MATH. SCAND. 70 (1992), 112-126

THE INVERTIBILITY OF THE RADON TRANSFORM ON
ABSTRACT ROTATIONAL MANIFOLDS OF REAL TYPE

A. KURUSA

Abstract.

Injectivity and support theorem are proved for the Radon transform on abstract rotational manifolds
of real type. The transform is defined by integration over certain rotational submanifolds of
codimension 1. Our technique is to use the theory of spherical harmonics. We also get unified closed
inversion formulas for the spaces of constant curvature.

1. Introduction.

Nowadays the Radon transform is extensively studied in several settings [1, 5, 6,
7, 8, 9, 12]. The main question on every spaces are the invertibility of the
transform and the support theorem [6].

We take the Radon transform on abstract rotational manifold .# of real type
[14] so that it integrates over the rotational submanifolds of codimension 1 by
the natural measure induced by the original Riemannian metric. Such a rota-
tional submanifold is obtained by rotating a geodesic around the orthogonal
geodesic joining its closest point to the base point of .#. The manifold of these
“hyperplanes” is denoted by .4". Precisely, the Radon transform of the function
f: M > Ris

Rf:V >R Rf()= ff(X)dx,
¢

where dx is the natural measure on £€ A",

In this paper we will generalize and unify several results on the Radon
transforms [5, 6, 8, 9] by proving the support theorem and the invertibility of this
Radon transform. Then we prove inversion formulas on the spaces of constant
curvature [8, 9] in this setting that makes the results of [8, 9] appear in unified
form. From this point of view also the points of the proofs are more clear then
they are in [8, 9].

Our method, to use the theory of spherical harmonics, is new on these spaces
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although the connection between the Radon transform and the spherical har-
monics on the Euclidean space is well known since the middle of the century [10].
Roughly speaking, this connection is that the projection of the functions onto
a one dimensional function space spanned by a spherical harmonic can be
transposed with the Radon transform using a simple one dimensional integral
transform. One can relatively easily handle these one dimensional integral
transforms by using some facts about the Gegenbauer polynomials. We show out
that the same argument works very well on the rotational manifolds and even
more efficiently on the spaces of constant curvature.

2. Preliminaries.

We collect here the notations and facts we will use throughout this paper. First of
all we recall the abstract rotational manifolds [14].

A complete Riemannian manifold .# of dimension n is called an abstract
rotational manifold with base point O € # if the induced linear action of the
isotropy group of O on T,.# is equivalent to O(n).

The Riemannian metric on .# is then completely described by a size function
g: R4+ — R, such that the geodesic sphere of radius r in .# is isometric to the
Euclidean sphere of radius g(r). This explains the notation (.#, g). A complete
abstract rotational manifold of real type is homogeneous if and only if either it is
of constant sectional curvature x or, equivalently, the size function g satisfies the
ODE § + kg = Ofor a suitable constant k. Thus in these spaces the size functions
are shr, r and sinr.

With the geodesic polar coordinatization (i.e. (w,p)eS" ™! x [0,1,) —»
Expo pw) of the rotational manifold .# and the Euclidean space E of the same
dimension one can define for every function v: [0,I)) - [0,c0) the map
(w, p) = (w, v(p)) from .# into E. If the mapped geodesics are geodesics we call this
function the “projector function” of .# and usually we denote it by u. By
Beltrami’s theorem (L. P. Eisenhart: Riemannian Geometry) .# must be of
constant curvature if it has projector function because it makes a geodesic
correspondence. On the other hand from the quadratic model of the spaces of
constant curvature [7, p. 93] one can easily read off that in these cases the
projector functions are thr, r and tgr as the curvatures are —1, 0 and 1.

We have the trigonometry on the rotational manifolds developed by Wu-Yi
[14]. This trigonometry shows that a geodesic right triangle, where as the figure
shows H is the right angled vertex and O, X are the not right angled vertexes, is
determined by the angle « at the origin O and by the distance h of H or (x of X)
from the origin. We have two equations for these data.
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Figure 1.

sin 8 = g(h)/g(x) (sine law),

g(r) .
d= h mdr (cosine law),

where f denotes the angle at X and d denotes the distance between H and X. In
the following, we shall frequently use the angle f and the distance d as a function
of « when the point X or H will be fixed.

