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L*-INTEGRABILITY OF SECOND ORDER DERIVATIVES
FOR POISSON’S EQUATION IN NONSMOOTH DOMAINS

VILHELM ADOLFSSON

Abstract.

We define a certain class of domains with corners directed outwards only, thus being natural
extensions of convex domains. We show that such a domain € can be approximated with smooth
domains ©,, of the same type. Using a technique based on integration by parts we derive an a priori
estimate

lullb2q,) < C(Q) | 4ull @,y for ue H(Rm) N Hy(2)

where C(Q) is independent of m. This enables us to obtain a solution u in H*) of the Dirichlet
problem

du = felXQ)
yu =0.

Here y is the trace operator on the boundary of Q.

1. Introduction.

The purpose of this paper is to prove that the Dirichlet problem for Poisson’s
equation has a solution ue H*(Q) for certain non-smooth domains Q. The work
in this area can provisionally be divided into two groups, see [9] and [5] and the
references therein. In the first group attention is focused on global smoothness
conditions on the boundary; in the other group the singularities are localized,
and one considers a finite number of singularities on the boundary, such as edges,
polyhedral angles, conical points, etc. It is desirable to treat not only a finite
number of singularities, but to give a global smoothness condition in the spirit of
the first group of works, allowing for not necessarily localized singularities of the
type mentioned in the other group. This paper gives such a suitable definition of
domains and proves that the second order derivatives, as mentioned above, are in
I? for these domains. The domains we consider here are natural extensions of
convex domains. The main resut is the following.
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THEOREM 1.1. Suppose Q is a strongly Lipschitz domain in R" of finite width. If
Q satisfies an outer ball condition of uniform radius, then the unique solution
ue H5() of the Dirichlet problem

du = felXQ)
yu =0 on 0Q,

has all its second order derivatives in [*(Q), i.e. ue H*(Q).

Here the Sobolev space H™(Q) is, as usual, the space of functions in L*(Q) with
distributional derivatives of order up to m, in L*(€2). This space is equipped with
the Hilbert-space norm || - || ymg) given by

lulgmey ={ Y I1D"ullf )}
Oglalsm
By H(£2) we denote the completion of C(€2) with respect to the above norm. For
more facts concerning Sobolev spaces, see [1] and [5]. Here the “outer ball
condition” means the following.

DEFINITION 1.2. An open set Q in R" is said to satisfy an outer ball condition if
for each p e 092 there exists an open ball Bin R"such that B = ©°and p e dB. Such
a ball “tangent to 0Q” will also be called an outer supporting ball at pe 0Q2. The
ball conditions is said to be of uniform radius R > 0 if the radius of the ball B can
be taken to be R for each pedQ.

Finite width has the following natural meaning.

DEFINITION 1.3. A set in R" is said to be of finite width if it lies between two
parallel hyperplanes.

An open subset Q of R" is said to be Lipschitz if its boundary is locally given as
a Lipschitz function. That is, for every x € 0Q there is a rectangular neighborhood
V of x in R" and a, with the usual coordinate system, isometric coordinate system
{V1s-..,yu} such that ¥V = {(yy,..., ) —a; <y; <a;, 1 £j < n} and fulfilling
the following properties. For every ) = (yi,...,Vn-1)€V’, lo(¥)] £ a,/2,
QaV={y=(.yeViya<o(y)}, and 3RV = {y = (¥, y)€V:y, = o(y)}-
Here V' is the projection of V onto the first n — 1 coordinates. “Strongly
Lipschitz” is just a requirement of uniformity of the Lipschitz properties and
reduces to an ordinary Lipschitz-condition in the case of a bounded domain. We
will just indicate this extension here and concentrate on the bounded case. We
refer to [2] for a complete treatment. (See 5.3 below for the definition.) Theorem
1.1 includes the known cases for bounded domains being either C* or convex. As
can be seen from the considerations below the main requirement for obtaining
asolution in H? seems to be that all singularities on the boundary are directed out
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from the domain. In this paper we prove that this is indeed the case under the
additional condition that the boundary is Lipschitz, i.e. the singularities are
corners or edges. Our condition for having the corners directed out from the
domain is formulated by an outer ball condition.

