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SUMMATION OF FORMAL POWER SERIES THROUGH
ITERATED LAPLACE INTEGRALS

WERNER BALSER

Introduction.

Very recently, the question of summation of formal solutions of meromorphic
differential equations has attracted increasing attention: Based upon results of
G. N. Watson and F. Nevanlinna, J. P. Ramis has defined and studied
k-summability of formal power series (for the definition, see Section 2). In essence,
this concept is equivalent to a representation of the sum f of such a (divergent)
series / as a Laplace integral over a function having a locally convergent
expansion which is formally obtained from f by termwise inversion of the
Laplace integral. According to (earlier) results of J. Horn, W. J. Trjitzinsky, and
H. L. Turrittin, this summation process applies to formal solutions of meromor-
phic differential equations obeying some restrictive assumption. In general, J. P.
Ramis and the author have independently shown that formal solutions are
a (matrix) product of terms which individually are k-summable (with k depend-
ing upon the factor). Since this factorization cannot be so easily achieved, this
result, although theoretically of great importance, is not easily applied to explicit
examples. This led J. Ecalle to defining a more powerful summation method
which he called multi-summability. Essentially, his method differs from the
previous one by factoring the Laplace transform L, (of index k > 0) into
a product

LkloAk,.kzo"'oAk (k1>k2>...>kp=k)

p-1kp
of a Laplace operator L, and so-called acceleration operators Ay ;- 1k, and then
studying the (larger) class of functions to which this iteration of operators can be
applied. From general properties of multi-summability and the factorization of
formal solutions into (individually) k-summable factor, it follows immediately
that all such formal solutions are multi-summable.

A (slight) disadvantage of multi-summability is the fact that a class of integral
operators (the acceleration operators) is used, which involve a kernel more
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complicated than the Laplace operator. The main goal of this paper is to present
a variant of multi-summability which avoids using acceleration operators and
instead involves an iteration of Laplace operators only. While Ecalle’s method is
more flexible in proving certain theoretical properties (compare Martinet-Ramis
[57), this new one can be more easily applied, or even defined, since it is inductive
(in a certain sense explained in Section 4). Since we succeed in proving that both
methods are equivalent, we may think of the new method to give a better
representation formula for the sum of multi-summable series.

Recently, W. B. Jurkat [4] has discovered a much more direct way of summing
a multi-summable formal power series. However, while our representation for-
mula gives the sum in a relatively large sector, his may be seen to work only in
a much smaller sector. Moreover, the theory of multi-summability (either in
Ecalle’s or our new way) shows that the Stokes’ phenomenon is closed related to
the singular behavior of finitely many analytic functions at (finitely many)
singular points, and no such result appears to exist for Jurkat’s summation
method.

1. Domain and image of Laplace operators.

For convenience of the reader, we give a few definitions which (partially in
slightly different form) are standard and/or have been introduced in [1]:
For arbitrary real d and positive reals a, r, let

Si.={z|lz| >0,d —0/2 < argz <d + o/2},
Sd,a,r = Sd,a N {Z' |ZI < r};

both sectors on the Riemann surface of log z, so that z*, for arbitrary complex 4, is
a well-defined analytic function in every such sector. With d as above, f = 0 and
0 < k £ oo, we write

fesddB;k)
iff f is a function having the following two properties:

(a) There exist r > 0 and o > f such that f is analyticin S,,,.
(b) There exists a formal power series

f@=Y% f
n=0
and constants C, K > 0 such that for every N = 0 and every z€ S, ,,

(1.1) < CKMiZ" T (1 + N/K).

1@ - ZO S
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It is well-known that f as in (b) corresponds uniquely to f, and we frequently
write f = J(f).

Suppose that, for some k > 0, a function f € «/(d, B, k) additionally satisfies the
following condition:

(c) The function f is analytic in S, , (for some a > f), and for suitably large c,,
¢, > 0and every zeS,,

(12) f@) < crexp {es ).
If this is so, we write
fest(d, Bk k),
and for convenience, we set
A (d, B; k, o) = A(d, B; k).

