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HOMOGENEOUS CONNECTIONS AND
MODULI SPACES

HENRIK KARSTOFT

Abstract.

We develop a method, using a homogeneous technique, that enables us to reprove that the moduli
space of one-instantons on the four-sphere is hyperbolic five-space. The same method is used to prove
the that moduli space of anti-self-dual connections (p, = —3 and w, # 0) on the complex projective
plane is a single point.

0. Introduction.

In the last decade there has been an intensive study, of the moduli spaces of
self-dual connections on 4-manifolds, lately this has lead to the discovery of the
Donaldson-invariants, distinguishing different differentiable structures on
a 4-manifold. The first moduli space it is natural to study is the one-instanton
moduli space on the four-sphere. This moduli space is known. M. F. Atiyah, N.
Hitchin and I. Singer [AHS] prove this is hyperbolic five-space.

In this paper we will present another proof of this theorem. We will develop
a technique, making the theorem accessible by homogeneous methods (actions of
compact Lie groups and representation theory of compact Lie groups). This
technique also enables us to prove that the moduli space of anti-self-dual
connections (p; = — 3 and w, # 0) on the complex projective plane, is one point
(this problem was originally raised, by D. Kotschick). In both cases we study
a group action on the bundle of anti-self-dual skew 2-tensors on the manifold.

The paper is divided into 5 sections.

The first section introduce the notion of fiber-transitive group actions on
a principal bundle. We classify these up to equivalence. In the second section we
calculate the homogeneous connections on a fiber-transitive principal bundle.
This result is originally due to Wang [W1], we present a proof that differs from the
original proof. We end this section with a calculation of the irreducible homo-
geneous gauge classes of connections on a fiber-transitive principal bundle. This
result will be important in the proof of our main theorems. The third section
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contains a construction of homogeneous metrics on homogeneous spaces, our
main interest are the four-sphere with the standard metric and the complex
projective plane with the Study-Fubini metric. Everything in this section is
standard. In the fourth section we include a sketch of the construction of the
moduli space of self-dual connections on a four-manifold. We prove that the
moduli space of irreducible anti-self-dual connections on the complex projective
plane with the Study-Fubini metric is a smooth manifold. The fifth section
contains our main results, using the homogeneous methods developed in the first
three sections, we reprove that the moduli space of one-instantons on the
four-sphere is hyperbolic five space. Our other main result is that the moduli
space of anti-self-dual connections (p; = —3 and w, + 0) on the complex projec-
tive plane, with the Study-Fubini metric, is a single point.

ACKNOWLEDGEMENT. The author wants to thank Docent J. Dupont for his
help in producing this manuscript.

1. Fiber-transitive group actions.

This section introduces the notion of fiber-transitive group actions on a principal
bundle (definition 1.4). We prove that fiber-transitive principal bundle have
a normal-form (lemma 1.5) and we end this section by classifing fiber-transitive
principal bundles up to equivalence (proposition 1.9).

Let G be a Lie group and let H be a closed subgroup of G. H acts freely on
G from the right and we have a principal H-bundle.

(1.1 n: G — G/H

More general, suppose K is some Lie group and y some Lie group homomor-
phism: y: H — K. We form the principal K-bundle:

(1.2) n: G x, K - G/H
G acts from the left on this principal K-bundle, we denote this action ¢:
1.3 ¢: G — Aut(G x, K; G/H); ¢:91 = {(g2;k) = (9192 K}

here (and in the following) we let Aut(G x, K; G/H) denote the group of bundle
maps of the principal bundle n: G x, K — G/H. The corresponding action on the
base space M is denoted ¢, we see this action is transitive on M.

DEerFINITION 1.4. Let G act on the principal K-bundle n: P - M by bundle
maps, we denote the G-action ¢: G — Aut(P; M). Then ¢ is called fiber-transitive
if the action is transitive on the base space M.

We include the following lemma, namely any fiber-transitive action can be put
on the form 1.2.
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LEMMA 1.5. Let G be a Lie group and suppose ¢: G — Aut(P; M) is an action on
the principal K-bundle n: P - M. uqy is a choice of base point in P, and put
n(uo) = Xxo. Let G, denote the isotropy subgroup of G on the base space.

Then we have: The map x: G, — K defined by the equation:

@(h)uo) = uox(h); for he Gy,

is a group homomorphism.
If we define F to be the map:

F:G x,K — P; F(g; k) = ¢(g)(uo) k
then we have:

i) F is G-K-equivariant, so the diagram below commutes and the maps are
G-K-equivariant:
Gx,K5P
n) In
G/G,, 5 M

also F(1 'Gxo) = xo and F(g,(g>" Gx(,)) = 95(91)(F(92 ’ Gxo))
i) F is injective.
iii) If G acts fiber-transitive, then F is a G-isomorphism, of principal K-bundles.
REMARK 1.6. From the lemma above we see that if G acts fiber-transitive, then
the principal K-bundle n: P — M, has a reduction to the subgroup Im (x).