The proof of Theorem 1.1 rests on a uniform estimate of the second order
derivatives of solutions u, of the same problem in smooth approximating
domains, and the standard weak convergence procedure inferred from this
uniform estimate. The estimate is obtained from the following formula derived,
basically, by the use of Green’s formula twice. The formula dates back to
Caccioppoli [3] amongst others. We have,

n azu 2 au 2
1 ") dx = Au,)*d +f t%,,,(—"‘)d
M ,-E,Lm(axiaxj) ¥ jnm( t)” o9,, ' n)®

where tr B, is the trace of the second fundamental quadratic form on 0€,,,1.e. the
mean curvature. Hence, the uniform estimate comes down to an estimate of the
boundary integral in the previous formula. The here indicated method of proof
was first exploited by Kadlec for the Dirichlet problem of a convex domain [7].
Extensions of this result to other boundary conditions are due to Grisvard and
Tooss [6]. For more elaborate estimates of (1) in a slightly different direction, see
[9] and the very nice results on C!** domains, i.e. [8], [10] and [11].

ACKNOWLEDGEMENT. I express my gratitude to my advisor Professor Bjorn E.
J. Dahlberg for introducing me to the field, for his enthusiasm and interest in my
work. I would also like to thank Professor Peter Sjogren for helpful discussions.

2. Frame results.

In this section we present the technique on which the subsequent sections relies.
Since the H2-estimate depends heavily on the mean curvature of the boundary,
we give a brief review of one of its definitions.

Letting 2 be a bounded open subset of R" with a C2 boundary, we can define its
second fundamental quadratic form denoted B. Let pe 0Q2. Then at p, B(p), or
just B, is the bilinear form

n—1 apv
E“Cﬂ)==—' z: <7%T,Ch>Cﬂh

k=1

-~ (&)
- - aC N )

where {,n are tangent vectors to dQ at p with components {(,...,{n-1},
{n1,...,Ma—1} in the basis {Oy,.. ., O,_,} furnished by the tangent vectors at p of
n— 1curves A,,...,A,_, passing through p and being orthogonal there. Also,
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Si,...,5,_1 are the arclengths along A, ..., 4, _,, N is the outer unit normal, and
{-,*> denotes the scalar product. The trace of this form is

n—1 ON
wo- -7 (%0

Let v be any vectorfield on Q. We denote by v, the component of v in the
direction of the unit outer normal n, whereas v denotes the projection of v on the
tangent hyperplane to 02. In other words,

v, = {v,n) and Uy =0 — Dy
In the same way V is the projection of the gradient operator on the tangent
hyperplane,

Viu=Vu— —@-n.
on

THEOREM 2.1. (Theorem 3.1.1.1,[5]). Let Q be a bounded open subset of R" with
a C? boundary and assume ve H'(Q)". Then

jldivvlzdx— I AL
2

ij=1Jae 0xj 0x;

- 2 <(yv)Ta VT(?D) n>>
- Lﬂ {B((yv)r, (yv)7) + tr B){(yv),n>?} do,

where y is the restriction operator to the boundary 0%.

We can now formulate the preliminary version of the main theorem under the
hypothesis of the existence of suitable approximating domains.

THEOREM 2.2. Let Q be an open bounded set of width w in R" with a Lipschitz
boundary. Suppose there is a sequence of bounded open sets {Qp}n >, such that
Q,.1Q and 0Q,, is C°. Further, assume that there is a 6 > 0 and a ue C*(Q)" such
that {u,n,,> = 6 on 6Q,,. Here n,, is the outer unit normal on 0R,,. Then, if there is
a constant c such that tr B,, < c on the boundary 0%, for every m, then there exists
for eachfe L) aunique u e H} () being the solution of Au = f in Q. Furthermore,
ue H(Q) and

”““Hl(n) =C "f”Lz(n)

with C = C(n,c,w, K), where K = 267! ||| c1 (@3-
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PrOOF. Since ue H(R2,,), a standard Poincaré inequality, (see [1,p. 158]),
together with an integration by parts give

ou |? w?
| dx = T ||A““ilm,..)'

