/\/;'

And we have

(- )

We consider the representation U of G on L*(R) defined by

(1.1) U (x) = ~\—}—y~f< = ").

Then U is reducible on L*(R), but irreducible on the Hardy space H*(R).
Following Paul [17] (cf. Grossmann et al [9] and Meyer [ 13]), we call function
¥ to be an admissible wavelet if it satisfies 0 < ||{/||.2 < oo and

(1.2 L (¥, Upg¥)I* du(g) < oo,

where (., .) is the scalar product on L*(R).
For an admissible wavelet , we say it is an admissible analyzing wavelet if its
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Fourier transform is supported in [0, + o0) and we let AAW denote the space
consisting of all such functions, and let AAW = {: y e AAW}.

Let U be the upper half-plane, {x + iy, y > 0}. The space L*> ~%(U) consists of
all functions on U for which the integral || f 113 = [y |f(x, y|* dx dy/y? is finite, i.e.
LX(G,du,). For Y e AAW, write

o = S, Uy du(g)
v W, ¥) ’

we define the operator T from H? onto a subspace (denoted by L ~2) of L** ~%(U)
by

(1.3) (T)@) = ¢, * (£ Uy).

Then (see [17])

f( Tf)9XTS)g) dur(g) = (£.f).

By (1.1), we can write T as
(TG = ¢; > f(),

where ¥,(x) = y *(y " *x) and §/(x) = Y(—x). Thus T is a “continuous wavelet
transform” (see [4]).
Let 7 denote the operator from L% ~2 onto H? defined by

(14) @F)x) = c* J : Wy * F(.,y)xx)%,

then 7T is the identity on H2. More explicity,

(1.5) () =C(l//)"J‘:D 'Fy*%*f(X)%

for all f € H2. (1.5)is the well-known Calderon reproducing formula (see [14]). It
can be used as starting points for the construction of time frequency localization
or filter operators and be used in many other fields of science or technology (see
[21,[31, [5], [6]). The discrete version of (1.5)is f(x) = Y 1.4 c(AWa(x), where Ais
a suitable discrete set. There are many works about this problem ([3], [4], [7],
(8], [14]).

Nowak and Rochberg considered the following interesting problem. Let
P denote the orthogonal projection from L2 ~2 onto L% ~2, they defined the
Toeplitz operator T, = PM, P, and the Hankel operator H, = (I — P)M, P, then
studied the boundedness, compactness and membership in the Schatten-von
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Neumann class of the above operators. In this paper using a decomposition of
AAW and AAW by Laguerre polynomials, we decompose L* ~2 to be the
orthogonal sum @2, (4, @ 4y). Let P, (resp. P,) be the orthogonal projection
from L? ~2 onto A, (resp. A,). Then we define the Toeplitz type operators
T*" = P,M,P,, the small and big Hankel type operators h{" = P.M,P,
H®Y = (I - Y *_, P,)M, P, with anti-analytic symbol b(z) on U. They are called
the Ha-plitz operators (using the terminology of Nilkol’skii [15]). We then study
the boundedness and membership in the Schatten-von Neumann class of the
above Ha-plitz operators.

ACKNOWLEDGEMENT. The authors would like to thank K. Nowak and R.
Rochberg for several helpful discussions.
§2. The decomposition of L>*~2 and the main results.

By computing the admissibility condition (1.2), we easily get (or see [9])

AAW = {w: Lm lw(é)lzif— < 0,0 < [¥ll; < o, supp¥ < [0, c0)}.

Let [[9(x) = Y 7 _o (3%)(—x)"/v! be the Laguerre polynomials, where o« > —1.
They satisfy the following conditions of orthogonality and normalization (see

[21]):

f o e X LOLO(x)dx = [(o + 1)(" : “) S

Andfor ke Z™, let y*, J* be functions on R, their Fourier transforms are defined
by

g = {0+ D7HRDeTLPEE), for £20
L for £ <0
and $"(§) = J*(—&). We can get
2 X —1i k 1
Yrx) = — —(k+ l)a\(x - i) e

and *(x) = §*(x). Clearly, for each ke Z*, y*e AAW, J* = y* and J* € AAW,
Y* = J*. Thus by (1.5)