We need the following definitions:

1.7. DerINITION. If ¢: G — Diff(M) is a G-action on M, then a lift of ¢ to the
principal K-bundle n: P — M is a G-action ¢: G — Aut(P; M), such that:

n(¢(9)(p)) = $(g)(n(p)) for all pe P and ge G

If ¢, and ¢, are two lifts of the G-action @: G — Diff (M), then we say that ¢,
and ¢, are equivalent, if there exists a bundle isomorphism, F: P — P covering the
identity, such that:

F(¢1(9)(p)) = ¢2(9)(F(p)) for allpe Pand ge G

DEFINITION 1.8. Let 7: P — M be a principal K-bundle, assume ¢ is a transitive
G-action on M, then a homomorphism of Lie groups y: G,, = K (G, is the
isotropy group of the action ¢ on the base space) is said to be compatible with
P and ¢, if there exists a bundle isomorphism F: G x, K — P such that on the
base space:

i) F(1-G,,) = xo
ii) F(g1(92° Gx,)) = #(91)F(g2° Gy,) for g1, 9,€G
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The set of homomorphisms compatible with P and ¢ is denoted
Hom®#)(G, , K) or when there is no ambiguity Hom’(G,,, K).

With this notation we have:

PROPOSITION 1.9. Let m: P— M be a principal K-bundle with a transitive
G-action on the base M, let u, be a base point in P and n(uy) = X,.

If G, denotes the isotropy group at the point xo, then the set of equivalence
classes of lifts of the G-actions to the principal K-bundle n: P — M (fixed to be  on
the base), are in bijective correspondence with the set of equivalence classes:

Hom” (G,,, K)/Inner(K)
where Inner(K) denotes inner automorphisms of K.

PRrOOF. Assume ¢, and ¢, are equivalent lifts of ¢, by lemma 1.5 they define
two homomorphisms y; and y, compatible with P. We must show that they
differ by an inner automorphism of K. By definition there exists a bundle
isomorphism, F: P — P covering the identity, such that:

F(¢:1(9)P)) = ¢2(9)(F(p)) for all pe Pand geG

Define kg to be the element in K that satisfy the equation: F(u,) = uoko, then if
heG,, we have:

F(¢1()(uo))) = F(uox1(h)) = F(uo)x1(h)

on the other hand:
F(¢1(h)(1o)) = d2(h)(F(uo)) = F(uo) ko * x2(h) ko

hence y,(h) = kg ' x2(h) ko.

Now let us assume that there exists a ko € K such that for all he G, x1(h) =
ko * x2(h)ko.

Then consider the map:

F:G x, K- G x, K; F(g;k) = (9, kok)

This is a well-defined G-equivariant bundle map, covering the identity. Now it is
not hard to see that y, and y, define equivalent G-actions (covering ¢ on the base)
on the bundle n: P —» M.

2. Homogeneous connections.

In this section we calculate the homogeneous connections on a fiber-transitive
principal bundle (proposition 2.8). This result is originally due to Wang [W], we
present a proof that differs from the original proof. We end this section with
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a calculation of the irreducible homogeneous gauge classes of connections on
a fiber-transitive principal bundle (corollary 2.18). The result will be importantin
the proof of our main theorems.

If V is some finite dimensional H-module, let the corresponding representation
of H be denoted t: H — GI(V); we form the associated vector bundle, with fiber V:

mPx VoM

Sections in this bundle is denoted, I'(P x, V; M). If ¢ isa G-actiononm: P — M, it
induces an action on the sections I'(P x,V; M). We denote the G-invariant
sections, by the symbol: I'*(P x.V; M), or where there is no ambiguity
'SP x,V; M).

The following proposition makes it possible to calculate the homogeneous
sections:

PROPOSITION 2.1. Let G be a Lie group and H a closed subgroup of G. Let V be
some finite dimensional H-module, then:

r¢G x,V;G/Hy~ vH
where VY denotes the H-invariant vectors in the H-module V.

PrOOF. The proof is standard, see [BtD p. 141-142]. The proposition can be
thought of as a special case of the Frobenius reciprocity theorem for finite groups
see [R].

The following construction gives rise to a important H-module. Let ® denote
the Lie algebra of G, and $ the Lie algebra of H. The Lie algebra of H is naturally
included in the Lie algebra of G, if we think of the Lie algebras as the tangent
spaces at the element 1€ H < G. G acts on ® by the adjoint action:

2.2 Ad: G - GI(6)

If we restrict this action to the subgroup H, then the Lie algebra of H is
a H-submodule of 6.

DEerINITION 2.3. If we can choose a complement, I to $ in &, such that this
complement is Ad(H)-invariant:

G=9M
Then we say that the homogeneous space G/H is reductive.

