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CONFORMAL IMBEDDINGS OF THE COMPLEX
PROJECTIVE PLANE AND SELF-DUAL CONNECTIONS

HENRIK KARSTOFT

Abstract.

The purpose of this paper is twofold. First we present a construction of a non-trivial set of conformal
imbeddings of the complex projective plane into the quaternion projective plane. Secondly we
construct the moduli space of 1-instantons on the complex projective plane in a very explicit manner.

0. Introduction.

In the last decade there has been an intensive study of the moduli spaces of
self-dual connections on 4-manifolds, lately this has lead to the discovery of the
Donaldson-invariants, distinguishing different differentiable structures on
a 4-manifold.

In this paper we show that in some cases the notion of self-dual connections
and the notion of conformal maps are related. First we present a construction of
anon-trivial set of conformal imbeddings of the complex projective plane into the
quaternion projective plane. In fact we prove that the space:

{ceGly(H)| Co(c*c) = 1}/U(1)

parametrizes a family of conformal imbeddings. Secondly we construct the
moduli space of 1-instantions on the complex projective plane in a very explicit
manner.

This paper is divided into 4 sections.

The first section contains an introduction to the notation used in the rest of the
paper and some preliminaries on the quaternion Hopf-bundle.

The second section contains a sketch, of the construction of the instanton
moduli space, of a 4-manifold. We do not go into any details, but refer the reader
to one of the papers [D1], [FU] or [L].

In the third section we define the notion of CH-maps (definition 3.1),
a CH-map is a certain conformal imbedding of a complex manifold X of real
dimension 4 into the quaternion projective space. Then we show that there is
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a 1-1 correspondence between these maps and self-dual connections on
a Sp(1)-bundle over this manifold (proposition 3.2), in fact we show there is
a equivariant map from the space of CH-maps on X into the moduli space of
self-dual connections on X (proposition 3.16). The results presented in this
section are new.

In the fourth section the main results are stated. We prove there is a non-trivial
family of conformal imbeddings of the complex projective plane into the quater-
nion projective plane (theorem 4.6). Secondly we prove that if the moduli space of
1-instantons on the complex projective is connected, then it is a cone on CP?2
(theorem 4.9). This result is related to the ideas presented in the paper [D2]. We
have not been able to prove, by differentiable-geometric means that the moduli
space is connected. This can be done, using algebraic geometry [B].

ACKNOWLEDGEMENT. The author wants to thank Docent J. Dupont for his
help in producing this manuscript.
1. The quaternion Hopf-bundle.

This section contains preliminaries used in the folowing sections. The quaternion
Hopf-bundle and the canonical connection on this is introduced.

Let in the following H denote the quaternions, the non-commutative 4-dimen-
sional real algebra, generated by 1, i, j and k. i, j and k satisfy the relations:

P=j2=k*=—1 and j=kjk=iki=j

We let H* denote the invertible quaternions, H* = H\{0}. On a quaternion
Xo = ix; + jx, + kx3 we have the operations:

(1.1 Re{xo + ix; +jx; + kx3} = x,
Im{x, + ix; + jx; + kx3} = ix; + jx; + kx3
Co{xo + ixy + jx; + kx3} = x¢ + ix;
Oc{xp + ixy + jx3 + kx3} = x5 — ix3

we also have the conjugation maps:

(12) (XO + ix; +ij + kX3) = Xo — iX; —jx2 - kX3

If nis a positive integer, let n + 1 columns af elements from H be denoted H** 1. If
(90,91,---»qn+ 1) €H"*!, then we extend the conjugation map to:

((qO’ d1s-- s qn+ l)t)* = (qo’ q_l’ seey qn+l)'

H* acts from the right on H"**\{0} by usual scalar multiplication, the
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quotient of this action is the quaternion projective space HP", This principal
H *-fibration is the quaternion Hopf-bundle:

(1.3) m: H"*1\{0} - HP"
or for short Hy:. We will make the usual identification:

(1.4) v: T(H™*1\{0}) - H"*1\{0} x H"*1

d
Vq“?t—

where ge H"* 1\ {0} ve H"* 1,

Multiplication from the right by the scalar A€ H defines a map preserving the
fiber in the bundle T(H"*'\{0}) » H"*!\{0}, we denote this map by FR,
(fiber-right):

(1.5) FR;: T(H**1\{0}) > T,(H"*'\{0})

FR;: (q,v)+— (g, vA)

(g + vt)) =(q,v)

t=0

Thus T(H"**\{0}) - H"* '\ {0} is in a natural way a quaternion vector bundle.
In particular T(H"**\{0}) - H"*1\{0} is a complex vector bundle, if we restrict
the scalars from H to C. This action, FR;, should be distinguished from the action
coming from the principal bundle structure. If ge H*, g acts on H"**\{0} by
right translation, we denote the map R,:

(1.6) R, T(H"*1\{0}) - T,,(H"*'\{0})
R,: (g,v)— (g9, vg)
Observe:
{AeH|FR;°R, = R,°FR, forallgeH*} =R

so the complex structure does not descend to THP".