w2 n
u < —||du and
lullsa, < - l4ulia, |

i=1J92,

The standard estimate,

?) J lyul*de < K {A"ZJ |Vu? dx + A"’zj |u)? dx},
09, Q, Q,,

holds for all ue H'(,,) and A€ (0, 1). See e.g. [5, Chap. 1].
Claim: There is a constant C such that for allm > 1

||“"H2(n,,,) =C ||A“||L2m,,,)

for every ue H*(2,,) n H}(,,) and C = C(c, w, K). For the proof of this we apply
Theorem 2.1 to v = Vu observing that since yu =0 on 09,, we also have
(yv)r = yVru = 0 on 02,,. Consequently, if there is a constant ¢ independent of
m such that tr 8, < ¢ for all points on the boundary we have an upper bound

“élj‘m *u

6xidx j
Using (2) with 4 = (2cK) ™2 we get an estimate of the L? norm of the second order
derivatives in terms of the I? norm of the Laplacian. Thus,
2 4
lulgzany < C ll4ullL2q,, Where C = {2(1 + KW + -+ —'—3—}

Having proved the claim, we turn to the actual proof of the theorem. Let f be
given and let u,, € H*(£2,,) be the solution of the same problem as u but in £2,,. We
know that such a solution exists since the boundary of Q,, is C*. From Claim
follows by a standard weak convergence argument, the existence of a solution
u with the desired properties. See [5, Chap. 3]. The estimate of the theorem
follows from a straightforward calculation using that

2
dx < -[ |4u|? dx + cf [(Vu)|? do.
Q0 oa,,

"“")2{ = <u,“>x = <u - “m“>x + <“m,“>x é €+ ”um”X "u"X, Ve >0

if m big enough, where X is H' and L?, respectively.

3. Approximating domains.

In this section the objective is to give an approximation procedure for a particu-
larly simple domain.
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DEFINITION 3.1. Let r and 6 be polar coordinates for R, 0 < r < o0, e S" !
(the unit sphere in R"). A domain D in R" is a starlike domain (with respect to the
origin) if there exists a function : " ~! — R, B continuous and strictly positive, so
that D = {r6: 0 < r < (6), 0 S"'}. If D is a starlike domain in R" and there is
a constant M such that |B(6,) — B(0,)| < M |0, — 6,| for all 8,,0,eS5" !, we say
that D is a starlike Lipschitz domain with a Lipschitz constant bounded by M. Here
|-| denotes the Euclidean distance in R".

The following notational conventions will be convenient.

NOTATIONS 3.2. We denote by U the upper hemisphere of $"7!, i.e.
= {0eS""':6, > 0},and we let ¢: B,(0)—»U < S"~ ! be the C* diffeomorphism
onto an open subset of U defined by ¢(¢) = (£, /1 — |£|%). Here B/(0) is the open
ball of radius r in R"™! centered at the origin. Let 6, = (0,...,0,1)eS" "%, the
north-pole. Further, we put
po= min B(6)  p, = max B(6)

feSn—! fesn-1!

The following lemma contains some easily proved consequences of the fact
that g is Lipschitz.

LEMMA 3.3. Let D be a starlike Lipschitz domain with a Lipschitz constant
bounded by M. Then

a) Dis C%!.

b) For almost every @€ S" ! there exists an outer unit normal to oD at (6)6. For
such a @ e U, the upper hemisphere, the outer unit normal N(x) to 0D at x = p(0)0 is

given by N(x) = —(-)— where

n(x)|

wom ool (3)) )
R

2 _q_ _+ x A2
s ol ()

2

“yevea(e ()

c) Ifthere exists a normal at the point x € 0D, then

and
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1 X
o = rEn e <N(x)’ﬁ>'
14—
Po

We next construct the approximating smooth domains needed to be able to
compute the second fundamental quadratic form (i.e. the curvature). First,
however, we introduce some more notation.

NOTATIONS 3.4. Let W = {¢(x'): x'€B,(0)} = U where U and ¢ are as in
Notations 3.2 and re(0, 1) is a real number which will be specified later.

Letting, for each 6eS"~!, R, be a ON-transformation that rotates the
north-pole 6, onto 0 we define @: B(0) = Wy = S"~ ! by @(£) = (Rg° ¢)() where
Wy = ¢¢(B,(0)). Thus ¢, is a difffeomorphism of B;(0) onto W,. Due to the
compactness of S"~ !, we can cover S" ! by a finite set {W,} of these W,. Denote
by {g,} a partition of unity on S"~! subordinate to {W,} so that g, C3(W,),
0<g,<1and),q, = 1.Since the support of g, is compactly contained in {W,},
¢, ! (supp(q,)) is a compact set contained in B, (0) for some 0 <r, <r. Set
I, =r —r,and | = min, ,. Define

G,:B(0)>R
by
G,(2) = (.B)° $.)(Q).

