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A HOMOTOPY THEORETICAL DERIVATION
OF Q MAP(K, —).,

LARS HESSELHOLT

1. Introduction.

1.1. In his calculus of functors [6] Goodwillie defines the derivative functor of
a homotopy functor from the category of (un)based spaces to the category of
based spaces. Throughout this note space will mean a topological space of the
homotopy type of a CW-complex. Goodwillie also shows that for a certain class
of functors called analytic functors, the derivative functor to a large extend
determines the functor itself.

The main application of this theory has been to relate Waldhausens functor
A to topological cyclic homology TC; [3]. A crucial point is Goodwillies
calculation of the derivative functor of Q Map(K, —)., [5; 2.4]. This paper gives
a new proof of this result by homotopy theoretical means. In section 1 we recall
Goodwillies results and explain notation, in section 2 we extend the notion of
configuration spaces to apply as models for certain spaces of sections and finally
in section 3 we use these models to prove Goodwillies theorem.

I would like to thank Ib Madsen for his thorough reading of an early draft of
this paper. I am also grateful to him and Marcel Bokstedt for several fruitful
discussions on this subject.

1.2. Let F be a homotopy functor from unbased to based spaces. The deriva-
tive of F at X in the direction x € X is the spectrum 0y, ., F associated with the
infinite loopspace

holim Q’ hfib(F(X v, §’) — F(X)).
7
Here hfib denotes the homotopy theoretical fiber. We note the formal similarity
with standard calculus.
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1.3. Connected with an analytic functor is a natural number p called the
modulus. We also say that an analytic functor of modulus p is p-analytic. For
example the identity functor and Waldhausens functor 4 are both 1-analytic
while Q Map(K, —). is dim K-analytic. We now make precise to what extent an
analytic functor is determined by its derivative functor.

Let ¢: F - G be a natural transformation of p-analytic functors. Suppose
there exists a number n such that

Ox,n9: Ox,nF = 0x,0G

is an equivalence for all n-fold suspensions X. Then the induced transformation
on reduced functors

& F(X) 5 G6(Xx)
is an equivalence provided X is p-connected.

We remark that in [6; 5.2] Goodwillie demands the stronger hypothesis that
O(x.»® is an equivalence for all based spaces (X, x). However the proof of [6; 5.2]
works equally well in the category of spaces of the homotopy type of an n-fold
suspension. Our hypothesis then shows that ¢ is an equivalence when X is the
n-fold suspension of a p-connected space. Finally we can apply (the proof of)
[6;4.12] which states, that a natural transformation of p-analytic functors is an

equivalence on p-connected spaces if it is one on suspensions of p-connected
spaces, to prove that ¢ is an equivalence on p-connected spaces.

1.4. For N a parallizable compact d-dimensional manifold with boundary and
x € X we define a space

E, ={(zf)eN x Map(N, X)| f(z) = x}.

Projection onto the first coordinate defines a map E, — N, and it is an easy
consequence of the tubular neighborhood theorem that this map makes E, into
a bundle over N. The fiber over ne N is the space of based maps Map(N, n; X, x).
In this bundle we may fiberwise add a basepoint and suspend j times. The bundle
obtained this way has total space

SME.IN)= (' x E) |J N

*X E

and the fiber over ne N is £’ Map(N, n; X, x) ;.

THEOREM Goodwillie). The derivative 0, ,,Q Map(N, X).. is naturally equiv-
alent to the spectrum associated with the infinite loopspace

holim Q'I'(Z}(E, 11 N) - N).
—

i
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We will prove the theorem only in the case when X is a dim N-fold suspension.
However in view of 1.3 this is not a serious limitation since it suffices for the
known applications including [3].

1.5. Here we define the natural transformation in theorem 1.4. To begin with
one notes that the infinite loopspace 1.1 which defines 0x, ,,Q Map(N, X), is
naturally equivalent to the infinite loopspace

( Map(N, X v, S’))
Map(N, X) ’

holim @’
—_
i

The natural transformation 1.4 is therefore given by maps

b Map(N,X v, §)
7 Map(N, X)

- I'(Z)(E,1IN) - N),
which we will now define. Let p; be the maps
XExvs iy

that collaps §’ and X respectively. We may compose the mapping
fi N x Map(N, X v §)—> § x N x Map(N, X)

given by f; = (p,0ev) x pr; x p,,, with the projection
S/ x N x Map(N,X) = (5§ x N x Map(N, X)) U N.