If G/H is reductive, we call the representation corresponding to the H-module
M, for the linear isotropy representation:

2.4) J: H - GI()
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More general, for any non-negative integer p, we form the p™ exterior power of
the isotropy representation:

2.5) AP: H — GI(APIN)
We have the lemma:
2.6. LEMMA. There is a natural isomorphism of real vector bundles:
{G X3 APM - G/H} = {A*TM - M}

This isomorphism is G-equivariant, when G acts on the first component, on the left
hand side; and it acts by the p™ exterior power of the differential, on the right hand
side.

Proof. Define the G-isomorphism as follows:
Y: G Xz AP — A7 TM; Y(g; v) = (n(g), 74 (g~ 1))

This is well-defined, it is clearly linear and a bijection in each fiber, since for any
geG:

@.7) T,G = kern, ® g- M

The affine space of connections on n: P — M is denoted €(P; M). If ¢ is
a G-action on m: P — M the it induces a G-action on €(P; M), by pull-back of
1-forms. The connections invariant by the G-action ¢, are denoted ¢?(P; M), or
&°(P; M) and they are called homogeneous connections.

Proposition 2.1 enables us to calculate the homogeneous connections, when
the action ¢ is fiber-transitive. The following result is originally due to Wang
[W1, we include a proof of the first part of the theorem, that differs from the
original proof:

THEOREM 2.8 ([W]). Let G be a Lie group and H a closed subgroup of G. Assume
G/H is a reductive homogeneous space, and let MM denote a Ad(H)-invariant
complement to § in ®. Suppose K is some other Lie group, with Lie algebra & and
let x: H— K be a homomorphism of Lie groups.

Then the homogeneous connections (G x, K; G/H) are in bijective correspon-
dence with the vector in the vector space:

Homy(M; (Ad ° 0)*(R]))

Moreover the homogeneous connection corresponding to the homomorphism
{e Homgx(M; (Ad © x)*(R)), has curvature form given by the formula:

J*(E)1 0, w) = F{({[L©); {W)] — {([v; wla) — x([v; wlw)} for v, we M,

where j is the inclusion map:
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29 J: 6=G x, K5 jlg) =(g:1)

suffix m and h denote projection on the subalgebras I and $; [ ;] is the Lie bracket
in G.

j*(), is a map of H-modules:
j*(€°), e Hompg(A2M; (Ad ° x)*(R]))

PrOOF. Since G/H is reductive, there is an natural origon for the homogeneous
connections,on n: G x, K — G/H, the horizontal distribution for this connection
is constructed as follows: In the bundle n: G - G/H we have the connection
defined by the horizontal distribution:

(2.10) H,=g-M forallgeG

This induces a homogeneous connection in the bundle n: G x, K — G/H, by the
bundle map j.

Now any other homogeneous connection can be obtained from this, by adding
a G-invariant 1-form on G/H, with value in the adjoint bundle G x,4., & = G/H.
By proposition 2.1 and lemma 2.6 the G-invariant 1-form on G/H with values in
the adjoint bundle 7: G x,4., & — G/H, is parametrized by the finite dimensional
real vector space:

Hompy(M; (Ad ° 1)*(K)).

This finishes the first part of the proof.

We obmit the proof of the curvature formula, since it is a rather long computa-
tion and we do not need it later on (see [KNI p. 106]). In general, the curvature
form for a connection is a 2-form of adjoint type, on the total space of the bundle,
so:

J*(&), e Homp (A M; (Ad ° )*(R))

REMARK 2.11. If(G, H, M, H)is a symmetric space, then [, M] is contained in
$, so in this case the formula above for the curvature form reduces to:

J*E)1(v,w) = H{LO):{W)] — x([v; wla)} for v,we MM

There is another important action on the affine space of connections, namely
the action of the gauge group, 4(P; M). The gauge group is defined to be:

2.12) {f:P - P|f(pk) = f(p)k for all pe PkeK, f = id}

Iffis a gauge transformation and w is a connection, then also f *(w) is a connec-
tion, we can form the quotient of this action:

(2.13) B(P; M) = (P, M)/%(P; M).
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If we, like above, have a G-action ¢ on the bundle n: P — M, then this action
induces an action on %#(P; M), this action on %(P; M) depends only on the
G-action ¢ on the base, and not on the choice of lift of ¢. The G-action on Z(P; M)
is given by:

(2.14) B(P; M) x G - B(P; M); ([0],9)— [¢(9)*(@)]

where brackets mean equivalence class of gauge equivalent connections. The
gauge transformations commuting with the action ¢ is denoted ¥¢(P; M), we also
have the space of G-invariant gauge classes, we denote this space #¢(P; M), it is
defined to be:

(2.15) {[w]e®B|3¢ alift of §, and Vge G, Ife ¥: ¢(g)*(w) = f*(w)}

DEFINITION 2.16. A connection w in the K-principal bundle n: P — M, is called
irreducible if the holonomy of w is the structure group K.