Since supp(G,) < B, (0) = B,(0) we extend G, to zero outside B;(0). Extending
G,° ¢, ! to all of S"~! by letting it be zero outside W, yields, for xe "~ !,

B(x) = Y. q(x)B(x) = Y. (G, ¢, )(x).
Further, let ne C(R"~*) with

supp(n) = {£eR" 11 |¢ < 1},

20, [ge-1m(é)dE =1, and n,(&) = e " Vy (E)

€

As an approximation of f we take for xe "~ ! and ¢ small enough
Be(x) = Z (Gv * ’7&) ° ¢v_ 1(X),

where we extend (G, *1,) ° ¢, ! to all of S” ! by letting it be zero outside W,. The
* denotes convolution. Using the property [gn-17,(£)dé = 1, the following
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lemma is easily proved; we note that the partition of unity {q,} only depends on
W,,i.e.onr.

LeMMA 3.5. There is a constant co such that || — B.| Le@sn-1) = Co& and
co = co(n, py, M, r).

We now put, for xe $"?,
Bex) = —cot + Bulx)
B(x) = cot + Bu(x),
and take as approximating domains
D,={r6:0 <r < B,(0)}
D* = {r6: 0 < r < B46)}.

The following properties are direct consequences of the approximation pro-
cedure.

LEMMA 3.6. There are constants c; = cj(n, py, M, r) for j = 1,2 such that for all
small enough ¢ > 0:
a) p.eC*(S"™")
b) 0 < 3po < B.(6) < (6) < B*(6) < 3p, for each feS"~*
¢) D,cDcD*
d) dist(0D,,0D%) < 2co€
e) oD, and 0D" are C®
f) max, "Gv *1e "vc:(Rn— K é (41
g) max; <i <, (D)l c2mon < (1 — "2)-'}
h) max, sksn—1(MaXg < g 52 |DX(¢p, * o MO 1 for each v
i) 1B(y) — B < cz|y — x| for x,yeS"™ .

4. Estimate of tr B,,.

Since tr B, is a geometrical invariant it suffices to give an estimate at just one
point.

x

LEMMA 4.1. Suppose x € dD,. Let ¢ > 0 be fixed and let ——| = 6y, the north-pole

Jx
of $" 1. Then we have
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4+ n-1
rBx) = 5 (1 + IV ¢)(0)I’) Z[ )

=1 L{v:00eW}

5 i i ( v r’s) 1,
{mfé 1 vi(e, i, VIUu(E, iy V) — 39,60, (6 ° 9)(0)

AGrn) o
(2 ¢)(0»}

I wony (D 0 O)m
+ m‘j§= . (O7CNAO; () 3,08,

s (3 o))

where we have denoted by {3,...,3,_,} the coordinates for G,*n, in R~ and
Om(&, i, V) = {(OF)(x), V(¢ ™ o $)(0)). Here B,(x) is the second fundamental quad-
ratic form on 0D, at the point x € 0D,.

©)

ProoOF. We first derive an expression for tr B,(x) on dD, only involving f,,
without any explicit reference to the boundary 6D. Suppose now x is any point in

0D, such that I—;cl—e U, the upper hemisphere. The expression for the outer unit

normal N,(x) as in Lemma 3.3 shows that the normal is defined in a neighbour-
hood of dD,. Take {x;,...,X,—,X,} as coordinates in R" and suppose that in
these coordinates p = x for pedD,. Then A{0) = x fori=1,...,n — 1, and if
(N,); denotes the jth component of the outer unit normal, we have, with the
notations taken from the introduction of Section 2, that

SN )0 = 3 2 ) (0 = 3

k=1 k=1

AN "'( YO

This shows that

o

B =—F 3 (OO "’()

i=1jk=1
Now

a(Ne)j _ __‘2___ (na)j(x)
ox, = (mmx)

= oy o ) - P

However, ©/(x) is in the tangent space of dD, at x so that (@f(x), n,(x)> = 0 for
1 <i<n-— 1. Hence,