@.1) £ = j Ty f0 2L,
0 y

h(x)=r~17:*~/7';*h(x)i¥
0 y
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for all fe H? and he H?, where H%(R) and H?(R) are the usual Hardy space and
conjugate Hardy spaces on R, i.e.
H*R) = {f e L(R):supp f <= [0, c0)},
H*R) = {f MLA(R): supp | < (—,0]}.
By Theorem 5.7.1 in [21], i.e., {x*e 2L (x)} o is complete in L(0, c0), we
have
AAW = span {y*}, o, AAW = span {J*},:5 0
We define the subspaces 4, and A4, of * ~2 by
A= {f*Y5(x): fe H?},
= {f*y¥x): feA*}.
Then we can prove the following theorem
THEOREM 1. Let A, and A, be defined as above, then
L2772 = @2 o (A @ Ay).
Now let us give the bases of 4, and 4,. Let ¢, be functions defined by

Lo JeTLDQE), for £=0
o8 = {0, for & < 0.

and @(x) = ¢,(x), and let e, (x, y) be functions whose Fourier transforms of the
first variable satisfy

éul&,y) = YOO,

Then A, = span{e.(x, y)},5 0 and A, = span {eu(x, y)},»o- An easy compution
gives that

k+1* 2 +j+ 1\[k —Q)rritlyiti
enk(x’y) ( ) Z Z <v J ><]><Z) (}f+ 1)_ ix)i):'j+2 ‘

v=0j=

In the definitions of T and 7 in §1, letting = y*, we get the corresponding T,
and 7,. As we mentioned in §1, T, and 7, give the isometries: 4, = H 2 for all
keZ*. Similarly, define T, and 7, from H? to 4, and from A4, to H? respectively,
we then have 4, =~ H2.

We now give the reproducing kernel of 4%, denoted by K®(z, w). Namely,
F(z) = (F,K®) for all Fe A,, where <.,.) is scalar product on L* ~2(U) and
K®(w) = K®(w,z). For fe H?, by (2.1), f * Y§(x) = Y5 * [§ Wi * Yy * f(x) dvfv® =
Ju (% * Wh)(x — u)(f * Yh)(u) du dv/v?, thus
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22 K®(z,w) = Yy Yiilx — u) = (5, ¥3),

where z = x + iy, w = u + iv, Y3() = (1/ /YW (- — x/y) = Ug*().
Similarly we get easily the reproducing kernel (denoted by K*(z, w)) of A,:

K®(z,w) = K®(z, w) = K®(w, z).
For fixed we U, the Fourier transform of K*)(z) about the x variable is
(2.3) R¥(E, y) = yrote M Eypft(Cv).

By (2.3) and the Fourier inversion formula, we have (omitting the details of
calculation)

B k k+1\/k+1\(s+j+2)
Ke) = 2(k+1)320120< )(k—j> EERE

2iy \*f 2iv '\ 4iyto?
x .
w—z)\w—z/ Ww-23

IfzzweU,theny < |w — z|,v £ |W — z|, thus we have

PROPOSITION 1. For all ke Z,

IK(k)(z9 W)l S ck ’ -(yv)z|3 ’

where c, are constants depending only on k.

Let P, (resp. P,) denote the orthogonal projection from L* ~2 onto A, (resp.
A,). Again by (2.1), we have the following

PROPOSITION 2. For Fe* ™2,

eX) PUF)(x,y) = j WU RO T3 = LKD),

@6 PP, y) = f e B R0 3 = (PR,

We define the Toeplitz type operators T*? = P,M,P,, the small and big
Hankel type operators h{"? = P,M,P,, H*" = (I — Y %_, P,)M,P, with anti-
analytic symbol b(z) on U, here M, is the operator of multiplication by b.

In this paper we will consider the analytic Besov spaces B,(U) on U and B,(R)
on R. The space B,(U) (0 < p < o) consists of all analytic functions on U for
which the integral |F||§, = [y |y"F™(2)|? y~*dxdy is finite and B,(U) is the
Bloch space, i.e., F(z) analytlc on U and ||F| g, = sup,ey |y™F®™)(z)| is finite, here
m is any integer such that m > 1/p. The space B,(R), consists of all functions on
R such that
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Ifl5,= ¥ 20;*flf<oo
j=—o©

where ¥(x) = 2/y(2’x) and Y eS(R) is a function such that (&) =1 for
Ee{¢1 £ )¢ < 2}andsuppy = {¢:1/2 < |¢| £ 4}. If F(z)is analyticon U and it
can be writen as F(&,y) = f(&)-e ¥, then F(Z)e B,(U) iff feB,(R)/? and
supp f < [0, o) with equivalent norms (see [18]), where 2 is the set of all
polynomials.