We shall parameterize in these spaces a hyperplane # e A" by its distance
p from O and the unit vector we Ty # so that the corresponding geodesic
Expo tw is perpendicular to # at the point Exp, pw. This hyperplane is denoted
by &(w, p). There may be some problems with the uniqueness of this parameteriz-
ation going away from the origin, therefore we have to modify a little bit the
definition of the rotational manifold. We shall say that I, is the geodesic injectiv-
ity radius of the origin if it is the maximal number that the above parameteriz-
ation of the geodesics is injective on S" ! x (0, I,). To avoid the non-uniqueness,
we shall restrict the rotational manifolds to the set Expo [S"~* x (0, I,)]. As one
can easily see I, is infinite on the hyperbolic space and 7/2 on the unit sphere.

The normals of the hyperplanes make an obvious bijection between the set of
hyperplanes passing through the point x and the elements of the unit sphere in
T..#. Therefore the surface measure of this unit sphere is projected onto the set of
hyperplanes passing through the point x. Let u, be this projected measure and
F: # — R. Then the dual Radon transform of F is

RF. #4—->R  RF(x)= f F(§)du,(%).

xeé
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To make easier our further investigations we now introduce the boomerang
transform. A function f on .# define naturally a function F on 4" by the equation
F(&) = f(x), where x is the point of £ nearest to the origin. If this correspondence
is denoted by P then the boomerang transform B is R,P, i.e. Bf = R,Pf.

Almost all of our calculations will be based on the theory of spherical har-
monics. The most important facts we need about them are the following.
A complete orthonormal system in the Hilbert space L*(S" ') can be chosen
consisting of spherical harmonics Y ,,, where Y, is of degree m. If Y, is
a member of such a system, fe C*(S"~! x [0, o0)) and pe[0, oo) let the corre-
sponding coefficients of the series in this system for f(w, p) be f; .(p). Then the
series

,i FimD)Yim(@)

converges uniformly absolutely on compact subset of $" ! x [0, ) to f(w, p).
Our main tool in this theory is the Funk-Hecke theorem. If

1
f If@®I(1 —t?)* 12dt < 00 and 4 = (n — 2)/2, then
1

15"~

j f((wa (l-)>)YI_m(C()) do = Yl,m(a.))m
sn-1

I FOCLO — )12 de,
-1

where |S" 2] is the surface area of the unit sphere S"~ 2, {.,.) is the usual scalar
product and C} is the Gegenbauer polynomial of degree m. For further details we
refer to [11,13].

3. Support theorem on rotational manifolds.

In this section we prove the support theorems for the Radon and the boomerang
transform. We define for each real m > 1/I, the following function spaces:
Li(M) = {f e L, (M).d(0,X) 2 1/m = f(X) = 0} & (M) = ) Li(H)

m>0
L) ={Fe L (X): p2 1/m = F(w,p) = 0}.
THEOREM 3.1. The Radon transform R: L%(#) — L%(N") is continuous and

i) if feA(A#) and Rf (w,p) = O when p 2 1/m then f € L(.#)
ii) R: LX(M) — LL(A") is one-to-one.

Proor. The continuity is clear and the support theorem i) clearly implies the
injectivity ii) so we shall only deal with the statement i).
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Let a be that angle where x(ay, h) is just I, and let
St ={wesS" it < (@, w)}.

Let (, h) be the geodesic coordinate of H and let X be a point on the hyperplane
&(a, h) with coordinate (w, x) (see Figure 1).

Let the dimension n = 2 first and let the elements of S! = T,.# be par-
ameterized by their angle a to an arbitrary but fixed direction. As the Figure
1 shows then X € &(m, h) is parameterized on the interval [& — o, & + o], Where
@ is the angle of @. In this meaning it is immediate that

0 RGH = [ fla+axe) S0 dn

where d(a) = d(a, h) comes from the cosines law.