Now choose some fixed quaternion inner product on H**! ¢, conjugated
H-linear in the first factor, the associated norm is denoted ||. |. This gives rise to
a fiber-wise quaternion inner product, conjugated in the first factor, on the
quaternion vector bundle T(H"*1\{0}) —» H"*'\{0}.

Let (¢, v), (g, w)e T(H"* \{0}) then we define:

(1.7) €(a,0), (@, W) = llgl~* Ko,w)

We will now define a connection, in the quaternion Hopf-bundle using this
inner product. This connection will be called the canonical connection. The
kernel for the projection map = is the vertical vectors:
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(1.8) Ve = {(@,v)e T(H"*'\{0})| m,(q, v) = 0}
= {(q,v)e T(H"**\{0})| q = vA for some e H}
The horizontal distribution for the canonical connection is then defined to be:
(1.9  H, = {(g,v)e T(H"*'\{0})| (g, w),(g,v)}) = O for all (¢, w)e V,}
We see:
H, @V, = T(H"*'\{0})
and ifgeH™:
R,H, = H,,
We have the isomorphism of real vector spaces:
ng| Hi: Hy — T,HP".

Denote the inverse of this for n, !. Observe n, '°n, is H-projection on the
horizontal subspace H,.

If g: H"*! —» H"* ! denotes the identity map, the connection 1-form w° for the
canonical connection is:

(1.10) oy = llqll 7% q,dq»

The curvature 2-form Q° is given by:

(1.11) Qg = llqll~* {<dq,dq) — <da,q llq] ~* g, da)}

or

(1.12) Q7 (v,w) = Im{ligl| =2 ;o 1, (v), 7yt o (W) D}

for v,we T,(H"* 1\ {0}). It is obvious that if we restrict Q° to H, then we have:
(1.13) Q7| Hy = llqll ~* Kdq, dg)

From this we see that the Lie algebra of the holonomy group is Im H ([KN p.
841), since HP" is simply connected the holonomy is: )

Sp(1) = {ge H* [g*g = 1}.

Now we can define a Riemannian metric g on HP". The manifold H” * '\ {0} has
a natural Riemannian metric, namely:

(1.14) Re{llgll ~* €4, ).(g, W)}

for (g,v) (g, w)e T,H"* '\ {0}. It descends to HP" since it is invariant by R,,ge H*,
we define:
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(1.15) ra(0:W) = Re{llgll =2 K, '(v), , '(wW))}
for ge H"*'\{0} and v, we T,HP".
We sumarize:

LEMMA 1.16. A choice of quaternion inner product &,y on H"*!, induces
a natural connection w° (1.10) on the quaternion Hopf-bundle (1.3). The holonomy
of this connection is Sp(1).

It also induces a natural Riemannian metric on HP", denoted g.

REMARK 1.17. Observe that all of the above still holds if we replace the
quaternions by the field of complex numbers. The Riemannian metric obtained
in this way on CP”, g (using the standard Hermitian inner product on C**1!) is
called the Study-Fubini metric on CP”".

In the forthcoming sections, the following map will be important:
(1.18) o: C*"*21\{0} - H"* 1\ {0}
g (Zo,Zl,. . -aZZn’ZZrH-l)H(ZO +jzb' ce3Z2p +j22n+l)

This map is clearly C*-equivariant, and holomorphic, when H"* !\ {0} is given
the complex structure FR;. It defines a bundle map, between the complex
Hopf-bundle Cy}, . ; and the quaternion Hopf-bundle Hy}:

o C2"+2\{0}—)H"+1\{0}

in iz
(1.19) o: CP™"*1 o HP"

We see that ¢ on the base is a fibration with CP! as fiber.

2. The moduli space of self-dual connections.

This section contains a sketch, of the construction of the moduli space of self-dual
connections on a 4-manifold; for a detalied discussion see [D1], [L] or [FU].

We restrict our attention to the case where X is a simply connected, compact,
oriented Riemannian 4-manifold. In the following we study principal
Sp(1)-bundles over X. Topologically these are classified by their 2nd Chern-class.
We call minus the 2nd Chern number, the instanton number of such
a Sp(1)-bundle.