Let S,(H,, H,) denote the Schatten-von Neumann class from one Hilbert space
H, to another H, (S, (H,, H,) denotes the set of bounded operators).

The main results about the above operators is the following

THEOREM 2. Let 0 < p < oo, then h{" €S, iff b(z)e B,(U).
THEOREM 3. Let T,*" be defined as above, then

(1) If k <, then T*" is a zero operator;
(2) If k = I, then T,*V is bounded iff b(z)e L®; and T,**" is never compact unless
b=c

3) If k>1, 7_1—_—7 < p < o, then T*"eS, iff bz)e B,(U);

4 Ifk>10<p< !
k—1
THEOREM 4. For k > I,

() If o= <P S o0 and HEVeS, iff BR) e B,(U);

1
P
@ FO<ps Ty

and Ty €S, then b(z) = c.

and H{* €S, then b(z) = c.

The phenomena in (4) of Theorem 3 and (2) of Theorem 4 are called the cut-off.
Theorem 3 (resp. Theorem 4) says that T,*? has the cut-offat 1/(k — I) for k > I
(resp. H*Yat 1/(k — 1 + 1)fork = I). We will prove Theorem 2 and Theorem 3 in
§3 and §4 respectively, and prove Theorem 4 for p = coin§Sandfor0 < p <
in §6 respectively.

Let —1 <a < oo and du, = y*dxdy be the weighted measure. One can
consider the space L* %(U) consisting the square integrable functions on U with
respect to du,. In [12], an orthogonal decomposition of L* %(U) is given to be
@& 0 (Ax ® Ay) (Ao is just the Bergman space), then operators of more general
types hi1¥) T®&LK) and H¥*1*) are defined and studied.
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§3. The operator h*-".

Recall " = P.M,P,. For F(x,y) = f *y}(x)€ A;, by Proposition 2 in §1, we
have

(hEDF)(x, y) = j P gl [b(- + iv)f =yl )](X)il?

Taking Fourier transform about the first variable

(hEPF)N(E, y)

= yH¥(— fﬁj oA (— Eo)[b(- + iv)f Y] A (é)—

= yM(—¢&y) f lﬁ"(—ﬁv)T J b(- + iv)(& — n) f ' (o) dnﬂ
0 T v

P © o
= Mz(;z—@lj‘ J b(E — n)e ™9 FmH(— Ev)f(on) dnﬂ,
0 - v

By direct calculation, for ¢ < 0, we have

© v . EB_= (—n_>k+2(_—é>l+2
e spamon £ = () (5

where  ck,)=(k+ D* + DY ocicminaen (i) And  for €20,
(h-PF)N (&, y) = 0. Thus

1 o]
(3.1 (h"F)N (&, y) = EL b(E — n)f(n)al-P(&,m)dn,
where
n \et2[ —¢& \}*2 sk
ag,k'l)(é,ﬂ): c(k’l)<n_é> ('1_5> Y 'l’(_'fy)’ fOI' €§0’ rlgo
0, elsewhere.

From (3.1), we know h*" are vector-valued paracommutators (see [1]). Since
A, = H? and 4, =~ H?, we can change these vector-paracommutators into usual
paracommutators.

Let A% be operator from H? to H? defined by

&n,n = T hDT;

where 7, and T; are operators defined in §2. Then for f € H?,
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BN E) = % _[ :0 BE — n) f(m)a®™ (&, n)dn,

where

kl n k+2 "6 1+2 f <0 >0
c(’)(n—é) (n—.f) , for {0, n2

0, elsewhere.

a®"(¢,n) =

Thus by the theory of paracommutator and the fact that a*" satisfies the
conditions Ao, A;, A3(0), A4, Asy, we know that Theorem 2 is true (cf. [11],

[19)).

§4. The operator T,*".