For arbitrary f€.2(d, f; k, k) (and « as in (a)), let T be such that |t — d| < a and
define in accordance with [1] and Martinet-Ramis [5]

(1)
(1.3) Li(N)) = f f(u)exp { —(w/2)} d@)
0o

(integrating along argu = 7). The integral obviously converges absolutely for
every z satisfying

Re {(e"'/z)':} >c,

(with ¢, as in (1.2)), defining an analytic function in z. A change of 7 results in an
analytic continuation of this function, and therefore L f) is (at least) analytic for
z€S$,, ,, with sufficiently small p > 0 and y = y(p) > B + n/k. Defining

(1.4) Z(f) = 27 FLe(),

it follows from standard results upon Laplace transforms and their inverses that
the transformation (1.4) is a bijective map from £ (d, B; k, k) onto «(d, B + n/k;
kk/(k + k)), and if we set g = L(f), then

J@g) = izoﬁ, r(1 + nfkyz".

The inverse map to % will be denoted by %, and % will denote an operator

applied to formal power series f, namely if f(z) = Y fa2" then
n=0

(L) Be(f) = ¥ /11 + /).
n=0
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2. Summable power series.

Let a formal power series f, a real number d, and some k with 0 < k < oo be
arbitrarily given, and assume existence of f € /(d, «; k) (for some a > 0) such that
f = J(f). In case k = oo, condition (b) of Section 1 is equivalent to f being
single-valued and analytic at the origin, and f being its (convergent) power series
expansion; hence f is uniquely determined by f Generally, for f < n/k, one
always finds infinitely many f € #/(d, «; k) with f = J(f), but for g = n/k, Wat-
son’s Lemma again proves uniqueness of f (provided that any such f exists!).
This leads to the following characterization of k-summability:

A formal power series f is said to be k-summable in direction d iff f € o (d, n/k; k)
existswith f = J(f). Thefunction f then is uniquely associated with f, and we call it
the k-sum of f (or: the sum of f ) in direction d, and write

f = Zd;k (f )
For k = oo, this simply means that f(z) converges to f for sufficiently small |z|, in
which case we write f= ) (f).
The notion of k-summability was originally introduced by J. P. Ramis. His

definition and the one above are equivalent, as one can see by taking k = oo in the
following

PROPOSITION 1. For arbitrary d, and 0 < k < k < o0, let f be k-summable in
direction d, and define

2.1 §=2a2.)

with

(2.2) 1/k = 1/k — 1/k.

Then § is k-summable in direction d, Zd;ﬁé) e (d,n/k; k,«), and
(2.3) Yau(f) = Le(Cai@))-

PROOF. Let f =Y a( f ) (€ #(d, m/k; k)), then according to Section 1, there is
precisely one ge o (d, n/k; k,x) such that f = %,(g), and J(g) = §. Obviously,
A(d,n/k;k, k) = o (d,n/k;k); hence § is k-summable in direction d, and
g= Zd;i(g)'

In the following result, we restrict to 1/2 < k < k < oo, because in general our
proof would give a decomposition (2.4) with f1, f> being series in roots of z. The
proof may be seen to work under slightly weaker assumptions, but we will not
need this in our applications.
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PROPOSITION 2. For arbitrary d, and 1/2 < k < k < oo, let f be so that § as in
(2.1) is k-summable in direction d. Then

(24 f=fH+1

where f, is k-summable in direction d, and g1 = éx( f1) converges for sufficiently
small |z|.

PROOF. Let g = Za;i(@) (e #(d, n/k; k). Then for some r > 0 and « > n/k, g(é)
isanalyticin S, , ,. Taking a and r a little smaller, we may assume that g(z) even is
analytic on the (positively oriented) boundary of S, , , (except for the origin,
where it has an asymptotic expansion). Let y, resp. 7, be the circular section resp.
the two straight-line segments of the boundary of S, , ,. Then, according to
Cauchy’s Formula,

9(2) = g4(2) + g,(2),

o) = —— |24

- U, z€S4.,-
2ni Ju—z r

Vi
Obviously, g,(z) is analytic for |z| < r, and we denote its power series expansion
by §;. The difference §, = § — g, then is k-summable in direction d, and

Zd;i(éz) = Za;i(@) - Z(é 1)
=9 — 91 =92

Obviously, g, € #(d, n/k; k, k), hence we conclude that f, = %, (g%) € A (d, n/k; k).
Therefore, f, = J(f,) is k-summable in direction d. Defining f; = f — f,, we
have

«@x(fl) =§—J@2)=9—§G2 =01

which completes the proof.

3. Multi-summability of formal power series.

For the definition of multi-summability, due to Ecalle, we refer the reader to [1],
or Martinet-Ramis [5]. Here we will do with the following characterization of
multi-summability (which is the main result of [1]):

Given an arbitrary real d and real numbers
k1>k2>...>kpg 1/2 (pg 1),

a formal power series f is (ky,. .., k,)-summable in direction d iff
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(3.1 f=f+...+fn
where f‘j is a formal power series being k;-summable in directiond (j = 1,...,p).