If we fix a principal Sp(1)-bundle with instanton number ke Z, n: Q — X, we
have the infinite dimensional affine vector space of connections on this, it is
denoted %¥(Q;X) or when there is no ambiguity %,(X). The group of
gauge-transformations, bundle maps covering the identity, is denoted %(Q; X) or
%.(X). This group acts on space %,(X) by pull-back of forms. The quotient is
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denoted #(Q; X) or %,(X). In general this space may have singularities, coming
from reducible connections. (We do not consider the question of completion of
these spaces in appropriate Sobolev norms, this should be done to make the
spaces in consideration into smooth manifolds).

To each connection w € %,(X), we associate the curvature 2-form Q°. This is
a 2-form with values in the adjoint bundle.

Now recall that the Riemannian metric and orientation of X, induces a Hodge
star-operator *.

* AXT*X > AXT*X

It is an involution on 2-forms. We denote the positive (negative)-eigenspace of
* restricted to 2-forms for (anti-)self-dual forms on X.
We may now define the moduli space of (anti-)self-dual connectionsonn: Q — X,

M (:’(Q; X)or .//{,5: (X). It is a finite dimensional submanifold of %,(X) (with some
well understood singularities), cut out by the (anti-)self-duality equations:

2.1) MNX) = {[w] e B(X)|*Q = *,Q°}

(where brackets means equivalence classes of gauge equivalent connections). We
have, for pure topological reasons:

.2) M(X)=0 for k<0
M (X)=0 for k>0

For k > 0 (k < 0) 4} (X)(#,” (X)) might be empty, for general 4-manifolds X,
but imposing some assumptions on X’s intersection form, .4} ((.#, (X)) is
non-empty for a generic metric on X ([T]).

We now restrict our category of manifolds further, namely assume the intersec-
tion form of X* is positive definite. In this case the dimension of the moduli space
can be calculated using the Atiyah-Singer index theorem on an appropriate
elliptic complex [AHS]. The dimension turns out to be:

2.3) dim .4 (X) = 8k — 3

Hence the 1-instantion moduli space, .#," (X) is a smooth 5-manifold, away from
the singularities arising from reducible connections.

We summarize some of the features of the moduli spaces, the results are
originally due to Donaldson in the paper [D1] (see also [FU] and [L]):

2.41i) # isfor a generic Riemannian metric on X a smooth 5-manifold, away
from the singularities arising from reducible connections.

2.4ii) The singularities of .#; are in 1-2 correspondence with the finite set of
cohomology classes:
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{se H¥(X;2)|{sus;[X]) =1}
and a neighbourhood of a singularity in .#;" is a cone on CP%:

CP2 x [0;1[
CP? x {0}

2.4iii) ., has a collar diffeomorphic to X x ]0; e[, for some small & > 0.
(Think of the collar as the connections with curvature very concentrated around
a single point in X).

We will make this statement more precise since we need it later on. (For more
details on the following see [L p. 69-70] or [FU p. 149-]). The collar denoted,
M (€) consists of an open subset of the moduli space and there is a diffeomor-
phism:

p: My () > X x]0;¢[
p: [w] = (x(w), r(w))

where x(w) denotes the center of w (see [L] and [FU] for details) and r(w) denotes
the radius of the connection w. The radius of w is defined as follows:

rw) =min{se R, |Ixe X:I°(x,s) = 3}

and

1
I°(,8) = 5 f Bdyx,2/9) 19712 2) vl

where f denotes a smooth bump function on R:

0 for |u>1

Blw) = {1 for |ul <3

d,(x, z) denotes the distance between x and z in the Riemannian metric on X and
—8—:7 122112 (z) vol denotes the 2nd Chern form of the connection w (see (3.10)). We

should think of (w) as a smooth version of:

1
plw) =min{seR, |Ixe X:— [92]12 vol = 1/2},
8n By(x)

i.e. the smallest ball containing } of the action of the instanton w. In fact .#;" (¢) is
defined using the radius function:
Mi(e) = {[w]e H |rw) < &}
2.4iv) M\ M (¢)is a compact set.
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3. CH-maps and self-dual connections.

In this section we study the relation between certain conformal maps on a com-
plex manifold, denoted CH-maps and self-dual connections on this manifold. We
show that there is a 1-1 correspondence. We also introduce a gauge invariant
quantity associated to a CH-map, the density function. We end this section
defining a group action on the space of CH-maps.

Recall a smooth map f: X — Y between 2 Riemannian manifold (X, gx) and
(Y, gy) is conformal if f*(gy) = A;gx for some real positive function 4, on X. We
call A, for the conformal weight function for f.