If the dimension is more than 2 the new situation can be gotten from the two
dimensional one by rotating around OH. The definition of the size function g says
that a geodesic sphere of radius p is isometric with the Euclidean sphere of radius
dg(p) therefore its surface measure is g"~ '(p)dw. This means that the basis
elements of the tangent space of the geodesic sphere are g(p)-times bigger than
that of the unit sphere in the tangent space. Since the hyperplane &(a, h) is
rotational manifold it follows from these that the surface element of &(@, h) at the

dd
point X is just g"‘z(x)ﬁ&-dw, where cos a = (w,®). Thus we have

) Rf(®,h) = f f(w, x(arccos {w, ®)))g" ~ %(x(arccos {w, @}))
-1

S,:B. cosao(h)

Ed~ (arccos{w, ®))dw.
do

Substitute now into (1) and (2) the Fourier and the spherical harmonic expan-
sions of f and Rf according to the dimension being 2 or more. More precisely let

[

fed= Y fu@expmz) and Rf@a) = 3 (Rf)(g)exp(ima)

m= — o m= —o0

for dimension 2 and let

f(o,q) = lif:.m(q)l’z,m(w) and Rf(w,q) = i(Rf ). m(@) Y, m(®)

for higher dimension.
If n = 2 we get immediately that
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dd .
(Rf )m(h) = J f,,.(x(a))—(gexp(lma) da
and by the substitution a = arccos this results in

1

d
@1at =2 [ 000 S arecos)

cosao

cos(marccos t) dr

1-1¢2

where y(t) = x(arccos t). In higher dimension one has to use the Funk-Hecke
theorem to get the equation

1
R =2 [ 00~ 20400 22 (arccos oC 001 - 21T e
" CA(D) m AN o e :
Making use of ad = dd dx together with the cosine law the substitution
da  dx da
s = y(t) gives

x(x0)

(5)«/1 — 72(s) cos(m arccos j(s))
3) Rf)ulh) = 2 f fuls) 2 d
) N I/t

for dimension 2 and

x(xo)

218"2| j ez ]g(s)311 - 7s)
4 h) = —5—— m
“4) (R )im(h) C,‘;'(l) ) Sm()g" ™ (s /gz(s) — g2(h)

CAHON1 — 7] T ds

for higher dimension, where the function j is the inverse of y.
To prove our assertion i) we now have to consider the kernel of the integral
equations (3) (4). It is immediate from the L’'Hospital law that

; 2(0y _ 2
i OX@)sing /PO —gB) _ . ghx
a0 /g% (x(®)) — g*(h)  a—0 g(h)x a0 % /g*(x) — g*(h)
Substituting x() for s and multiplying the two last limit we obtain, that

g SO/ =76 _ . gx@)sina _Hm[ gl ]’

= /gs) — g*(h) =0 /B2(X(@) — g(h)  «—o0 | 9%
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where the x = x(a) shorthand was used. This limit is not zero nor infinite because
the function x(a) has real minimum at « = 0 (x(0) = h). Therefore the kernels of

n—3
our integral equations are of the form K(s, h)[g(s) — g*(h)] % P(j(s)), where

g1 — 7*x)

K(x,h) = C (x)[ ]¥ K(h, h) = Cg(h) lim I:g—(h)—:l";z % Oand
W= T — gty | T T I T s

P is a polynomial (Tschebyscheff or Gegenbauer) that satisfies P(ji(h)) =
P(1) £ 0.

Since f € L(.#) there must be a k > 0 that f € L2(.#) and so we only have to
prove that f;,(s) = 0if 1/k > s > 1/mfrom the fact that (Rf),,(h) = Ofor h > 1/m.
This is true because the kernels of our integral transformations satisfy the
conditions of B Theorem of Quinto’s paper [12].

The theorem below is the corresponding result for the boomerang transform (it
could also be formulated for the dual Radon transform). We only indicate its
proof since it is so similar to the previous one.

