A CHARACTERIZATION OF BALANCED RATIONAL NORMAL SURFACE SCROLLS IN TERMS OF THEIR OSCULATING SPACES II

EDOARDO BALLICO, RAGNI PIENE, and HSIN-SHENG TAI

In this note we prove a result conjectured by the second and third author [3, Conjecture (i), p. 216]; the proof was found independently by the first author and by the second and third authors. The results needed in the proof are contained in [3]; it only remains to apply a theorem of Van de Ven [6, Theorem III, p. 406] to the adjunction divisor. We would like to take this opportunity to point out adjunction theory as a very powerful tool in projective geometry!

Let $X \subset \mathbb{P}^N$ be a smooth, complex, projective surface. Recall [3, p. 216] that the mth osculating space to X at a point x is the linear subspace $\text{Osc}_X^m(x)$ determined by the partial derivatives of order $\leq m$ of the coordinate functions, with respect to a system of local parameters for X at x and evaluated at x. More precisely, let $\mathcal{P}_X^m(1)$ denote the sheaf of principal parts of order m of $\mathcal{O}_X(1) := \mathcal{O}_{\mathbb{P}^N}(1)|_X$. Then $\mathcal{P}_X^m(1)$ is locally free with rank $\binom{m+2}{2}$, and there are homomorphisms

$$a^m : \mathcal{O}_X^{N+1} \to \mathcal{P}_X^m(1)$$

such that $\text{Im} (a(x))$ defines the mth order osculating space to X at x, i.e., such that

$$\text{Osc}_X^m(x) := \mathcal{P}(\text{Im}(a^m(x))) \subset \mathbb{P}^N.$$

For a general surface, one expects the dimension of $\text{Osc}_X^m(x)$ to be $\binom{m+2}{2} - 1$ for almost all points x of X and all m such that $\binom{m+2}{2} - 1 \leq N$. Points where this dimension is smaller than expected are "flat" points of the surface – often called points of hyperosculation. If the surface X contains a line through the

1 Supported in part by the Norwegian Research Council for Science and the Humanities and by the National Nature Science Foundation of China (Tianyan 19136003). Received March 19, 1991.
point \(x \), then the dimension of \(\text{Osc}_{x}^{m}(x) \) is at most \(2m \). Hence a \textit{ruled surface} has the property that \textit{all} its \(m \)th order osculating spaces have dimension at most \(2m \). There are, however, non-ruled surfaces with this property (Togliatti [5], Dye [1]).

Suppose the surface \(X \) is a \textit{balanced rational normal scroll of degree} \(2n \), i.e., \(X \) is isomorphic to \(\mathbb{P}^1 \times \mathbb{P}^1 \) embedded in \(\mathbb{P}^{2n+1} \) via \(\text{pr}^{1}_{*}\mathcal{O}_{\mathbb{P}^1}(1) \otimes \text{pr}^{2}_{*}\mathcal{O}_{\mathbb{P}^1}(n) \). It is shown in [2, p. 1060] that in this case \textit{all} \(m \)th order osculating spaces to \(X \) have dimension \(2m \), for \(m \leq n \). The theorem we shall prove shows that this property characterizes the balanced rational normal scrolls.

Theorem. Let \(X \subset \mathbb{P}^{2n+1}, n \geq 2 \), be a smooth, projective surface, not contained in a hyperplane, such that \(\dim \text{Osc}_{x}^{m}(x) = 2m \) for all \(x \in X \) and all \(m \leq n \). Then \(X \) is a balanced rational normal scroll of degree \(2n \).

Proof. In [3, Theorem, p. 221] the second and third author proved that any surface satisfying the hypotheses of the theorem is birationally ruled, but not isomorphic to \(\mathbb{P}^2 \). Moreover, the theorem was shown to hold if \(X \) is geometrically ruled (i.e., has no exceptional curves of the first kind) or if \(X \) is rational. Finally, it was shown that the theorem holds provided \(n \leq 4 \).

We shall prove the theorem by showing that the assumptions \(n \geq 5 \), \(X \) is not rational, \(X \) is birationally ruled and contains at least one exceptional curve, lead to a contradiction.

Let \(H \) denote the class of a hyperplane section of \(X \) and let \(K \) denote the class of a canonical divisor on \(X \). Since \(X \) spans \(\mathbb{P}^{2n+1} \), we have

\[
\dim H^{0}(X, \mathcal{O}_{X}(1)) \geq 2n + 2 \geq 12
\]

and \(\deg X = H^{2} \geq 2n \geq 10 \). By a theorem of Van de Ven [6, Theorem III, p. 406] it follows that \(K + H \) is very ample unless there exists an exceptional curve \(E \) on \(X \) with \(E \cdot H = 1 \). Let us show that such an \(E \) cannot occur. Recall from [3, p. 220] that \(X \) possesses a line bundle \(\mathcal{L} \), given by

\[
\mathcal{L} := \text{Coker}(a^{2} : \mathcal{O}_{X}^{N+1} \to \mathcal{P}_{X}(1)),
\]

with first Chern class

\[
c_{1}(\mathcal{L}) = \frac{1}{n-1}(2nK + (n + 3)H).
\]

Since \(E \cdot K = -1, E \cdot H = 1 \) implies

\[
c_{1}(\mathcal{L}) \cdot E = -\frac{n-3}{n-1}.
\]

But this is not an integer since we have assumed \(n \geq 5 \). So \(K + H \) must be very ample.
We can therefore argue as in [3, p. 221], using $K + H$ instead of H. The theorem of Sommese [4, Theorem (1.5), p. 377] and Van de Ven [6, Theorem II, p. 403] allows us to conclude that $2K + H$ is generated by its global sections, in particular that $(2K + H)^2 \geq 0$ holds.

Let $\tau = \frac{1}{3}(K^2 - 2c_2(X))$ denote the Hirzebruch index of X. Since X is birationally ruled and not isomorphic to \mathbb{P}^2, we have $K^2 = 8(1 - q) - t$ and $c_2(X) = 4(1 - q) + t$, where t denotes the number of exceptional curves on X with respect to a relatively minimal model, and q denotes the genus of the base curve of this minimal model. Therefore $\tau = -t$ holds, hence $\tau \leq 0$.

Recall [3, (2'), p. 220; p. 221] that the numerical characters of X satisfy the formulas

$$n(2n + 1)K^2 + 2n(n + 5)K \cdot H + 2(n^2 + 2n + 3)H^2 = 0$$

and

$$3n(2n + 1)\tau = -2(n + 3)(nK \cdot H + (n + 1)H^2).$$

From these two formulas we deduce the following equality

$$(2K + H)^2 = \frac{54}{n + 3}\tau - 3\frac{n - 4}{n}H^2.$$

Since $\tau \leq 0$, $n \geq 5$, and $H^2 > 0$, we get $(2K + H)^2 < 0$, which is the desired contradiction.

REFERENCES