We begin this section with a definition:

DEFINITION 3.1. If X is a complex manifold of real dimension 4, with a hermitian
metric, then a holomorphic map f: X — CP?"*! is called a CH-map of rank non X,
if the composition o ° f: X — HP" is a conformal map; here o is defined in (1.19) and
H"*! has a fixed quaternion inner product. If f is a CH-map, f denotes the
composition ¢ ° f.

Furthermore if P — X is a principal C* -bundle, then the space of CH-maps of
rank n on X, compatible with P, CH"(P; X), is defined to be the space of CH-maps of
rank nf: X — CP?"*! such that f*(Cy},.,) is isomorphic to P as topological
bundles.

The following proposition makes it possible to find CH-maps on a complex
manifold:

THEOREM 3.2. Let X an complex manifold of real dimension 4. Assume h is an
hermitian metric on X. Let w° be the canonical connection in the quaternion
Hopf-bundle (1.3). Assume f: X — CP?"*! is a holomorphic map and f has differen-
tial not identically O in any point: f, . # 0 for all xe X.

Thenfisa CH-map of rank non X if and only iff°(w°) is a self-dual connection on
the bundle f*(Hy!), with respect to the hermitian metric on X and the orientation
coming from the complex structure.

Moreover the connection f*(w®) has a reduction to a self-dual Sp(1)-connection.

ProoF. First some notation. Fix a point p in the total space of the pulled back
bundle f*(Cy.,. ,), hence pe Ef*(Cy},. ), let x = n(p) and j = o(p). Observe the
following: The connection ° in n,: H"**\{0} — HP" defines a R-linear map:

5 ey TpHP" — Trpn(H"* 1\{0})

The connection f*(®) in f*(Hy!) defines a R-linear map:

iy ' T.X — T,Ef*(Hy})
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The pull-back of the canonical connection in he bundle Cy},, , to the bundle
f*(Cy3,.,) defines a C-linear map:

n, ' TX > TEf*(Cy}us1)

here multiplication by i is defined by the complex structure on T, X and the
complex structure on T,Ef*(Cy},. ). We have the 2 formulas:

(3.3 (fro iy H®) = (5 S5 © f)©)
(34 (fp" Ty ) = «n;,lj'(p) ° Ty, 75) ° O f(p) ° foe T, H(v)

for ve T, X. Note in the last formula all the maps on the right commutes with the
complex structures.

Now assume f is conformal. Since fyo7,' commutes with the complex
structures, f,o iy '(T.X) is stable by multiplication from the right by i. Let
Q9% 5 be the curvature form defined in (1.12) evaluated in the point f(5). We now
use the algebraic lemma below, from this we conclude that the 2-form:

Qg | fpo g i (T:X)
is self-dual with respect to the inner product:
Re{| F@) ~* K@) v), (F @), WP} | e 75 (T X)

Since f;, is conformal and orientation preserving, it preserves self-duality, hence
F*(Q%),0 ;! is self-dual with respect to the hermitian metric h on X.

Let us assume Q% f° 5 ! is self-dual with respect to the hermitian metric
on X. Define a real 2-form 6y, on the real vector space T, X:

0x(v,€) = Co{Q% 75 '(v, W)}

for v, we T, X. This is a real form, since Q % only takes values in Im H. We see
that:

(3.5 Ox(v,(W)I) = Co {Im {|| fB)Il "2 & fo iy (0, WD D}}
= i-part of {|| fp)Il 72 K fyo 75 (0, (WD) )}
= i-part of {|| )|l ~2 « fo &5 '(v, W) )i}
= Re{I D) "% Kfpo 7ty (v, W)D}
= f*(guv, w)

where I denotes the complex structure on T, X. On the other hand extend 0y to
a C-bilinear form on the complex vector space T, X ®5 C, then we claim that 0, is
of type (1, 1).

To see this, let v, we T, X ®; C*+?, hence ()] = vi and (W) = wi, we have:
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Ox((V)I, (W)I) = Ox(vi, wi) = i*0x(v,w) = —Ox(v, w)
but:
Ox (), W) = Co{Im {[| fB)| =2 K Jpo 5 (@), (W)))}} = Ox(v, w)

where we used that fo 75 ' commutes with the complex structure. We conclude

that 8y(v,w) = Oforv,we T,X ®{ C1' P orv,we X ® C® Vsoitis of type (1, 1).
Now a self-dual 2-form of type (1, 1) is a multiple of the fundamental 2-form,

associated to the hermitian structure ([A p. 46-48]). We have for v,we T, X:

T*@)x(v, w) = 0x(v,(W))
= Ax)hx(), (W)
= AX)hx(v, )

for some A(x), by assumption f, % 0 hence A(x) > 0 and we are done.