(In.(x))).

rB) = — Il T z (BX0)AO0 "‘"')’

i=1j,k

(x).
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(

. . an,);
It is tedious but straightforward to compute %)’(x), to find that
k

n—1

tr B,(x) = n,(x)| 7" 3

i=1

n—1
[[{ ) |xr2[(@:(x»,~(@f(x»k - 2<i @f(x)> Sl

jk=1 x|’
N <_x_ @g(x)>2ﬁﬁ]w(¢—l<_’f_)>}
Ix|” " [x| x| | 0&;0& ||
(Gl ool ()
(o) 1) (w67 (55
— x|t <1 + <i,@:(x)>2]].
||

Using the expression for f§, © ¢ in the above formula, yields, after letting X

fx]

= 00’
the result of the lemma.

In the following, D will denote a starlike Lipschitz domain with a Lipschitz
constant bounded by M satisfying a uniform outer ball condition of radius R. We
aim for a uniform estimate in ¢ from above of tr 'B,.

For almost every 6eS" ! there exists a normal to dD at the point
x = P(6)6 € dD. Thus there must be an outer ball tangent to dD at x with radius
R and center on the line defined by the normal. Denote by m, the center of this
tangential ball. Let wj be the angle between mg and 0, or, rather, the correspond-
ing radius vectors. Further, let [ be a line through the origin that is tangent to the
ball tangent at $(6)0 with center my. The angle between | and my is the same for all
such lines I. We denote this angle by w,. Any point on the tangential ball where
such a line intersects we denote by g,. Also, for pe S"~! we let wy(p) be the angle
Ripo +R) ,
2p, + R)* °
where a, is the constant of Lemma 3.3. Then for almost every 8¢ S" ! we have
cos wy = o, cos wy > 0. To see this, note that the boundary 0D is Lipschitz so that
it is clear that for some constant ¢ > 1 we have cw), < w, for a.e. 6 S"~*. This
implies the estimate for some constant. A more precise computation gives the
constant a;. Let ye R be defined by y = (1 + a,)/2. Then 1 <y < a; and for
almost every fe S" ! there is a set Oy = S" ! defined by

between p and m,, wjy(p) the angle between pand 6. Leta, =1 +
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0, = {peS"":<p, ':sl > > ycoswo},
0

. . my
where m, and w, are given above. Since <9,-ﬁ> = COS Wp = &y COS Wy >
my

y €os wg, @ € Oy and O, is clearly open. Thus O, is a neighborhood of §in S" !, Let
aeR, a > 0, and define U§ = {peS" :|p — 6] < a}.

LEMMA 4.2. There exists a constant a > 0 such that for almost every 6 e S" !
Us < Oy
and a = a(n, po, p1, M, R).

PROOF. As in the statement for the constant a; above we have for some
constant ¢ that cw, < wefor a.e. B S"~ . A similar estimate then naturally holds
for points in a neighbourhood of these 8. Moreover, it can be seen that the size of
the neighborhood can be taken the same for the 6. That is cwy(p) < wy for a.e.
0 S" ! and pin a neighborhood of § whose size can be taken the same for each 6.
This is essentially the result of the lemma. It is not difficult to make the estimates
more detailed to justify the above assertments.

We now use this constant a to fix the radius r of the ball B;(0) being the domain
of the coordinate map ¢ as in Notation 3.4. Let so x,ye W = {¢(x'): x' € B)(0)}.
Then |x — y| £ 2\/5r as is clear from geometrical considerations. Choose r so
that 2\/§r < a where a is the constant obtained in Lemma 4.2. With this choice
the range of the coordinate maps, W,, will be contained in Ug , for each 9 € B;(0)
and this will enable us to give an uniform estimate in ¢ of the term involving
second order derivatives in tr ®B,. Recalling Notation 3.4 we have | = min, [,,

l, =r —r,> 0 where r, is the radius of the ball B, (0) containing the support
of G,.

LEMMA 4.3. Letve R"™ 1. There exists aconstant K, = Ko(n, po, p1, M, R) such
that for each v we have that for almost every 3¢ B, .4, (0)

(B°¢.)(S + tv) + (B° )3 — tv) — 2(B> $)I) = Ko lv]*t?