+ X N x Map(N, X)

and then adjoin to obtain a map

fi Map(N, X v §) - I'(S' x N x Map(N, X)) UN — N).

We observe that f; factors through the inclusion
(8 xE,) |J N>N)o I'(S x N x Map(N, X)) UN — N)
* X Ex
such that we have a map
¢;: Map(N,X v §) - I'(§ x E;) |J N—N).
x * X Ey

Finally we note that $,- maps Map(N, X) = Map(N, X v, §) to the basepoint
such that the required map ¢; is obtained. In section 3 we will prove that ¢; is
approximately 2j-connected, when X is a dim N-fold suspension.
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1.6. In the form we have stated theorem 1.4 we demand that N is a parallizable
compact manifold with boundary. However if K is a finite CW-complex we can
always embed K in such a manifold N without changing the homotopy type.
Such an embedding always exists with dim N > 2 - dim(K).

2. The combinatorial model.

2.1. In[1],[2] and [8] configuration space of particles in a manifold with labels
in a CW complex F are considered as models for certain mapping spaces. This
section extends the notion of configuration space to allow the space F to vary as
the fiber of a bundle over the manifold. We obtain a model for the space of
sections in a certain related bundle.

Let N be a smooth compact manifold, No = N a compact submanifold,
n: E — N abundle over N with a preferred section o: N ¢, E, and let F denote the
typical fiber. The symmetric group X, k = 1, acts on the space

C¥m) = {(ey,...,ex)€E x ... x E|ne; % mej, if i % j}.

We let C¥(n) denote the orbitspace and set C%(n) = *. The configuration space of
particles in N modulo N, with local labels in F is then defined as

C(N, No;m) = (fl C"(n)) / ~.

k=0

Here (e,,...,ex) ~ (eq,...,e—1),if e, e Ngor g,eimo. When E = N x Fisatriv-
ial bundle we write C(N, Ny; F) instead of C(N, Ny;n). This is the case treated in
(11, [21.

For ¢ = (ey,...,ex)e C(N, Ny; m) let z; = me;. One may think of ¢ as particles
z;€ N where each particle have a coefficient ¢; in the fiber above it, and write
¢ = Zz;e;. The relation ~ then implies that particles in N, and particles with
coeflicient in im o are annihilated.

The number of particles in configurations induces a filtration

* = Co(N,Ng; 1) € Cy(N,Ng;7) = ... < C(N, Ng; );

Co(N, Noj ) = (ﬁ C"(n)) / ~.
k=0

Welet D,(N, Ng; ) = C,(N, No; m)/C, - (N, No; ) denote the filtration quotients.

2.2. Here we shall reveal some properties of the construction C(N, Ny; n). Two
properties are immediate from the definition, namely the product formula

C(N, No;m) = C(Ny, Ny N No;m) X C(N2, N, N No; )

when N; UN, = N and N; n N, = N,, and excision
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C(N,Ng;m) = C(N — U,No — U;m)

when U = Ny and U is open in N.

We define a map (N, Ny;n) = (N’,Ny; ') to be a map of bundles which
preserves the preferred section and induces a map of pairs (N, Ng) — (N, N§).
Clearly with this notion C(N, Ny; n) becomes a functor.

LEMMA. Let H = N be a compact codimension zero submanifold and suppose that
either (H, N n Ny) or F is connected. Then the cofibration

(H,H 1 No) = (N, No) 5 (N, H U No)
induces a quasi fibration
C(H,H  No; 1) = C(N, No; 1) > C(N, H U Ny ).

ProoF. We shall use the work by Dold and Thom on quasi fibrations, [4]. To
reduce notation we use

Foe%a

as short for the sequence we are to prove is a quasi fibration.