For the last statement, the holonomy of the connection f*(w°)is a subgroup of
the holonomy of w® ((KN p. 81]), hence it is a subgroup of Sp(1). Now in general
a connection has a reduction to the holonomy bundle ((KN p. 84]). In particular
F*(°) has a Sp(1)-reduction.

In the theorem above we used the following algebraic lemma:

LEMMA 3.6. Let W be a right vector space over the quaternions, assume &, is
a quaternion inner product on W, conjugated in the first factor. Assume V* is
a 4-dimensional real subspace of W, also assume that V* is stable by multiplication
from the right, by a quaternion e H*: 6> = —1.

Then the 2-form on W, Q = Im&,), when restricted to V*, is self-dual with
respect to the R-inner product Re &, and the orientation defined by the complex
structure 6.

ProOOF. Since §? = —1, 6 induces a R-linear involution:
Ad(6): H-H; g— 096
We denote the + 1, and —1 eigenspaces by V. and V_:
V. ={geH|0g =g0}; V_ = {geH|0g = —g6}

Observe V, 0 < V, and V_0 < V_, hence V, is a subfield of H of real dimension
2. We define:

P_:H-H; P_ =}(1 — Ad(H)
Then: '
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P,P_.=P_P,=0
P =P,P*=P_
P.g=P.g
Now define a new inner product on W with values on the field V., :
(v,w) = P, (Lv,w)») for v,weW

We can now find an ortonormal basis for V* over the field V. with respect to {,);
denote this basis e, and e;. It follows that e,, ,0 = e,, e3, e30 = e4 is a positive
ortonormal basis for V* over R with the inner product Re {,>. If {e;};= ;.. 4 isany
positive ortonormal basis for V#, then Q| V* is self-dual (*Q = Q) if and only if
the set of equations are fullfilled:

Qey,e;) — ez ey) =0

ey, e3) — Qeq,ex) =0

ey, eq) — Qez,e3) =0
but it is not hard to see:

Kep,e2) —Keseq) =0

e, e3) —Keq e =0

Key,es) — Kez,e3) =0
since ey, e; e V-.

REMARK 3.7. i) If fe CH"(P; X) then the self-dual connection f*(w°) defines
a holonomy Sp(1)-bundle, this is independent of the choice of f € CH"(P; X), since
Sp(1) is the maximal compact subgroup of H ™.

ii) In the above proposition we can replace the notion of holomorphic maps
and complex structures with the notion of almost holomorphic maps and almost
complex structures.

iii) Observe the above proposition can also be formulated for anti-holomor-
phic maps.

iv) If f e CH"(P; X) and ¢,(P) denotes the 1st Chern class (a U(1)-reduction) of
the C*-principal bundle P, then the 2nd Chern class of (a Sp(1)-reduction) the
bundle f*(Hy?)is —c,(P)%

The next proposition we do not need in the following, we include it since it is
related to theorem 3.2.

ProPoSITION 3.8. Let f € CHY(P; X) then the Oc-part (see 3.9) of the curvature
form F*(Q°), of the connection f*(w°), is of type (2,0).
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Proor. In analogy with the proof of proposition 3.2 we define the 2-form:

(3.9 @(v,w) = Oc{Q% ) ° fro 7y (v, W)}

for v, we T, X. Now we extend ¢ to a bilinear form on the complex vector space
T.X ®5 C. We claim that ¢, is of type (2,0).

To see this, let ve T,X ®, C® Y, hence (v)I = vi and we let we T,X ®;C be
any vector. We have:

dx((V)I,w) = ¢X(vi’ w) = idx(v, w)
but
éx(1,w) = Oc{Im {|| fB)| =2 K fro i "M, W)D}} = —igpx(v, W)

We conclude that ¢x(v,w) = Oforve T,X ®3 C® VY and we T, X ®z C hence it is
of type (2,0).

In the last part of this section we will associate a positive function on X, to
a CH-map. It is called the density function, we prove this is a gauge-invariant for
the connection associated to the CH-map. We also introduce a group action on
the space of CH-maps.

Now let feCH™(P; X), then the curvature form f*(Q°) for the connection
f*(@®)is a2-form on Ef *(Hy!) with values in Im H. On H we have the usual norm
Il I, hence it makes sense to calculate the norm square of the values of the form
F*(Q% A f*(Q°), this new form is denoted:

I7*@)1?

This is a H*-invariant horizontal 4-form on Ef*(Hyl), thus it descends to
a 4-form on X. This form multiplied with the number (872) ! is in fact the 4-form
on X representing the 2nd Chern class of f*(Hy?) in de Rham cohomology.