The subspace of irreducible connections in €(P; M), is denoted é(P; M), the
gauge group act on this; the quotient is denoted #(P;M). The ¢-invariant
irreducible connections, called (P, M). The G-invariant part of %#(P; M), is
HC(P, M).

PROPOSITION 2.17. Let m: P — M be a principal K-bundle. Suppose the center of
K is trivial. Let ¢: G — Diff(M) be a G-action on M, we let ¥ denote a set of
representatives for each equivalence class of lifts of ¢ to n: P - M.

Then the space of irreducible G-invariant gauge classes of connections is:

AP, M) = | ) €*(P; M)/%*(P; M)
P&

PROOF. Let[[w]] € €%/%*, then [[w]]is represented by a ¢-invariant connec-
tion w. Clearly [w] is G-invariant. Now assume, the class [w] € #° is G-invari-
ant. Pick a fixed representative w for the class [w]. By assumption there exist a lift
¢, of @, so that for any ge G, there exist a f €%, such that ¢,(g)*(®) = f*(w),
hence

#:1@)°f " )* (@) = .

Since wis irreducible and the center of K is trivial, the only gauge transformation
preserving w, is the identity so ¢, (g) ° f ~ ! is the unique bundle map covering ¢(g)
and preserving w.

Define another fiber-transitive action ¢, (covering @) on the bundle n: P — M:

$2: G- Aut(P; M), ¢,(g9) = di(g)° f~*



HOMOGENEOUS CONNECTIONS AND MODULI SPACES 235

By assumption there exist a unique ¢;€.¥ and a F e¥ (determined up to an
element in %?) such that:

Foy(g)°F™! = ¢s(g) forallgeG
Now consider the map:
N U 72 /gdt
P&
[@] = (Fe ¢ °F Y [[F~*(@)]])
It is not hard to see, this map is well-defined, and we are done.

COROLLARY 2.18. Let n: P — M be a principal K-bundle. Let uqy be a base point
in P and m(ug) = xo. Assume M is reductive, and the center of K is trivial.

If §: G — Diff(M) is a transitive G-action on M, then the space of irreducible
G-invariant gauge classes of connections is:

FO(P; M) = | ) €°(P; M)/%°(P; M)
P&

where
& = Hom"(G,,, K)/Inner (K)
and Inner (K) denotes inner automorphisms of K
€°(P; M)/9*(P; M)

in the subspace of Homy (IR; (Ad © x)*(RK) corresponding to irreducible connections
( see proposition 2.8 for this correspondence).

Proor. Combine the proposition above, proposition 1.9, and the proposition
2.8.

REMARK 2.19. By definition a irreducible connection has K as holonomy
group. In general the image of the curvature form for a connection restricted to
a fixed tangent space T, Pis the Lie algebra of the holonomy group [KNI p. 81].
From this we can conclude that if a homomorphism { € Hompg (I; (Ad °x)*(R))
corresponds to an irreducible connection then the induced map:

J*(2)1 € Homp (A (Ad ° 1)*(R))
v A w F{([@) LW)] = Ll wlam) — x([v; Wik}

must be surjective.
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3. Riemannian metric on homogeneous spaces.

This section contains a construction of a homogeneous metric on a homogene-
ous space (lemma 3.1), our main interest is the four-sphere with the standard
metric and the complex projective plane with the Study-Fubini metric (remark
3.3). All statements in this section are standard.

We now want to give the homogeneous space M, a riemanninan metric, we
have:

LemMa 3.1. If H is compact, then the Lie algebra of G, ®, has an
Ad(H)-invariant positive definite inner product.

If {;), denotes such an inner product, then there is a unique extension of this, to
a riemannian metric on G, such that multiplication from the left by elements of G,
induces isometrics of G. The extension is given by the formula:

o;wy, =<g 'v;97 ' w)y

for any ge G and v,we T,G. This riemannian metric on G, descends to G/H, by the
canonical projection:

.G - G/H

Proor. Since H is compact, any inner product on ®, can by averaging be
made into an Ad(H)-invariant inner product. The rest of the lemma is trivial,
when we observe that the tangent bundle of any Lie group is trivial, in a natural
way:

TG~Gx®

DEFINITION 3.2. A riemannian metric on G/H, induced from an Ad(H)-invari-
ant inner product on ®, is called a homogeneous metric on M.