Recall T*? = P,M, P,. For F(x,y) = f *y/}(x) € A,, as we did in § 3, we know that
T*" are also vector-valued paracommutators:

4.1) (TEPF) N Ey) = % j : B(E — n) fAL(E, ) dn,

and a similar calculation gives that
(k + ¥ + 1)‘*y*'ﬁ"(éy)§c"‘"’ (%) for 0SE<n
0, elsewhere

AL, y) =

where ¢®(t) = [§ xe *L{(tx)L{" (x) dx, equaling to O for I > k and to (k + 1)}/
NMk=DHA —ef*'fork =1

Thusifl > k, T,*" is the zero operator. For k = I, we also can change the above
vector-valued paracommutators into usual paracommutators. Let t*" be the
operator from H? to itself defined by t*" = 1, % "T;, where 7, and T, are the
operators defined in §2. Thus tf" eSS, if T,*"€S,. For f € H?, we have

1) (@) = ‘zle B~ f @A Emdn

k+1D\(k\]}/ &\ E\k!
oo [T -8 woscsn

0, elsewhere.

where

By the theory of paracommutator and the fact that A*:? satisfies the condi-
tions Ao, Al’ As(k - l), A4, A4.} and that A(k'k)lg =2>0 =*= 0, we get (1), (2) and (3) of
Theorem 3 (cf. [11], [19]). For (4) of Theorem 3, since ,*" €S, = S,, by (3) of
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Theorem 3, b(z) € B,(U). We write b(z) = b* P,(x), where P,(x) is the Poisson
kernel and b(x) is the boundary value of b(z). We first prove that 5(x) is a poly-
nomial. Ifit is not, then there exists a 6 # 0, 8 e supp b. Without loss of generality,
we assume that § = — 1, then there exist two functions g and & such that

UJ.l;(i — 1 = mghn)dEdn| > c + 0

and ||g|| 2 = ||hl.2 = 1, supp g, supp h = B(0, ), here ¢ is a constant such that
0<d<3i We let B,=Bnd), B,=Bn+1,0) and set §,(&) = 4 — n),
hy (&)= hE —n—1), thus we have suppg,< B, supph,cB, and
lignll2 = llhnll, = 1. We have

[ ¢} [ e}
, N
4.2) I8, 2 Z 1118, 8, x By 2 Z IT*P1E, &, x By
and

1T N5 8o x 3, = SUP KT @4), @u)l

the sup being taken over all functions ¢,, @, such that ||@,|;, @, £ 1 and
supp ¢, < B,, supp $, < B,. Then

U J B(E — 1 — mhmg(&) d dn

= I JE@‘ — nh(n —n — 1)§(¢ — n)ddn

n 1+1 C -k
=c Jﬁ(é ~ Mh(1)Gn(E) A%, 1) (f) (1 - ;) g érl|

k—l— 1) (&)t
[ [6c - mh.nau@arren § Lot (O
(v+k l 1)!
k—1—1)

wtk—I—10( n+s \
(k,1)
<cl® ”Sw(ﬂn*"n)zo k—T—1 \n+1-0

n+1-06\"'
= c 1T N5, 6 x 5oy <1——26_> '

Thus | "5 g, x5, 2 cn' %, and by (4.2)

Il
o

(TS X (3] 1PY [ k()] 1P

Sc] T(k l)"smw,. X Bp) Z

1 :
15018, 2 c Z pe-op = T
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this contradicts T,*:" € S,. This contradiction shows that b(x) must be a poly-
nomial.

Ifb(z) = b+ P, is analytic on U and b(x) is a polynomial, then b(z) must be
a constant. Hence b(z) = ¢ and (4) of Theorem 3 is true.

§5. The operator H*" for p = oo.

Recall H*Y = (I — Y *_  P)M,P, = M,P, — ¥ *_, T;*:Y, By Theorem 3, if | > k,
then H¥*" = M,P,and H*"e S, iff be L™. Thus from now on we assume k = /.

We define T; < T, if T*T; < T#T,. We note that " < H{*P, thus by
Theorem 2, the converse part of (1) in Theorem 4 is true. And we note
H}D — Hf 1D = T+ LD < H*D thus if H*YeS, for 0<p < 1/(k+1—1).
Thus by Theorem 3, we know (2) of Theorem 4 is true. So that we only need prove
the direct part of (1),i.e. if 1/(k — I + 1) < p < oo and b(z) € B,(U), then H{*" €S,
We will prove the case p = oo in this section and 1/(k + 1 — [) < p < o0 in §6.