On the other hand there is a distinguished 4-form on X, namely the volume
form, comming from the Hermitian metric (since a complex manifold has a natu-
ral orientation). We denote this: vole Q4 X;R). Thus any smooth 4-form on
X can be written f-vol for some function f e C*(X). In particular there exist
a positive function é € C*(X) such that:

(3-10) I 7*(Q°))? = 6-vol
We now define:

DeriNITION 3.11. If f € CH"(P; X)) then the unique positive function d,: X — R,
such that

I17*@QO)N? = 8, vol

is called the density function for the CH-map f.
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LeEMMA 3.12. Consider two CH-maps, f;, f, € CH"(P; X). If there exists a bundle
map g: f¥(Hy}) - f¥(Hyl) covering the identity on the base X, and
*w®) = g*(f(w")), then the density functions for f, and f, are equal.

ProoF. If f¥w°) = g*(f*(®)) then also f*(Q°) = g*(f,(R29)) it follows that:
7@ = lg*(FHQ@I* = 11 /4@
and we are done.

Let P — X be asin proposition 3.2. Let G be a compact Lie group acting on the
bundle P — X by bundle maps, we assume G induces holomorphic isometries on
the base space. Then the space CH"(P; X) is in a natural way a Sp(n + 1) x
G-space, we define an action by the rule:

(3.13) (5,9)f =07 oscgofog™!
for (s,g)e Sp(n + 1) x G and f e CH"(P; X).

If 6, is the density function for f then:

(3.14) O(s.gys = 0709 "

The action of G on P — X defines an action of G on the principal H*-bundle
P x ¢~ H* — X, and since G is compact we can choose a Sp(1)-reduction @ — X
of P x .~ H* — X such that G also acts on this reduced bundle. In this way we get
anatural action on the moduli space of (anti-)self-dual connections on the bundle
Q — X, by pull-back of connection forms (see also [K]).

If (s,9)eSp(n + 1) x G and [w] € 4 *(Q; X) then the action is defined by the
rule:
(3.15) 5,9) [0] = [(g™ H*(@)]
We can summarize the above in:

PROPOSITION 3.16. If P — X and Q — X and G are as above then the map:

Y: CHY(P; X) —» A *(Q; X)
Y f e [ @]

is well-defined and Sp(n + 1) x G-equivariant and if (f;) = Y(f;) thend, = é,,.

Moreover if X is simply connected and compact, then the instanton number of
Q- Xis:

{ei(P)uey(P) [X])eZ

Proor. The statement in this proposition is contained in proposition 3.2,
lemma 3.10 and remark 3.9.
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4. The CP? case.

In this section we specialize to the case where X is the complex projective plane.
We construct a non-trivial family of conformal imbeddings of the complex
projective plane into the quaternion projective plane (theorem 4.6). Moreover we
prove that if the moduli space of 1-instantons on the complex projective plane is
connected then it is a cone on CP? (theorem 4.9).

Consider the complex projective plane, CP? with the Study-Fubini metric g..
This is a compact, simply connected, Kaehler manifold of real dimension 4. Give
H3 the natural quaternion inner product:

Loy, wy =v*-w

PROPOSITION 4.1. Let g, be the family of C-linear maps:

G C3 > H3
10 0
g=|0 1 jt forte[O; 1[

0 0 J1+1¢
Then the family f, = ((§,)*) " * defines a family of CH-maps of rank 2 on CP2.
If z = [29:2,:23] € CP2, then the conformal weight function 4, is:

401 _ 42
ey = 0= 1)

(21 — 2z
an the density function 9, is:

l21* (1 — £2)* (lz|* + 42 |z0|*)
(21 — 2|z ?)*

0(2) =

ProOF. We must prove that the linear map: f;: CP? - HP? is conformal for
te[0; 1[. First we discuss when a map A4: CP" — HP” induced from a C-linear
map A: C"*! — H"*! is conformal. Recall that the Study-Fubini metric on CP" is
induced from the usual hermitian inner product {,> on C"*1

Jena(vs W) = Re{jz) ™2 <n 1 (v), m (W)}

where ze C"* !\ {0} and v, w € T,,)CP". We have the same formula for the quater-
nion projective space, now we use the quaternion inner product ¢,).

Ini@(®, W) = Re{llq]|* g (v), mg (W)}

where ge H** 1\{0} and v,we T, HP".
From this it follows that A is conformal if and only if for any z e C** \ {0} there
exists a positive real number A(z) such that for all v, we C"*1:
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(4.2) Re{lz]™*<m; 'm,(v), m; 'mo(w))} = Re{l|4z] ™2 Knz, 700 (0), gy (W) )
or since:
n; m(v) = (1 — |zl =2 22%)(v)
and:
Moz Tae(V) = (1 — || Az|| = ? Azz* A*)(v)
(4.2) is equivalent to:

Co{lz| 2(1 — |z| "2 2z%)} = Az) Co{|Az|| "2 (A*A — ||Az| ~? A*Azz*A*A)}
or:

43) |z72(1 — |2| " 222%) = A(z) Co {|| Az| "2(A*A — || Az| "2 A*Azz* A* A)}

For the maps f; this equation can be checked (it takes some calculations), the
conformal weight function is:

21* 1 — 17
(1217 — £2|20/%)?