From 2.1 we have a filtration of # with 8, = C,(N,H U Ny; ). There is an
induced filtration on &, &, = Q ~'(%,), and [4; 2.15] states that it suffices to prove
that Q|,, is a quasi fibration for all k. We proceed to show this.

First we observe that &, — &) - consists of configurations £ = Xz;e; where
exactly k particles are in N — (H u N,) (with coefficients off im o) while the
remaining particles belong to H U N,. Thus since the particles in N — (H U Ny)
may be distinguished from those in H U N, we have homeomorphisms

Ex— -1 = (B — Br-1) X F.

From this we will show by induction on k that Q|,, is a quasi fibration. We shall
apply [4;2.2] in the induction step.

If 9H = @ the lemma follows easily from the product and excision formulae
listed above, so we may assume 0H + 0. Let f: 0H x (—e¢,&) = N be a tubular
neighborhood of dH such that f(0H x 0) = 6H and f(0H x (—¢,0]) = H. We

set
U=HufGHx[Q§»,

and define U, = %, to be those configurations ¢ = Xz;e;, where atleast one z;e U.
We may identify %, _, < U, with the configurations where at least one particle
belong to H; then Uy, is an open neighborhood of %, in %,.

We wish to use [4;2.10] to show that Q|o-1y,) is a quasi fibration. By
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a somewhat lenghty but straightforward argument one sees that there is a defor-
mation retract r,: U, — #,_,. The idea is this: one pushes the particles in
U towards H (where they disappear) until at most k — 1 particles are left outside
of H. One may also see that thereis a map 7,: Q~*(U,) - %, lying over r,, and
finally it is not too hard to show that the composition

FEQ B0 ) S F

is a homotopy equivalence, provided (H, H n Np) or F is connected. Thus the
hypothesis of [4; 2.10] is satisfied and consequently Q|- 1y, is a quasi fibration.

We can now apply [4;2.2] and obtain that Q|,, is a quasi fibration, that is we
have proved the induction step.

23. Let W= NuU(0N x [0,1)) and let p: W — N be the map which collapses
the collar. The fiberwise one point compactification TW of the tangent bundle
has a preferred section at infinity. The fiberwise smash product t, = TW Ay p*E
again has a preferred section o. If N is parallelizable, ¢, is equivalent to the
dim N-fold fiberwise suspension of p*E over W. This is the case in 1.4.

Welet I'(W — Ny, W — N; n) denote the space of sections of ¢, that are defined
outside N, and equals o outside N. There is a natural map

Y:C(N,NO;TE)"" F(W - NO’ W — N;ﬂ)a
where y(¢) is the section of ¢, that maps ze W — N, to the image of ¢ under the
composition

C(N, Ng; ) = C(N, Ny U (N — int D(2)); @) == C(D(z), dD(z); m)

= C(D(2),0D(2); D(z) x F) «—— C(C, W, D, W; D, W x F)

> Cy(D,W,3D.W: D.W x F) = (D, W/0D,W) n F 5 1,.

The first map is the natural quotient, the second excision while the third is
induced by the local trivialization. The map R is a retract of the inclusion
constructed as follows. In a configuration ¢ = Xz;e; of particles in D, W one may
push all particles in ¢ towards the boundary (where they disappear) at a speed
proportional to their distance to z. One continues until at most one particle is left;
this is R(€). Finally 1, is the fiber inclusion.

PROPOSITION. If either (N, Ny) or F is connected then y is a homotopy equival-
ence.

ProoF. When n: E — N is a trivial bundle this is proved in [1] and [8]. If
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n: E — N is non-trivial we may cover N by compact codimension zero submani-
folds Ny, ..., N, such that nly, is trivial, and proceed by induction on k.
Weset N' = Ny U...U N, _; and obtain by naturality a commutative diagram

C(N',N' A Ng;m) > T(W — (N'No), W — N';m)

l l
C(N,No;m) 5 (W — No, W — N;m)
el el

C(N,N'UNgy;n) > I'(W — (N'"U No), W — N; )

The first column is a quasi fibration by lemma 2.2 and it is standard that the
second column is a fibration. Now the excision formula gives

C(N,N' U Ngy; 1) = C(N — int N, Ny — (No nint N'); 1)
= C(Nk - (Nk @) lnt N’), (NO N Nk) - (NO N Nk Nint N’), 7[).

and the top and bottom maps in the diagram above are therefore equivalences by
induction. Hence so is the middle map.