REMARK 3.3. i) A homogeneous metric is not unique (even when we mod out
positive constants), since the linear isotropy representation might not be irreduc-
ible as a real representation.

ii) In the following our main interest will be the two homogeneous spaces:

- __S0(5) N SU(3)
§t= 1@ S04’ Cp? = S(UQA) x UQ2)

in both cases the linear isotropy representation is irreducible, so the homogene-
ous metrics are determined up to a positive constant in both cases. The homo-
geneous metric on S* is called the standard metric. The homogeneous metric on
CP2 js called the Study-Fubini metric.

iii) If H is compact and connected, the linear isotropy representation is
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equivalent to a representation in SO(M). A choice of representation of H into
SO(IM) equivalent to the linear isotropy representation, defines in a natural way
a orientation of G/H.

iv) Observe that an Ad(H)-invariant inner product on ®, induces a natural
splitting of ®, namely:

M= {ve®|<v,H>, =0}

Hence M is reductive, when H is compact.

4. The moduli space of self-dual connections.

This section contains a sketch, of the construction of the moduli space of self-dual
connections on a four-manifold; for details see [AHS], [D], [L] or [FU]. For
reference we include one of the main theorems in [AHS] (theorem 4.2). It states
that under certain conditions, on the riemannian metric on the four-manifold, the
moduli space of irreducible self-dual connections is a smooth manifold. We prove
that the moduli space of irreducible anti-self-dual connections on the complex
projective plane, with the Study-Fubini metric, is a smooth manifold (theorem
4.4).

Let M be compact, oriented riemannian 4-manifold. In this section we will
consider principal K-bundles over M, where K is a compact semi-simple Lie
group. Let us fix a principal K-bundle n: P — M.

To each connection w € €(P; M), we associate the curvature 2-form Q. This is
a 2-form with values in the adjoint bundle. Now recall that the riemannian metric
and an orientation of M induces a Hodge star-operator *.

x: \*T*M - \*T*M

It is an involution on 2-forms. We denote the positive-(negative-) eigenspace of
* restricted to 2-forms for (anti-)self-dual forms on M*.
We may now define the moduli space of (anti-)self-dual connections

./l(:)(P; M). 1t is a submanifold of Z(P; M) = €(P; M)/%(P; M), cut out by the
(anti-)self-duality equation:

4.1) MEP; M) = {[w] e BP; M)|+Q° = *,Q°)

In general this space may have singularities coming from reducible connections.
(we do not consider the question of completion of these spaces in appropriate
Sobolev norms, this should be done to make the spaces in consideration into
smooth manifolds).

The Atiyah-Singer index theorem makes it possible to calculate the dimension
of 4 * (P; M) (# ~(P; M)) by study of an appropriate elliptic complex.
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THEOREM 4.2. ([AHS]). Let M be a compact self-dual riemannian 4-manifold
with positive scalar curvature. Let P be a principal K-bundle over M where K is
a compact semi-simple Lie group.

Then, the moduli space of irreducible self-dual connections on P is either empty or
a manifold of dimension:

2p,(8) — 3dim K(y — 1)

2p,(R)is the first Pontrjagin class of the vector bundle associated to P by the adjoint
representation: R, x is the Euler characteristic of M, and < is the signature of M.

REMARK 4.3. i) An oriented riemannian 4-manifold is self-dual if the negative
Weyl tensor vanishes.

ii) The 4-sphere with the standard metric, and any of the two orientations is
self-dual.

iii) The complex projective plane with the Study-Fubini metric and the stan-
dard orientation (coming from the complex structure) is self-dual, hence if we
change orientation of the complex plane, it becomes anti-self-dual.

iv) For any reductive homogeneous space the Levi-Civita connection asso-
ciated to a homogeneous metric has non-negative scalar curvature (see
[KNII p203]).

We now prove the following proposition; we assume the reader is familiar with
the proof of theorem 4.2 in [AHS] (see also [L p. 47-]):

THEOREM 4.4. Let CP? be the complex projective plane, with the Study-Fubini
metric, give CP? the standard orientation. Let P be a principal K-bundle over CP?
where K is a compact semi-simple Lie group.

Then the moduli space of irreducible anti-self-dual connections on P is either
empty or a manifold of dimension:

—2(dimK + p;(R))

where p;(R) is the first Pontrjagin class of the bundle associated to P by the adjoint
representation K. (p, is negative for anti-self-dual connections see 4.5).

ProOF. We change the orientation of CP? to the opposite orientation (denote
CP? with this orientation C_Pz). We want to use the proof of theorem 4.2, but this
needs a slight modification since CP? is anti-self-dual. If we examine the proofit is
not hard to see that the proof will apply in our case, if the 2nd cohomology group
of the fundamental complex on CP? vanishes. We will prove this is the case.

Let @ be a anti-self-dual connection on P — CP?, and let D denote the
associated covariant derivative on the vector bundle associated to P — CP? by
the adjoint representation, &, then we have the anti-self-dual fundamental com-
plex:
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0 - Q°(8) 2 0Y(R) 25 02 (R) > 0

where D, = P, oD and P, is linear projection on the self-dual 2-forms with-
values in K.