1
for all te R with |t| < %—IW
ProOF. Using the symbols above we have that W, c Uy , for each 3 € B;(0)
since if pe W, we have |p — ¢,(9)| < Zﬁr < a. Also, while diffecomorphisms
preserve the zero sets, Lemma 4.2 ensures that Uy () < O, (4, for almost every
1

3€ B, (0). Let v be fixed but arbitrary. For |t| < %m and 3€ B, .4, (0) we have
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S+t <r,+0/3)+3)Iv =r,+(Q21,/3) so that 3+ tveBy(0) and
O3 + t)eW, = Ug 5) < Oy (s

Consider the line through ¢,(3 + tv) from the origin. The supporting outer
ball at B(¢,()¢,(I) will be intersected by this line since ¢,(3 + tv)€ 0, (5. So
there is a se R depending on ¢ such that s = s(t) = distance from the origin to the
point on the supporting outer ball. Noting that s(t)¢ (3 + tv) lies on the supporting
outer ball gives |s(t)¢,(3 + tv) — my |* = R? so that

s(t) = {,(3 + tv), My (9)) — {{&u(3 + 1), m¢v(s)>2 + R* - |m¢v(s)|2}*

wheremy (,, is the center of the supporting outer ball at B(®.(9)@.(F). The second
derivative is given by

s"(8) = — (R? — |my q)1P)(ed (1) 72
n n—1 a 2
X {Z Z vi(my (s ((—fg)k &+t )}
K=11=1

+ [1 = <3 + tv), my 5>} (1) 2]

n n—-1
X {Z Y Uilm(My o)k 69(?3).;)" S+t )}

k=1lm=1

where e} (1) = {9(3 + tv), my > + R? — |my )|>. Now ¢,(3 + tv)€ 0, 5, 50
that by the definition of O, (5, we have

(v |mvv(s)|C°S w.pv(s))z <<P.(8 + tv), m¢v(s)>2-

It is a consequence of this and the fact (R? — |my (5)|%) = —(Im, )| COS W4 (5))?,
that the estimate €3 (f) 2 (2 — 1)p? holds true for all v, almost every

Je B, .40 and te R with || < 3—|£|— This shows that se C* ({t: It < ’}'—f)l})

From this last estimate, the estimate for max, <x < [l(¢,) |l c2(s;(0y in Lemma 3.6

and the choice of the constant a, we obtain |s"(t)] < K, |v)? if |t] < %l—zl)l , for some

constant K, only depending on n, py, p;, M and R. By the above expansion
(Bo ¢S + tv) < s(t) S (B=9.)(9) + s(O)t + 3Kolvl* ¢,

since s(0) = (B° ¢,)(9) in view of the fact that the outer ball is tangent to €2 at
B(¢.(9))¢, (). The lemma follows by summing up for ¢t and —¢.

LEMMA 4.4, LetveR"™!. Thereisaconstant K, = K,(n, po,p1, M, R) such that

Jor each v we have for almost every 3€ B, ., (0) and for all t € R with |t| < 3-— that

[v]
G,(9 + tv) + G,(3 — tv) — 2G,(9) < K, |v)* t2.
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ProOF. By definition G,(9) = (g, ° ¢,)(H(B > ¢,)(I). Rewriting the symmetric
difference we get

G,(3 + tv) + G(3 — tv) — 2G(9)

= (4,° S + t){(B° &) + tv) + (B> d )3 — tv) — 2B $,)(D}

+ (B )3 — t){(g,° IO + tv) +(g,° BN — tv) — 2g,° )P}

—2{(gy° 93 + tv) — (g, ° e )I}H (B )3 — tv) — (B $,)(3)}-
For fixed $and vlet f(t) = (g, ° ¢ )3 + tv). Since q, € CF(W,)), we have f € CF(R),
where g,° ¢, is extended to zero outside B;(0). Now f"(t) = (v, H(q,° ¢,)
(9 + tv)v) with H(q,° ¢,)(3 + sv) as the Hessian of q,°¢,. Thus, using the
estimate for the second order derivatives of q, ° ¢, given in Lemma 3.6, it is easily
sen that the first two lines in the rewrite of the symmetric difference of G (3 + tv)
above, can be estimated by K, |v|? t2 for some constant K ;. In the same way, each

of the factors of the third line can be estimated by K, |v| t for some constant K ;.
The lemma follows.