Note that H*" < (I — P,)M,P, it suffices to prove that if b(z)€ B,,(U), then
(I — P)M,P,eS,. For F(z)e A,

G- (I — P)M,P,F(z) = L (blz) — b(W)K Oz, w)F(w) dpu _ 2(w)

where du_ ,(w) = dudv/v? and Kz, w) is the reproducing kernel of A4,.

PROPOSITION 3. Let 1 £ q £ o0, b(z)€ B,(U) and K(z,w) = |b(z) — b(w)] (yv)}/
|z — w|?, then the operators p— [y K(z, wu(w)dp_ »(w) and p— [y K(z, wu(z)
du_,(z) are bounded from IXU) to itself, where LU)= {F(z):[y|F(2)"
du_5(2) < o}

If Proposition 3 is true, then by Proposition 2 in §1, Proposition 3 for g = 2
and (5.1), we know I — P,M,P,€S . Thus the direct part of (1) for p = oo is true.
So that it suffices to prove Proposition 3.

PROOF OF PROPOSITION 3. We will prove

(5-2) L K(z,w)du_»(2) = c|bl s,

(-3 J ’ K(z,w)dp_(w) < c|lblls,,

then we get Proposition 3 for ¢ = 1, ¢ = oo. By interpolation, we get the desired
result.
We only need prove (5.2) and assume ||b||p_ = 1,i.e., |yb'(z)] < 1 forallze U.
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We also assume w = iv in (5.2) since for any constant ae R, b(a + *)€ B,(U) iff
b() € B,(U) and they have the same B, norms.
Let [y K(z,w)du_, = Y f, [u,, where

Uy = {(ey):Ixl Sy <v}, Uy = {(x, y):Ix| > y,y S v}
Us = {(, y:Ixl £ y,0 Sy}, Ug = {(x,y): x| Z y > 0}
On U,,
|b(z) — bliv)|
< |b(x + iy) — bliy)l + |b(iy) — b(iv)|

<Ky I b(is)| ds < 1 + log—.
y y y
On U,, let a = max(|x|, v),

1b(z) — bliv)|
< |b(x + iy) — b(x + ia)| + |b(x + ia) — b(ia)| + |b(ia) — b(iv)|

ad a
Ji+m+fﬁélog£+log£+l
y S a v S y v

I\

=< 2<log|—xl— + logi) + L
y y
Similarly, on Uj,
. y
Ib(z) — biv)| < log=—~ + 1

and on U,,
|b(z) — biv)| = log—'%jl + loglz:—I + 1.

Thus

i_ . _ .
J =J' J vi |b(x +‘1y) ; l;(w)l dxdylyt
U, O<y<vdix|sy Ix + iy + iv|

< ZU*I jl (1 + logi) [x? + (y + v)?] *dxdy/y*.
0<y<vJO0=Sx=2y y

The change of variables y = tv, x = tvs gives that
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),

IIA

ZJ j (1 —log t)e*[s%t? + (t + 1)*] *dsdt
o<t<1J0sss1

ZI J (1 —logt)ttdsdt = c < o0.
0<t<1,JO0=ss=s1

We can obtain similarly (omitting the details) for i = 2, 3, 4

J‘ <c
U;

Thus we have proved Proposition 3.

IIA

§6. The operators H*V for 1/(k — 1 + 1) < p < o0.

If k > I, we will prove in this section the direct part of (1) in Theorem 4 for
1/(k — 1 + 1) < p < 1. Since we have proved for p = o0 in §5, by interpolation, we
get the desired result for all 1/(k — I + 1) < p < oo in the case k > I. For the case
k = I, we can consider the H*" type operators between the spaces L?*#(U) and
L[> ~XU), where L*#U)= {F(z):[y|F(z)]* y*dxdy < co}. Just copying the
method in §7 of S. Janson’s [10], we also can get the direct part of (1) in Theorem
4 for 1 < p < 0. In this paper we consider the case k > I.

Recall H{*Y=(I—-Y% oP)MP, = M,P,— )% o T*". Similarly for
F(x,y) = f %y} € A;, we calculate the Fourier transform of the first variable x of
(H§*F)(x, y):

(bPF)" (E.) = —Z—I;JE(- + )& = PP (1Y) dn

1 a0
= EL b(& — n) fm + 1)~ *e @1~y LI(2yn) dn.