The 2nd cohomology of the complex above is equal to the kernel of the
operator D, D%, so we want to prove that ker(D , D%) = 0. We do this using
a standard technique, namely a Weitzenbrock formula, on self-dual 2-forms (see
[FU p. 111 + appendix c]):

D, oD% = V*oV — 2w+(-)+§

where the operators on the left and right hand side are operators from Q2 (R) to it
self. In the formula V*°V is the trace Laplacian (we only need to know it is
a positive operator), W* denotes the self-dual part of the Weyl curvature and k is
the scalar curvature.

From this formula we see that ker (D , ° D%)) = 0 if -;— — 2W™* () is a positive

operator on Q2 (R). We will show this is the case.
It suffices to prove that in any point x e CP? the map:

K

3~ 2W*(): AL TCP? » AL T*CP?

has only positive eigenvalues. It is not to hard to see (see [Sal p. 77]) that there
exists an ortonormal basis ¢, ¢, and @5 for A2 T* CP? (the first basis vector is the
Kaehler form for the Study-Fubini metric), such that in this basis:

x 2 0 0
W+=El_ 0 -1 0
0 0 -1

and:

3 24

. L[4 0 0
— —2W*()=—|0 10 ©
0 0 10

If we specialize to SO(3)-bundles and we assume M also is simply connected,
then it is known, that SO(3)-bundles over M are topologically classified by their
first Pontrjagin class p, and there second Stiefel-Whitney class w, [DW]. Itis not
hard to prove, for pure topological reasons:

4.5) M =0 for p, <0
M~ =0 for p, >0
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For p; > 0(p;, <0) .#* (.# ) might be empty, for general 4-manifolds M, but
imposing some assumptions on M’s intersection form (for example M positive
definite) we have .# *(.# ) non-empty for a generic metric on M, and it is
a manifold of the dimension predicted by the formula in theorem 4.2 ([FU]J).

The singularities in the moduli space come from reducible connections (if
P — M is non-trivial and the structure group is SO(3), a reduction has U(1) as
structure group). When M is simply connected, compact, oriented, and positive
definite the reducible self-dual connections are in 1-2 correspondence with the
finite set of cohomology classes [FS]:

(46) {se H(M,2)| (s Us,[M1> = ps(P) and s = w,(P)(mod 2)}

hence the singularities in the moduli space are well understood in this case.

5. The proofs of the main theorems.

This section contains our main results, using the homogeneous methods develop-
ed in the first three sections, we reprove that the moduli space of one-instantions
on the four-sphere is hyperbolic five space (theorem 5.1). The same methods
apply to demonstrate that the moduli space of anti-self-dual connections
(p1 = —3 and w, # 0) on the complex projective plane, with the Study-Fubini
metric is a single point (theorem 5.2). In both cases we study the moduli space on
the SO(3)-bundle of anti-self-dual skew 2-tensors on the manifold. We also show
that certain principal SO(n + 1)-bundles on certain homogeneous four-spaces
have anti-self-dual connections (proposition 5.5)
We prove the following 2 theorems:

THEOREM 5.1. ([AHS]). The moduli space of anti-self-dual SO(3)-connections
on the bundle with p, = —4, and w, = 0 over S*, with the standard metric, is
diffeomorphic to hyperbolic 5-space, that is:

M~ >~ 80,(5,1)/SO(5)

Note that by using an orientation reversing diffeomorphism of S* we get the
symmetric result for self-dual connections:

THEOREM 5.1'. The moduli space of self-dual SO(3)-connections on the bundle
with p; = 4 and w, = 0 over S*, with the standard metric, is diffeomorphic to
hyperbolic 5-space that is:

M* =~ S0, (5,1)/SO(5)

This is in fact special for $%, the moduli space of self-dual SO(3)-connections on
bundle with p, = 4w, = 0 over CP2,is a cone on CP2 [K], but the moduli space
of anti-self-dual SO(3)-connections on bundle with p;, = —4 w, = 0 over CP?,is
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empty (Donaldson (1985) has showed that there is a 1-1 correspondence between
anti-self-dual connections on a complex algebraic surface and stable bundles on
this surface, using a result of Schwarzenberger (1961), classifing certain stable
bundles on CP? gives this result).

THEOREM 5.2. The moduli space of anti-self-dual SO(3)-connections on the
bundle with p, = —3, and w, % 0 over CP2, with the Study-Fubini metric, is
a point, and the gauge class is represented by a homogeneous connection.

First some facts from representation theory:

PROPOSITION 5.4. The irreducible complex representations of the Lie group
Spin(4) = SU(2) x SU(2), are classified by two non-negative integers a, f € Ny, we
denote the representation corresponding to the pair (a, f) for y,5.