THEOREM 3.2. Let # be arotational manifold, f € C*(.#) and Bf (w, p) = 0 for
0<p=<A. Then f(w,p) =0 for 0 < p < A too.

PrOOF. Let (@, x) be the geodesic coordinate of X and (w, h) be the geodesic
coordinate of H so that the hyperplane &(w, h) passing through the point X (See
Figure 1).

First let the dimension n = 2 and S* be parameterized with the angle a. Then as
Figure 1 shows H is parameterized on [& — 7/2,& + n/2], where & denotes the
angle of @. We get

n/2
d
©) B (&) = J fa + 6 ha) S da,
-=n/2
where f(x) comes from the sine law.
For higher dimension the situation can be obtained by rotating Figure
1 around OX. Since the surface measure of the unit sphere in Ty.# agree with that

in Ty # we have

d
6) Bf (@, x) = f f(w, h(arccos{w, ®))) —&—g-(arccos {w,®))dw.
3.0
On substituting the same expansions here as in the previous proof we obtain for
dimension 2 that
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n/2

B = [ fulha) - exptima)

-=n/2
Taking the change of variable a = arccos  this gives

1

(Bf Jnlx) = 2 j f...(y(t))%g(arccos t)&s""T“;"%ﬂdt,
o

where y(t) = h(arccos t). For higher dimension the Funk-Hecke theorem implies

1
(Bo) =T [ im0 S tarccost ot — 1
(1]
Using % = —g—g% with the sine law and taking s = y(t) these lead to
d(s)\/1 — 7*(s) cos(m arccos y(s))
M (Bf Im(x) = jfm( )
" JEO -0 J1- 70

for dimension 2 and to

n—2 ~2 n—
® (Bl =t f i )%T——:‘)C*(y(s»[l T ds

for higher dimension, where the function j is the inverse of y.
One can conclude the proof here on the same way as we did in the previous one.

4. Spaces of constant curvature.

In this section we continue our considerations on the most important class of the
rotational manifolds namely on the class of spaces of constant curvature. We
make more precise the above results by using the projector function and then give
inversion formulas. All the results below are proved in [8,9] using some
specialties of the spaces. Now we present these in a unified and simplified form
which shows more clearly the points of the proofs and theorems. We denote by H"
the n-dimensional hyperbolic space and by P" the open half sphere. These and R"
are the spaces of constant curvature with size functions shr, sinr and r and with
projector functions thr, tgr and r. In the following .#" will denote one of these
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three spaces, g will be its size function, u will be its projector and j will be the
inverse of the projector function p.

THEOREM 4.1. If f € L*(.#"), then the Radon transform is

o () Y (.80 + 1)
R (@,h) = j / (‘”’“(<w,os>>) o(h) do

s:lﬁ. cosao(h)
and the boomerang transform is

(1 + ko, @) (x) "

dw.
9x) @

Bf (@, x) = j S o, j(w, @) p(x))
S50
ProoF. To obtain these formulas from (2) and (6)we only have to calculate the
functions x and d, respectively h and B, if the point H, respectively X, is fixed (See
Figure 1).
Since the projector function u makes geodesic correspondence between the
spaces .#" and R", the functions x and h comes easily from the definition of u to be

h
x(ot) = ( Ms?x) and h(x) = fi(u(x)cos®). Then one can immediately get the
functions d and f from x and h by the corresponding sine law.

The following propositions come easily from (3, 4, 7, 8) by using the functions
x and h determined above. For the sake of simplicity we denote the geodesic
injectivity radius by L.