Thus

1 a0
(HE)AEY) =5 f B~ n) B mdn,

where
B¥9(¢&,7)

k y} __é_

oo | £
Dg)(é’")_,go i ny*'/? 174972 ”<n>, for0<¢<n

D&, ), for£<0,720
0, elsewhere,
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where D&, n) = yH/(I + D}Q2ymL"(2yn)e~?"~%”. Thus we can consider
H*Y as vector-valued paracommutators, but we can not change directly these
vector-valued paracommutators into usual paracommutators as we did in §3
and §4. However, we can change them into multi-fold paracommutators, which
were studied by Peng [20].

Let S%" be operator from H? to L* ~2 defined by S-" = H*"T,, where T, is
the operator defined in §2. Let T* be the adjoint operator of T, then (S%-V) S*-9
become a two-fold paracommutator:

((S5"*53-21) N (n2)

1 .
= (2n)? Jjg(’“ — no)bny — n1)B*(no,ny,m5)f (no) dny dno

where

[ o]
0 M1,MN2) = y 1,10)Dy 112 .
B*Yno,n1,12) . B%"n1,1m0)B% n1,n2) dy/y*

We can calculate (omitting the details)

I, — I, for0 < n; <min(no,n2)
(61) BU‘J)('IO? "ls ’72) = Ila for m é 0’ 7]0, n2 g 0
0, elsewhere,

where

1 © _ d
I =——| e 200 m=m(Qun2ymo)2yn ) LPQ2yn,) =
l + 1 ) y

_ Moz d (1>C + 1) (non2Y(mo — n1)' J(ny — ny)' ™/
(mo +mz2 — m1)? =o\y/\+1 (o + 12 — n1)*

and

1 & 1 nt en(m
I"l+lz ¢

s=o S+ 1 nom; N2

-2 (G)GE) (- (-
i\ \I+ 1)\ nonz Mo N2

We now consider T,"*? (for v = [) similarly as H*". Define R{""" = T,*""T; from
H? onto Ay, then (R{P)*RY" Y is also a two-fold paracommutator:

(RY""*RY""1) " (m2)

e : > f f (1, — no)Binz — n1:)4® (o, n1,n2) (no) dny dno
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where supp A“*" is in the domain {(1¢, 7,,7): 0 < n; < min(#,,7,)}, on which it
equals to ()73 1)i/mon2) " (1 — ny/no)” ~'(1 — na/n2)"
By the equality T = H* "1V — H{"Y,

0

(6.2) Y T = HED — COD,

v=k+1

where

N ]
CO = lim H™Y = lim <1 -y P,,) M,P, = Y P,M,P,
v=0

N- oo N—-w v=0

Let ¢! = C{>PT;, then (c{>P)*c{* is also a two-fold paracommutator:

(™ ")*ci " 1) " (n2)

1 -

= W,”B("‘ — No)bn2 — 11)AS (0, 11, 12) ] (o) dny dno

where supp A" is in the domain {(no,"1,72):1; < 0,706,172 = 0}, on which it
equals I;. We can get easily (cf. [19]):

LEMMA 6.1. If be B,(U), then C®>" €S, for 0 < p £ .
p p

We now prove H*YeS,ifbeB,and 1/(k — 1+ 1) <p < 1.

Let ¥, ¥’ € S(R) be functions such that suppy’ = {3 < |&] £ 4}, ¥'(¥) =1 on
{3 <1l =2} and supp ¥ = {§ < |¢] < 8}, Y(&) = 1 for Eesupp . Let Yj(¢) =
J'(279¢) and (&) = Y(277¢). Thus b =3 72 _, b;, where by(¢) = bEW(E) =
5(5)&;(6)-%(6), and b is the boundary value of b(z). By the properties of
“S,-norm”,

(6.3) IT15, < 3 17,15,

j=-o
.1
here T, = Y 2,41 RPD.