Mlz) =
and the density function is:

l2I* (1 — )% (1z)* + 412 |zo/*)
(21 — £21z0|%)*

The following lemma is a preparation to the next theorem:

0,(2) =

LEMMA 4.4. Let C be the space:
C = {ceGl;(H)|Co{c*c} = 1}

Then we have:

i) Cisthe total space for a left principal Sp(3)-bundle, with a left U(3)-action. The
action on C is defined by:

s-c=soc for ceC and seSp(3)
g-c=cog* for ceC and geU(Q3)

ii) The base space of this principal Sp(3)-bundle, B = Sp(3)\C, is diffeomorphic
to the 6-ball:

0 by b,
B = {b = —b3 0 bl Ib,-GC Ibllz + |b2|2 + Ib3|2 < 1}
—b, —-b; O

and the projection map n: C — B is given by n(c) = Oc{c*c}.
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iii) If be B then there exist a g € SU(3) such that:

0 —t O

PrOOF. i) Observe that the Sp(3)-action on C is free and it commutes with the
U(3)-action.
iii) First some notation:

0 0O
gbg* = [0 0 t | wheret=/|by)?+ |by|* + |bs)?

0 0 O 0 0 -1 0 10
E23 = 0 0 1 E31 = 0 0 0 E12 = —1 0 0
0 -1 0 1 0 O 0 00

We want to solve the equation in g e SU(3):
gE23g* = biE;3 — byE3; + b3Ey,

where we without loss of generality assume [b|2 = |by|? + |b,|*> + |b5|? = 1. If
g€ SU(3) and the 3 columns in § are the 3 unit vectors g,,g, and g3, then:

gE;3g* = det(e1,92,93)E,3 — det(ez,g2,93)E3; + det(es, g2,93)E

where e¢; is the ith canonical basis vector of C* and det(e;, g,,93) is the determi-
nant of the matrix with columns e;, g, and g;. If we denote g, x g3 =
(det(es, g2, 93), —det(ez,g2,93), det(es, g2,93)) then we should solve:

4.5) (b1,b2,b3) = g5 x g3

In general, if u e SU(3) and the columns of u are u,, u, and u; then i, = u, x u,,
hence an element of the form (b, g, g3) € SU(3) with b in the first column and any
2 vectors in the 2 last columns (making the matrix a SU(3)-matrix) will solve
equation (4.5).

i) if ceC then by iii) there exist a g e SU(3) such that:

c*c=1+jb=1+ gtE,3g* where |b|=t
or.
(cg)*(cg) = 1 + tE,; where |b| =t

Hence the eigenvalues of 1 + tE,3; must be strictly positive, but since this is
equivalent to 0 < |b] < 1, we conclude that = is well defined. We prove = is
surjective.

If be B then again using iii) we see that 1 + jb is a positive definite matrix, thus
it has a square root ¢ (determined up to an element in Sp(3)):
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c*c=1+jb

hence = is surjective.
The fiber of = is Sp(3) since:

n(c) = m(c) <> c*c = c'*¢’
but then:
(e H¥ce ) =(c*)"*ce =1

We can now prove that there exist a non-trivial set of conformal imbeddings of
CP? into HP%:

THEOREM 4.6. Let C be the space:
C = {ceGl;(H)| Co{c*c} = 1}
Then there is a Sp(3) x U(3)-equivariant map:
¢: C -» CH?*(C*\{0};CP?)
¢icralo(c*)!

where CH?(C3\{0}; CP?) has the action of Sp(3) x U(3) defined in (3.15). On its
image ¢ has fiber U(1), that is the subgroup {1} x U(1) < Sp(3) x U(3) acts freely
and transitively on each fiber.