The restriction to k, > 1/2 is made in order to avoid f; to become a power
series in a root of z, but this is no loss in generality: For an arbitrary natural
number q we see immediately from the above characterization of multi-summa-
bility and the definition of k;-summability that f(2) is (ky, ... , kp)-summable in
direction d iff f(z%) is (gky,. . ., gk,)-summable in direction d/q, and this may serve
as characterization of multi-summability in case of arbitrary reals k; > k, > ...
>k, >0.

In case of k, = 1/2 and f being (ky,. .., k,)-summable in direction d, we define
(in view of (3.1))

(3.2) Yaikiry () =Y, () + -0+ Y, (o).

Despite of the fact that in (3.1) the series f, are never uniquely associated with 1.
one can show, using results on k;-summability from Martinet-Ramis [5], that the
right-hand side of (3.2) is independent of the decomposition of f into a sum as in
(3.1). Moreover, for every natural q

(3.3) Ydikeake, (F@) = Yargiais,....ax, (@),

provided that f is (ky,... ,kp)-summable in direction d, and this extends the
definition of ) 4,....x, to arbitrary k; >k, >... > k, > 0.

.....

4. Summability through iterated Laplace integrals.

Letp = 1and x; > 0,1 < j < p, be arbitrarily given. By induction with respect to
p, we are going to define a summability method of formal power series through
iterated Laplace integrals, which we will denote as (k;,. . . , k,)-iL-summability. If
fis(ky. .., Kp)-iL-summable in direction d, we write

f = Zd;m ..... xp (i)

to denote its sum (in direction d). The definition can be phrased as follows:
(a) For p=1, a power series f is (k,)-iL-summable in direction d iff it is
Ky-summable in direction d, and

TES) = T, ()
(b) For p = 2, a power series f is (ky,..., k,)-iL-summable in direction d iff
§=2=2.,(f)

is (Kq,. . .,Kp—1)-iL-summable in direction d, and in addition ( for suitable k > 0)
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Fimeno=1 (§)e of (d, 0k, K,).
If this is so, we define

Zd;xl ..... Kpf = g,‘y (Zd;,ﬂ ..... pot (g)>'

Suppose that f is (k4. . ., Kp)-iL-summable in direction d. Then the following
statements are direct consequences of the definition and the properties of Laplace
transforms listed in Section 1:

(i) Let f,, =, fj_l = @xj( fj), 1 <j < p. Then f, converges for |z| sufficiently
small, while for j = 1,...,p, f;is (k,,. .., k;-iL-summable in direction d.
(i) With
Jfo= Z(f ok
fi =X () =1,

- J
1/k1= Z I/Kv,j=15~~9pa
v=1

ko = 00
we have

f’ed(d,o; kNj,Kj.;.l), J = 0,...,p - 1,
fi= S fi-Deddn/kzk), j=1,...,p.

(iii) For any natural number g, the series f(z9) is (k1. . ., qx,)-iL-summable in
direction d/q, and

From (i), (ii) we see why we call this summation method summation through
iterated Laplace integrals: Obviously, f = Y %*i%» (f) = Lo 0L (fo) is
an iterated Laplace integral over a function f, locally represented by a conver-
gent power series f,, which is obtained from f as fo = .4?,‘1 °...0 Q,‘p ( f ).

THEOREM 1. Letp = 1,d,and x; > 0,1 < j < p, be arbitrarily given, and define
k1>k2>...>kp>0by
) 4

@) thy= Y 1k, 1Sj<p.

v=p+1-—j
Moreover, assume k, = 1/2 (i.e. Z‘l’ 1/k, £ 2). Then a formal power series fis

(x1,. .. ,Kp)-iL-summable in direction d, iff
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4.2) f=h+..+F

where each f, is k;-summable in directiond, 1 < j < p.
Moreover,

4.3) Yo (f) = Y, () + o+ T, (fy)-

Proor. We proceed by induction with respect to p: Obviously, Theorem
1 holds (trivially) for p = 1, hence from now on, let p = 2.