LEMMA 4.5. If ¢ > 0 is small enough and 0, € W,, then

"o *Gy*n,) . _
”2;1 Unvmm((d% Lo 9)(0) < K, |v]?

forallveR"'. Here K, = K,(n, po, p1, M, R) is the constant obtained in Lemma
44,

PrOOF. Define y¢ (1) = (G, *n,)(¢, ' ° ¢)(0) + tv). We now claim that for
sufficiently small ¢ > 0 we have that Y ,e CP(R) and (% ,)"(0) < K| |v|%. The
claim is clearly true for v = 0 so assume that v & 0. That ¥} ,€ CF(R) follows

)
from Lemma 3.6. To prove the second part of the claim we note that for |¢| < %m

we have ¥ (1) = 5, ,0GuS + (@, ' > $)0) — 9)d3 since supp(G,) =
B, (0). Consequently, according to the preceding lemma, ¥5 () + ¥, (—¢t) —
2y¢ (0) < K, [v]* 2. Using this estimate we derive (% ,)"(0)¢> < K, [v]*£* + %
(max|(y3,,)"]) I¢)* and thus (5 ,)"(0) < K, [v]* + §[max |(¥5,)"|]1t. Now let £ | 0
for fixed ¢ > 0 to obtain (¥ ,)(0) < K |v]>. The claim is established. To obtain
the result of the lemma just compute the second derivative of ¥/} ,.

LEMMA 4.6. There exists a constant ¢ > 0 such that for each sufficiently small
e>0

tr(B,)<c
for all points on the boundary 0D, and ¢ = c(n, po, p1, M, R).
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Proor. For fixed but arbitrarye > Oand 1 £i £ n — 1let v be the vector with
components v, = (@) (x), V(p,'°P)u0)>for 1<m=<n—-1 Then

. x
lv] £ ¢|@i(x) for some constant c. Now take xedD, with Tl—= 0y, the
x

north-pole, and use Lemma 4.5 to infer that from the formula of Lemma 4.1 it
follows that tr B,(x) < c. Finally, since tr B, is a geometrical invariant we get the
same estimate for all pedD,.

5. Solvability in H? of the Dirichlet problem.

We can now apply the preliminary version, Theorem 2.2, to the starlike domain
D and the domains D,. There only remains to check the uniformity of the
boundary trace estimate. This can be done in several ways. The following lemma
is easily proved, see e.g. [2].

LEMMA 5.1. There exists 6 > 0 and ue C®(R")" such that for all sufficiently
smalle >0

{u,N> = 0, a.e. on dD,,
where N, is the outer unit normal on 0D, and ¢ = a(n, po, py, M, R).

The main result in the case of a starlike domain now follows directly from
Theorem 2.2, Lemma 4.6 and the foregoing lemma.

THEOREM 5.2. Let D be a starlike Lipschitz domain with a Lipschitz constant
bounded by M satisfying a uniform outer ball condition of radius R. Then there
exists for each f e L*D) a unique ue Hy(D) being the solution of Au = f in D.
Furthermore, the solution ue H*(D) and ||ul|g2p) < C || f |l L2p) with C = C(n, po,
P, M ’ R)

Using a partition of unity together with some requirement of uniformity, one
can achieve results similar to the above theorem for more general domains, for
example strongly Lipschitz ones. The crucial point in maintaining the uniformity
for these, in general, unbounded domains is, apart from a bound of Lipschitz
constants, that the size of the rectangular neighborhoods can be taken to be the
same.

DEFINITION 5.3. Let Q be open in R*, bounded or unbounded. We say that Qis
strongly Lipschitz if it is Lipschitz in the sense given in the introduction, and there
are positive real numbers a’ and a, such that for all x € 922 we have a;(x) = a’ for
1<j<£n—1 and a,(x) = a, for the rectangular neighborhood of x. We also
require that an upper bound of the Lipschitz constant can be taken the same for
all functions ¢, and that x is the origin in the new coordinates.
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As easily seen bounded Lipschitz domains are special instances of the above
definition. For the proof of Theorem 1.1 we refer to [2]. To avoid less cheerful
details we content ourselves here with the result for a starlike Lipschitz domain,
Theorem 5.2.
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