Proor. First we prove ¢ is equivariant. If (s,g) e Sp(3) x U(3) and c € C then:
B((5,9)- ©) = Plscg*) = a7 (s(c*) "'g*) = (5,9) $(c)

Now we prove ¢(c)e CH*(C*\{0}; CP?)for any c € C. If §, is the map defined in
proposition 4.1 then we see:

0O 0 O
GG =1+{0 0 jt| where 0<t<1
0 —jt O

and by the proposition ¢(g;) e CH*(C*\{0}; CP?). Now if c € C then by lemma 4.4
ii) and iii) there exists a g e SU(3) such that:

(cg*)*(cg*) =1+ tE,3 where 0=t<1
thus ¢(cg*)e CH?(C?\{0}; CP?), but ¢ is equivariant:
#(c) = (1,%)¢(cg*)
and CH*(C*\{0}; CP?)is a Sp(3) x U(3) space.
We will study the equivariant map a:= y o ¢:
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o« =yop:C— M (CP?

Since Sp(3) x U(3) (U(1) imbedded in the diagonal) acts trivially on .#,*(CP?)
(U(1) act by non-trivial gauge transformations), we form the quotient map a:

C - M (CP?
(4.8) Vo7
U(1)\B

Here we used lemma 4.4 to make the identification Sp(3) x U(1)|C ~ U(1)\B.
Note that:

U(1)\B ~ CP? x [0;1[/CP? x {0}

hence (U(1)\B)\{0} is a smooth 5-manifold. In the moduli space .#,*(CP?) there
is only 1 singularity, corresponding to the fact that (see 2.4 ii)):

#{se H(CP%2)|(sus[X]) =1} =2

The gauge class containing the reducible self-dual connections is denoted [a].
Away from [a] .4, (CP?)is a smooth 5-dimensional manifold. It is not hard to
see that @(0) = [a], so & restricts to a smooth map:

& (U\B\{0} — 4" (CP*)\{[a]}
We now state and prove the theorem.

THEOREM 4.9. Let CP? be the complex projective plane with the Study-Fubini
metric. Denote by #,' (CP?) the moduli space of 1-instantons on CP2.

If #,*(CP?) does not have a 5-dimensional smooth, compact component, then
M. (CP?) is a cone on CP2,

A bijection from the cone to #,* (CP?) is given by the map &:

& U(1)\B - 4" (CP?)

(B is defined in lemma 4.4 ii)).
Furthermore a is PU(3)-equivariant.

ProoF. From proposition 4.1 and proposition 3.16 it follows that & is injec-
tive. The inverse function theorem then tells us that Im & is open in .#," (CP?). We
claim that Ima is closed in #,"'(CP?), and Imd contains the collar and the
reducible connection class [a]. The theorem now follows since Im & has to be
a component of .#,"(CP?) containing both the collar and the reduction [a].
Hence by 2.4 iv) the complement to Im & has to be a smooth 5-dimensional
compact manifold, but the assumption is that no such component exists.

We prove the claim above. From 2.4 iii) we know there exist a small ¢ > O such
that:
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p: M, (e) > CP? x J0; ¢[
is a difftomorphism. Now consider the family g, defined in proposition 4.1. By
the lemma below
ro(g,)—=0 for t—>1—

thus there exists a ¢, € [0; 1[ close to 1, such that «(g, )€ .#;"(¢), so if we put
&, = r(g,,)) then by continuity:

p({g:|telt; 10 1) = {xo} x 10;¢,]

where xo = [1:0:0]. It now follows from the U(3)-equivariance of « and p, that
p oo has to be surjective on CP? x ]0;¢,], or a is surjective on the clousure of
Mt (ey) in A,', denoted (A, (1))

Let gy < &, then o™ }(#,*\ A" (¢,)) are elements in C inducing instantons with
radius equal to &, or bigger radius than &,. This has to be a compact subset of C (it
is the inverse image in C of a subset of U(1)\B of the form
(CP? x [0;1 — ])/(CP? x {0})).

We conclude that:

C = a MM\ M (e0)) U o™ (A (€1))
hence:
a(C) = oo™ (M \ M (80)) U My (€)

that is a(C)is the union of two closed subsets of .#,*, so it has to be closed. This
finishes the proof.

In the theorem above we used the following lemma:

LEMMA 4.10. Let g, be the family of linear maps defined in proposition 4.1. Let o
C — M, (CP?) be the map defined in 4.7.
Then if r(a(g,)) denotes the radius of the instanton a(g,), defined by the CH-map
&(g,) we have:
Hg) -0 for t—-1-—

PROOF. If xo = [1:0:0] and z = [z:z,:z,] € CP?, then we have the formula
for r(adgy)):

min {seRJr

1
e f P, 21595 vol = ;}

where:
lz|* (1 — )2 (j2|* + 482 |20|*)
(2% — £2|z0?)*

5:(2) =
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From this it is not hard to prove the lemma.

We have not been able to prove that .#,"(CP?) does not have a 5-dimensional
smooth, compact component. This can be done using the monad construction in
twistor theory. In [B] Buchdal proves that the moduli space is a cone on CP2,
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