(a) Suppose f is (ky,. .., Kk,)-iL-summable in direction d. Then by definition,
g= -@x, (f) is (xy,...,k,—1)-iL-summable in direction d, hence by induction
assumption

dg=81+...+dp-1,
where each § is k-summable in direction d, with
p—1
kj= Y 1k, =1kjey — Uy 1SjSp—1,
v=p—j
and
g=Yr @) =gi + ... + gy,

With f; so that &, (f/)=4g; we apply Proposition 2 (with k =k;,y,
k = kj,x = k,) and find

fi=fiei+hy

with fjﬂ being k;.,;-summable in direction d, and Q,‘P (fz,-) convergent for
sufficiently small |z|. This implies

f=fi+...+f_,
=fit+.c+fothi+.. b,

Since §o:= Q,(p(il .o+ ﬁ,_ 1) converges for sufficiently small |z|, and, accord-
ing to Proposition 1, §; = .@,‘p( fi+1)is ki-summable in directiond (1 £ j < p), we
find

(44) Z(gO) = Zd;m ..... Kp-1 (é)
= Y G0) = = X, Gp-1)
€ (d,0; 00, k,).

Thisimplies f; = Ay + ... + fl,,_ 1 being k,-summable in direction d, hence (4.2),
and (4.3) follows from (4.4) and (2.3).
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(b) Conversely, assume (4.2). Define §;_, = g?xp( f;-), 1 £j < p, we conclude
from Proposition 1 that §; is k;-summable in direction d, with 1/k; = 1/k;,; —
1/k,,0 £ j £ p — 1. Therefore,

g=g0+'-° +gp—l =pr(f‘)

is, by induction assumption, (x;, . . ., k,_ 1)-iL-summable in direction d (also note
that g, converges for sufficiently small |z|, hence is k-summable in direction d for
arbitrary k > 0). Moreover, from (2.3) we see

p-1
Zd;m ----- ®p-1(g) = Z Zd;k}(éi)
j=0

e 4(d,0; k,x,)

(for sufficiently large k > 0), hence by definition f is (x,,. . ., Kp)-iL-summable in
direction d.

THEOREM 2. Let p 2 1, and x; > 0, 1 < j < p, be arbitrarily given, and define
ki >k, > ... >k, >0 by (4.1). Then a formal power series f is (x,...,K,)-iL-
summable in direction d iff it is (ky,. . .,k,)-summable in direction d, and

4.5) Yawiwe (f) =Y pu ok (F).

PROOF. In view of (iii) (following from the definition of iL-summability) we may
restrict to cases where in addition k, = 1/2 is satisfied. In such a situation,
however, Theorem 1 and the above characterization of multi-summability com-
plete the proof.

The following result shows that multi-summability also may be characterized
in an inductive manner:

THEOREM 3. Let p 2 2,d, and k,,. .. ,k, > O be given, and define
4.6) 1k = 1/kjsy — 1/ky, 1 SjSp—1.

Then a formal power series f is(ky, . . ., k,)-summable in directiondiff § = B, ( f)is
(k3,. ...k, )-summable in direction d and, in addition, for some k > 0

Za;k',,....k;, ., (9 eAd,0; k ky)
If this is so, then

Proor. Define k;,...,k, so that (4.1) holds, and use Theorem 2 together with
the definition of iL-summability.
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5. An example.

One can relatively easily find examples of k-summable series, and using Theorem
1, we will construct a series f(z) which is (1,1)-iL-summable, but not k-summable
in any direction d, for arbitrary k > 0.

Using standard notations from the theory of special functions, let

ﬁ@=§W%ﬂ

then
g1 =#,f = F1/2,1,1; 2),

and from the definition of k-summability, we conclude that f; is 1-summable.
Similarly,

f2(2) = Y. T2(1 + n)z"
(1]
can be seen to be 1/2-summable, and consequently,
fi@) + £ = f)

is (1, 1)-iL-summable. Its sum f(z) can be represented as

o(d)

fzy=2z"1 J h(u)exp { —u/z} du,
)
o(d)

h(u) =u"! j g(w)exp { —w/u} dw,

with
gw) =1 Fi(12,,w) + (1 —w)™!

(omitting the question of where the integrals represent the functions). Due to the
fact that

Byof = * + F(1,1,1/2;2/4),

one can see easily that f is 1/2-summable along rays in the left halfplane, but not
along such in the right. Taking

i@ = f,@ + fi(—2) + £,(2),
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one easily finds that §(z) is again (1, 1)-iL-summable, but not 1/2-summable in any
direction d (not even ford = + /2, since summability along d always implies the
same type of summability along neighboring rays). For k > 1/2, the coefficients
of § grow too rapidly for k-summability. For0 < k < 1/2,if fwere k-summable in
direction d, it would also be (1/2, k)-summable in direction d, and the fact that
2, 12 converges can be seen to imply 1/2-summability in direction d, contradic-
ting the above argument.
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