Our main interest is the case when N is parallizable.

COROLLARY. Suppose N is a parallizable compact d-dimensional manifold, poss-
ibly with boundary. Then
C(N,0N;n) > [(Z4E — N)

is an equivalence provided (N,0N) or F is connected.

3. Proof of Goodwillies theorem.

3.1. We recall the notation in 1.4; N is a paralizable compact d-dimensional
manifold possibly with boundary and X is a space that is a d-fold suspension. We
let (¥,x) be a pointed space such that (X,x) = Z%Y,x). From 2.3 we have
equivalences

y: C(N,0N; Y v §) 5 Map(N, X v Si*9)

y: C(N, ON; Zi(E,11N) —» N) ST (ZiYE,11N) > N).

The former induces an equivalence of C(N, N; Y) = C(N,0N; Y v, §’) with the
subspace Map(N, X) « Map(N, X v, §/*9).

We want to realize the map ¢; of 1.5 on the configuration space models. But
since we only need to show that ¢; is an equivalence in the (stable) range <2j, we
are allowed to replace the models by stably equivalent ones.
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3.2. The space C?(idy) is of the £ »-homotopytype of a free Z,-CW-complex.
Indeed if A2 = NP is the thick diagonal of p-tuples (z,,...,z,) with at least two
coordination equal, and A? a tubular neighborhood stable under the £ p-action,
then

CP(idy) = NP — A4 ~ N? — A

The following lemma shows that we may replace C(N, ON; Z4(E, 11 N) — N) by
the configuration space of only one particle.

LEMMA. Let F — E 5 N be a bundle and suppose that F is j-connected. Then the
inclusion

C,(N,No; 1) & C(N, No; )
is (p + 1)(j + 1) — 1 connected, provided j > 1.

PrOOF. First we assume that = is a trivial bundle. Let 2 < CP(idp) be the
subspace of p-tuples (z;,...,z,) with at least one z;€ N,,. Then clearly (Cr(idy), 2)
is Zr-equivalent to a free Z,-CW pair. We denote the cofiber by CP(N, N,) and
can then write the cofiber of the inclusion C,_ (N, No; F) oo C,(N, No; F)as

D,(N,No; F) = F"? Ay CP(N,N,).

The skeleton filtration of C?(N, N,) induces a filtration of D,(N, Ny; F);

FiD,(N,No; F) = F"? Ay C*(N, No)®
and we have cofibrations
Fi-1D,(N,No; F) & FyD,(N,No;F) > F"? Ay (VZ, . A SY.
In particular
FoD,(N,No; F) = F*? Ay CP(N,No)® = F"? ny (VZ,4 A S°)

=V(F"?AS%=VF"?,

This is a p(j + 1) — 1 connected space and an easy Mayer-Vietoris argument

now shows that D (N, No; F)is homology p(j + 1) — 1 connected. It follows that

the inclusion C,_ (N, No; F) & C,(N, Ny; F) is homology p(j + 1) — 1 connec-

te(i;Ve prove that m; C,(N, No; F)) = 1 by induction on p. A series of applications

of the van Kampen theorem to the cofibrations above shows that
7D ,(N, No; F) = 1. But by induction and the van Kampen theorem

1D (N, No; F) = 1, C,(N, No; F)* 1 = 1,C,(N, No; F).
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Thus the Whitehead theorem establishes the lemma in the case where n is a trivial
bundle.

To prove the general case we can proceed as in the proof of proposition 2.3 and
cover N by compact codimension zero submanifolds {N;} such that the restric-
tion of 7 to each N; is trivial.