PROPOSITION 4.2. i) If fe L*(M?) then

L
2 cos(m arccos(u(h)/(q)))
9 R m h = T m d
©) RO = 53 J WO e

ii) If f e LA(#™) then

sy ulh)\ RONER
(10) RN)nlh) = s jf,,.( )c‘( ”(q))g 2“”[‘"%]

PROPOSITION 4.3. i) If fe [*(M#?) then

cos(m arccos(u(q)/u(x)))

2
(11) B n(x) =~ 6[ Jnl@) 7= Q) )
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ii) If f e L*(.#™) then

s” 2 2 13
(12) (B mlx) = CL(l) (' ) j funta >C*(ﬁ§q;)[1 ——,’123] 2

For the following technical lemmas the function u is only needed to be
increasing. We shall use them only for the projector functions. The proofs are
simple substitutions in the analogous formulas of [1] and [2].

LEMMA 4.4. If meZ then

qCOS(m arccos(u(h)/iq))  ch(marcch(u(hyu®) wh) , =

S . Jewrn -1 Mm 2

LEMMA 4.5. If meZ,n > 2 then

RUE U ol o ﬁ@)[“z(h) _ ]
M [u(t) u(q)] ‘j C"'(u(t) 20 !

ci (M)[l _ uZ(h)]"? pth) d
"\ mg) TGN T (O

i Tm+n =2 1
M =2’ [I"(m+1)l"(,l):| n—1)

where

The two theorems below state our first inversion formulas in the sense of the
spherical harmonic expansions. The proof for the boomerang transform is very
similar to that for the Radon transform so we leave it to the reader.

THEOREM 4.6. i) If f € C(M?) then

ch(m arcch(u(h)/u(t)))
g(h)/ W (h)/p(0) — 1

(13) Jult) = —= f (Rf )m(h)

ii) If n> 2, fe C2(M") then

—%6264...6,,_2F(t) if n even

0 5365 ,, 2F(t) !f n odd

I'(m + 1)I'(4)

(14) fum(®) = (=177 2n"2I(m + n — 2)

b
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2
where 6, = dz + kk? (keN) and

ﬂ(h))[ L) 1]T pg(h)

F&)=9¢"" 2(t)'[(Rf)z ...(h)C‘( 10 )| 20 7 1(h)

Proor. Writing the formulas of Proposition 4.2 into these formulas, then
changing the order of the integrations the lemmas lead to the integral equation

F@)=C jﬁ.m(q)g"‘z(q — t)dg,

where C is a suitable constant. One can easily prove from this the theorem by
making use of the identity

2
arr?
THEOREM 4.7. i) If f e C(M?) then

"(q — 1) = —xk*g"q — t) + k(k — 1)g* " *(q — 1).

(m arccos (u(x)/u(t)
15) () = < J (B In(x) d
( Inlt) 90T — )

ii) If n> 2, fe C*(#") then

d
I'(m + 1)I(A) o 0,04...0,_2F(t) if n even
(16)  fi,m(®) = (®) ,
2 m+ n—2)° {5 5:85...8, ,F() if n odd
where
o [ W0 \[ 20 T2 16
F(t) - g z(t) !(Bf)l,m(x)cfn<#(x))[”2(x) - 1] ”n—Z(x) dx

Our last theorem states the closed inversion formulas that are analogous for all
the spaces of constant curvature. The proof is based on some properties of the
Gegenbauer polynomials used for the above inversion formulas. In fact it turns
out that the above formulas are the spherical expansions of the closed inversion
formulas stated below.

THEOREM 4.8. Let n = 2 and f € CX(M"). If n is odd, then
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ws1 1o gk
@)= (0T 25,656, [R,[R, (@.h) %] (@ 09" ‘(t)].

If n is even, the

nl-n .
@0 =132 S0 5, [R, [x <Rf(w, iy L) >] @10 '(:)],

w (b
where # () is the distribution

L
1 1
H{fHw,h) = PE0) :[f(w, ")md’-

PRrOOF. As a consequence of the definition of the boomerang transform the
spherical harmonic expansion of the boomerang transform is in fact the same as
that of the dual Radon transform. Thus one can certainly use the previous
theorems to prove this one.