Any irreducible complex representations of SO(4) is a lift by the spin homomor-
phism o: Spin(4) — SO(4) of a irreducible representations y, g of Spin(4), where
o + B is even. y, 5(, € No) has the following properties:

i) Xap: SUQ2) x SU2) = U((x + 1)(B + 1))

il) Ifa + Biseven, y,p is even, x, g has areal structure. Ifa + B is odd then, 3, 4
has a quatonion structure.

iil) X0 ®cX0.p = Xap
min(a,x’)

iV) Xa,O ®C Xa',0 = z Xa+a‘—2j,0

j=0
min(B,8’)

Xos®cXos = Y. Xop+p-2j
j=0
ProOF. See for example [BtD]
Now we prove:

PROPOSITION 5.5. Let G be compact Lie group and H a closed connected
subgroup and assume dim G/H = 4. Choose a homogeneous metric, and an orienta-
tion on G/H.

Ifthe rank of A(H) is 2, where A: H — SO(4) is the linear isotropy representation
(see 2.4), then for any non-negative even integer B, the principal SO(8 + 1)-bundle:

(5.6) G Xy, ,-4SO(B + 1) > G/H

has a unique G-invariant connection, and this is anti-self-dual, with respect to the
homogeneous metric and orientation.

Proor. By proposition 2.8 the G-invariant connections are in 1-1 correspon-
dence with the vector space Hompy(4, 2*(Ad ° xo 4)). First we calculate Ad° yq 4
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for B even, using proposition 5.4:

431
(5.7) Adoyop = z Xo.2(8-1)~4j
j=0

since y; , is the identity map we have:

Homg(4, A*(Ad ° x0,4))
(31
= 'Zo Hompg(2*(x1,1), *(Xo.2¢ - 1)~45)
=

Now by assumption A(H) has the same maximal torus as SO(4), so the vector
space above must be zero by proposition 5.4 and Shur’s lemma. This proves
that there is precisely one G-invariant connection in the bundle
G Xy, 52S0(B + 1) > G/H.

We now prove that this G-invariant connection is anti-self-dual. By proposi-
tion 2.8 and since m: G X,, ,.1SO(3) = G/H is the SO(3)-bundle of the vector
bundle of skew self-dual 2-tensors n: A2 TM — M (lemma 2.6); the self-dual part
of the curvature form for this connection evaluated in the point 1 is an element in
Hompy(4*(x2,0), A*(Ad © x0,4)). We have:

Hompy(4*(x2,0), A*(Ad * x0,5))
el
~ Y Homy(A*(x2,0) 4*(X0,26- 1)-4j)
j=0
again by proposition 5.4 and Shur’s lemma this is zero, we conclude that the
self-dual part of the curvature form vanish and we are done.

ReMARK 5.8. i) The above proposition applies in the 3 cases:
§ ~ SO(5)
19 S04)

__sup)
CP* = SUm x U@

SU@)

2 2 o

§ x5 ~560) x s0Q)

ii) From the proof of the proposition above it is obvious that we could replace

Xo.p and anti-self-dual connections with y, o, and self-dual connections.

To be able to calculate the dimension of the moduli space of anti-self-dual
connections we include the following lemma, the proof is an exercise in calculat-
ing weights of the representations of SO(4):
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LEMMA 5.9. With the same assumptions as in proposition 5.5, the first Pontrjagin
class of the adjoint bundle of the bundle in 5.6 is:

( ) %jz)(sr -2y

(z|0$e§2ﬂ,a§2} j=0
where t is the signature of G/H and y is the Euler characteristic of G/H.

REMARK 5.10. i) In the case where § = 2, the bundle 5.6 is the SO(3)-frame
bundle coming from the vector bundle, n: A2 TM — M, of anti-self-dual skew
2-tensors

ii) In the case where = 2 the bundle 5.6 and its adjoint bundle are isomor-
phic, since the natural representation of SO(3) on R? and the adjoint action of
SO(3) on its Lie algebra are isomorphic representations.

iii) If we use the above formula in the 3 cases in remark 5.8 we get:

On $*
Pl(Az—) = p1(Xo,2) = —4
P1(A3-) = pi(x2,0) =4

On CP%

P1(A4%) = pi(x0,2) = —3
pi(43) = P1(x2,0) =9

On $? x §%
Pl(Az—) = pi(Xo,2) = —8
P1(A?+) = p1(X2,0) = 8

COROLLARY 5.11. The dimension of the moduli space of anti-self-dual connec-
tions on the SO(3)-bundle on S* (standard metric) with p, = —4 and w, = 0 is
a non-empty smooth manifold of dimension 5.

The dimension of the moduli space of anti-self-dual connections on the
SO(3)-bundle on CP? (Study-Fubini metric) with p, = —3 and w, £ 0 is
a non-empty smooth manifold of dimension 0.

PRrROOF. The S* case: By 4.6 there are no reducible connections in the moduli
space, since p; = —4 and H?(S* Z) = 0, so by theorem 4.2 and remark 5.10, the
moduli space is a smooth 5-manifold. It is non-empty by proposition 5.5.