3.3. We introduce a new filtration
CO(N,ON;Y v 8% <« CY(N,0N;Y v S ...c C(N,ON; Y v ),

with C®(N,0N;Y v §) being the configurations which have at most k particles
inS/ — x; CO(N,0N; Y v §) = C(N, 0N; Y). Denote the filtration quotients D*®.
We also introduce spaces &% given by

&v =( CHidy) x 5, _, Y*"’) / ~
k=p
With (zy, ..., 2k Vp+ 150 V) ~ (2155 Zk— 13 Vp 415+ - +» Yi—1) When y, = x. Here the
2y p-action on C*(idy) is on the last k — p coordinates.

We can define maps

a®:. &P _, ép(idN)

Indeed in C*(idy) we may project onto the first p coordinates and the relation
~ does not concern these coordinates. It is shown in [5] that ' is actually
a bundle.

Thereisan actionby X, on C*(idy) which permutes the first p coordinates. This
action induces an action on & which is obviously free. In fact &P is of the
2 ,-homotopy type of a free Z,-CW-complex. To see this we observe that the fiber
in the bundle n'? is equivalent to a CW-complex while the basespace according to
3.2is X ,-equivalent a X,-CW-complex; the claim follows.

LEMMA. The inclusion
CP(N,0N;Y v §) ¢ C(N,0N;Y v §))
is (p + 1) j-connected, provided j = 2.
Proor. It suffices to prove that the filtration quotients D are p - j-connected.

Since we may distinguish particles in §/ from those not in §’

D<w=( V (CHidy) x5, x5, (8 % ..
k=p ? P

.xS{xYx...xY))+>/z

P k-p

where
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(21, s Ziy Uy, supayp+1a~ay1c) R o* ifup = X, or zpeaN
(Zl3°3zk;ula':“p’yp+19-ayk) (zl’ ’zk—l;uly-sumyp-i-lsw.))k—l)’

if y, = x, or z,€ON.
In &® consider the subspace o/” of p-tuples (zy,.,2p, Zp+ 15+ Zks Vp+ 15 -5 Vi)
where z;€dN for some 1 <i < p. Then (87, o)) is Z,-equivalent to a free

-CW-pair. Let &P be the cofiber.

Now we observe that
D® = ( SIA LA Sj) Az, Pt

..
p
and can argue as in 3.2 that D is p-j-connected
3.4. Recall that E, =« N x Map(N, X) is the subspace of pairs (z, f) such that

f(z) = x. We identify the bundle n'": &V — N.
LEMMA. There is a natural equivalence of bundles y: &) > E
ProoF. The inclusions C*(idy) & N x C*~1(idy) are compatible such that

their collection
(ldN) sz lYk l—) I_I N X Ck l(ldN) X,;k lYk

H k=1

induces an inclusion &Y ¢, N x C(N, 0N; Y). This fits into a commutative dia-

gram
&W -, E,

! o !
L’» N x Map(N, X)

N x C(N,0N;Y)
of bundles over N. The action of 7 on the geometrical fibers is given by
C(N — {n},;Y) 5> Map(N, {n}; X)

which is a natural equivalence by proposition 2.2

3.5. In the bundles &Y —» N and E, — N we may fiberwise add a basepoint
induces an equivalence y¥;: Z4{(EV1IN) -

and suspend j times. Then 9y
ZI(ELIIN).
Now C,(N, No; m)is a functor in the sense of 2.2 and it is easy to see that we have

equivalences

Vel

C,(N,0N; Z{(6 11 N) » N) - C,(N,N; Z{(E.IIN) > N)
We also observe the immediate but striking fact that
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C!(N,0N;Y v §)

N,ON; Zj(&™ =DM =
C\(N,0N; Z}(&1IN) » N) = D C(N,oN; Y)

Consequently we can place , in a diagram

Map(N,X v,§) ¢,
Map(N, X)
5] |5
C(N,ON;Y v §9) )

- . i
C(N,dN;Y) = CilNON; Zy(E,IN) > N)

r'(Z4,11N) - N)

To prove theorem 1.4 in the case where X is dim N-fold suspension it only
remains to check that the diagram commutes. However this is almost a tautologi.
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