Let us start with the case of odd dimension, when Theorem 4.6 says

L n—3
finlt) = C2 [g“(t) I(Rf)z.m(h)C.‘.. (M)[“z(”) 1] z ik (k) dh],

OAEC W (k)
L
where C = 5 n"I;i?(r: i)l;(i) %) and 2 = 6,05...9,-,. Breaking the integral I
L L t !
into two parts as j= J— Iwe obtain
t 0 V]
n— : h
(*) Sim®) =1+ C(— 1)_2_19[9"'2(0 '[ (Rf ). m(W)C}, (Z%)
(V]
n—3
)T Ak ]
[1 ;ﬁ(t)] i
where

L n-3
- 2 u(h)>[u2(h) _ ]T Ah)g(h)
I=C2 ! (Rf)z,m(h)C,..( 20 )| 20 1 ) dh
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Writing the formula (10) into this formula then changing the order of the integrals
one gets that I is proportional to

2a [ u(h))[ w3 (h) ]T°
.[ funle™ @) f ¢ (#(4) 1*(q)

wW\[ w2ty "7 (k) dh
@[c:, (W)[ w0 1] 9 “(”] () Y

Substituting x = u(h)/u(q) into the inner integral , J, one obtains that

- n—3
_ 2 i et [ l(u(q) )[#’(q) - I-z et
J 24q) ) Cax)[1 —x ] 2|C o )| 20~ 1] g*Hx' "dx,

because the integrand is even function. This integral can be calculated by using

n-3
two facts about the Gegenbauer polynomial. First, CA(x)[1 — x*] 2 is poly-
nomial of (m + n — 3) degree. Second, the system {C2 (x)} is orthogonal on the
n—-3
interval [—1,1] with the weight function [1 — xz] 2 [13]. Therefore it is
2 n—-3
enough to prove that the polynomial P(x) = 9 [C" ( Z((?)) ) [ 2((‘:)) 1] ’

g**(t) | is homogeneous of degree n — 1 because then P(x)x! " would also be

a polynomial and so by the above facts J =0 and I =0 would be proved.
Obviously the coefficient of x* is zero for 0 < k < n — 2 if and only if

8103...0,-2[g" ()] = 0.
This can be easily prove by induction establishing that
a(g"®) = —ktk — 1)g*"%(t) and (g (e)) = kik — 1)g* ().
Since I = 0, the equation (*) gives just the spherical expansion of the stated closed
inversion formula.
Let us turn to the case of even dimension. In this case A is natural number and

—‘% 0304...0,—,. Then Theorem 4.6 says

L
_ ] s \[ #0 _ 7'2 ptoehy
(%) finld) = —c.@[g" ) j (Rf),.m(h)c*( M)[ 0 1] ypETL ]

the differential operator 2 is

To avoid the straightforward but very tedious calculations and explanations we
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shall simply refer to the numbers of the formulas of [3] and [4] in the following.
Just as in the case of even dimension it is easy to see now that

- )\ Ahyg(h)
0= cz»[ 20 f (R ) mlW)ER s 2 ‘(#(t)) 0 d"]

because E2 , ,;_; is polynomial of degree (m + n — 3) [4]. Take this integral as
L
j + J‘and write the equations (A.14) and (A.4) of [4] into these. Adding the result

of this to the equation (**) one obtains that

L
_ . p\[ 120 T2 atgt)
fum®) = —c.@[g z(t)U(Rf): m(h)zol( (t))[uzm - l] =i

t

( N[ w20 T aheh)
+!(Rf)""(h)(_l)lm'<m>[l B 2«)] W d"]]'

Now the equations (24) and (25) of [3] give

L
finlt) = = %(‘ Yo [g"'z(t) f (R ) ()1, (M) LU dh],
0

ue)) p*=(h)

where by the definition of [3(22)]
1
n—3
L) = J Chle)(1 —x?) 2 (y — x)~'dx.
-1

Substituting x = u(q)/u(t), letting u(— gq) = — u(q) and then changing the order of
the integration results in

e el - 58]
firt === 2|00 | g )1 =

L[ ROual®) a0(H) ]
7@ ) W~ a) 1 dhd
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This formula is just the spherical expansion of the closed inversion formula that
completes the proof.
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