The CP? case: Again by 4.6 there are no reducible connections in the moduli
space, since p; = —3 and CP? is positive definite. By theorem 4.4 and remark
5.10, the moduli space is a smooth 0-manifold, and it is non-empty by proposi-
tion 5.5

REMARK 5.12. Since $? x S, with the standard metric, is not self-dual we can
not apply theorem 4.2 in this case, in fact we do not know of the moduli space of
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SO(3)-connections on A2 — S? x $% is a smooth manifold. We know it is
non-empty (by proposition 5.5).

PrOOF OF THEOREM 5.1. The bundle we consider is SO(5) x,, ,SO(3) —
SO(5)/SO(4); for short we denote it P — S*. The group of orientation preserving
conformal map, of S* is denoted C*(S*) this group acts on the moduli space of
anti-self-dual connections, since conformal maps preserve the Hodge star-
operator. Let us fix a class [w] € .4 ~ we want to calculate the isotropy group Cy,;.

Let U denote an open connected subset of S*, on which the point-wise norm of
the curvature-form for w is non-zero:

U c {xeS*||19°|, > 0}
U is non-empty. To see this, let vol denote the volume on S* then observe:
tr(Q° A Q°) = —tr(Q2° A *x Q%)

= tr(Q°" A * Q%)
= |2%|? vol
The left-hand side of this expression is a 4-form, representing the first Pontrjagin

class in de Rham cohomology, thus:

1
8n?

J |Q°)? vol = —4
S4

We deduce |2°| must be non-zero on an open subset of S* (alternatively, observe
Q¢ is real-analytic, so if it is zero on an open set it is identically zero).
Now define a new metric § on U, conformal to the standard metric g on U:

g =12%g onU

From the definition of § it follows that the isotropy subgroup of [w]; fixes g, thus
Cpiy acts on (U, §) by isometries. Now recall that a riemannian manifold of
dimension n, has isometry group of dimension at most jn(n + 1) and if the
dimension is maximal then the manifold is a space of constant curvature [KNI
p. 238]. By corollary 5.11 and since the group C*(S*) has dimension 15, we have
that:

dimC}, 2dimC*($*) —dim.#~ =15-5=10
Thus (U, §) has to be isometric to (S*, g) [KNI, p. 308] and we have an isometry o:
a:(U,§) — (8%, 9)
or:

cSO(5)e™ ! =CpL,, ceC* (5%
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We conclude that [¢*(w)] is SO(5)-invariant.

We now want to apply corollary 2.18, we want to show that o*(w) is gauge
equivalent to the SO(5)-invariant connection in proposition 5.5. In our case we
see that:

Hom?” (Gx; K) = Hom?"(SO(4); SO(3))

P does not have a reduction (else there would be a class in H2(S*; Z) with square
—4) so if ye Hom"(SO(4); SO(3)) then y has to be surjective (remark 1.6). From
proposition 5.4 it follows that:

Hom?"(SO(4); SO(3))/Inner(SO(3)) = {x0.2}

so there is only 1 equivalence class of lifts of the usual SO(5)-action on $* to the
bundle P — S*, namely the action considered in proposition 5.5. Corollary 2.18
now gives that 0*(w) is gauge equivalent to the connection in proposition 5.5, and
we are done.

PrOOF OF THEOREM 5.2. The bundle we consider is SU(3) xx,,..SO(3) »
SU(3)/U(2) for short we denote it P - CP2,

The group SU(3) acts on CP? by orientation preserving isometries, hence it
acts on the moduli space of anti-self-dual connections, since isometries preserve
the Hodge star-operator.

Let us fix a class [w] € #~ we want to calculate the isotropy group SU(3),;.
By corollary 5.11 the dimension of .# ~ is 0, hence SU(3),,, is a closed subgroup of
SU(3) of the same dimension as SU(3), since SU(3) is connected we conclude:

SUQ)w = SUE)

We will use the same type of argument as in the proof of theorem 5.1. In our
case we see that:

Hom"(G,; K) = Hom"(U(2); SO(3))

again P does not have a reduction (else there would be a class in H?(CP?; Z) with
square — 3) so if y e Hom?(U(2); SO(3)) then y has to be surjective (remark 1.6). It
is not hard to see that there is only one surjective real representation of U(2) in
SO(3), and it is the linear isotropy representation 4: U(2) - SO(4) composed with
Xo,2'

Hom"(U(2); SO(3))/Inner(SO(3)) = {xo0.2° 4}

so there is only one equivalence class of lifts of the usual SU(3)-action on CP? to
the bundle P — CP2, namely the action considered in proposition 5.5.

Hence w has to be gauge equivalent to a SU(3)-invariant connection. By
proposition 5.5 there is only one SU(3)-invariant connection on the our bundle.
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