Let (b)), denote the periodic extension of b; with the period 2r-2/*2, for
21 <|E—n <2972, we have

b€ —m) = (B))e(& — MY, — m)

= T @R ey

k=—o

0

= Y a2 E — pemhT
) .

k=—o
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Thus T, = Yo _caU T, Vi, where U, and V; are unitary operators, and by
Lemma 6 and Lemma 7 in [19], we have

[e9]

(6.4) k_Z_ lay|? ~ 2/ =P |1b;|2.
Thus
[e¢]
(6.5) IT,I8, <c Y lad? ITy,lI5, < 27" ~P |b,|I2 I Ty, 15,
k= —o

Now we estimate the “S,-norm” of T, . Note that (cf. [19]) for 0 < g¢
(6.6) 10 illswox wo S Ijlls 00 xwyy S € 1 llq Wol¥ W41,

By the orthogonality of projections P,, we have

P
2
T, 15, = 15T, 15,

2

00 %*
(5. (5
v=k+1 v=k+1

p

2
(R

Sp
2

v=k+1 P
2

p—2

=c J lﬁj(m — oW — 1) Y, A no,m1,m2) dny
0

v=k+1

Sp
2

Let I/ be interval with center (i +3)2** and length 2*3, then R, =
[0,00) = JZo /. ¥ noeli and Yj(n; — no)Pj(n; —n1) + 0, then 1, €2lf and
no€4li. Thus

IT,18, = .ZO Lﬂ.l/;j(’h - ﬂo)‘ﬁj(ﬂz — 1) X

E

X Z A® ”(’10’ N1,M2) dny
=k+1

v= s 12,_(411 x 1’)

Yy =A+B
i>8

i<8
é z Z aiv+B,
i>8v=k+1

where
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a;, = ﬂf .'Lj(ﬂl - '10)';1('72 —ny) X
21{
2 I+1 v—1 v—1
<(r) (=5) (-5 o
NoMN2 Mo n2
I+1 v—1 %
~17,-<m—no)<ﬂ) (l—ﬂ) | o x
Mo Mo Seo(41] x 21))

1+1 v-1)|%
‘pj('lz - 'll)(‘r‘”l'> (1 - 11‘) u S
12 n2 spr]xr)

2

- % %
< coPil O |, — M5 _ard x 2 1n2 — m)llﬁg(z,g,,{,

H

J x g
s,zl(-u‘ xI)

<cv'?

X

< cv"’i("")”Zj",
the last inequality is obtained by (6.6). Thus

o . -] 1 plv-1)
A< Y Y a,sc27 Y v"’Z(—) .

i>8o=k+1 v=k+1 i>8\1}

The series Y ;5 (1/i’® ™" converges iff pv —1) > 1, ie. 1/(v — 1) < p for all
v = k + 1. This is just the condition that p satisfies in (1) of Theorem 4. Thus

@ Ip .
AP Yy — =P
v=k+1 8

About B, by the equality (6.2), we have

Y Ao, ny,n5) = B0, n1,m2) — AS P10, 01,12).

v=k+1

Thus

B=3 | f ¥l — noWnz — 1) x

%
x (B*(10,11,m2) — AP o)) =T b
Sp@IixI) iss

Let us prove that B < c2/?. We need consider one térm b; in the sum B. Let
4, = {E27% < |E < 27%*1). Then for i < 8, there exists a fixed integer j, such
that
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. j+Jjo
alic \J 4

==

By the similar method in [19], we can show that

"B(k'l)("O, N1, ’72)"

V%(dko X Ay, % Ax,)

” A(()O'l)(no’ N1, r’Z)”

Vg, X A, x 4i;)

I\
H

IIA
I

for all ko, ky, k,€Z™.
Thus we have

b <

f i+io '/;j(’lo - ’71)‘;j(’71 - 'Iz)(B(k’l)('lo,'h,Vlz) -

k1=-wAk'

p

_A(O.l)( d 2
0 (Mo>N1,M2))dny i+io i+
sZ(Uko= - ood"f‘ x Ukz =0— ooA"’)

< Z ||B(k’l)(’70,'11,’12) -

ki S j+joii=1,2,3)

3 ,
= AP0 MM e a1kl X 1481 X 14,8
2

IA

-3 N
C Z 2 4("0"’2’(1 +k3) = cz"p‘
(kiS j+joi=1,2,3)
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The second inequality is obtained by (6.6). Thus we have proved | T, [I§, < c2P,

where c is a constant independent of j. By (6.3) and (6.5),
6.7) IG5, <c X 2lbjls=c 15113,

By (6.2), (6.7) and Lemma 6.1,
IHEPlls, < cllbls,.

Thus we complete the proof of Theorem 4.
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