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0. Introduction.

Let E;, i = 1,2,3,4, be Banach spaces and fix the bounded linear operators
Ae L(E,E,) and Be L(E,, E,). The wedge product of 4 and B is the bounded
linear composition operator A A B:I(E,, E;) - L(E, E,) defined through

XHBXA, Xe L:(Ez, E3).

The compactness of the wedge operator was considered by K. Vala [V]. He
showed, given non-zero operators A and B, that the wedge product A A B is
a compact operator on L(E,, E;) if and only if 4 and B are compact operators.
The above simple multiplication operator has been studied in several contexts, in
particular with a view to determining how the properties of A and B are reflected
in the properties of A A B, see [BMSW, 0.6, 0.7 and C*.1] for some aspects. In
addition, various spectral properties of the so called elementary operators (i.e.
finite sums of wedge operators) have been considered, initially by Lumer and
Rosenblum in the 50’s and continued in particular by Fialkow and his collab-
orators in a series of papers, cf. [F] and [CF] for additional references.

This paper addresses a very natural problem: when is the operator A A B
weakly compact? That is, we consider the relative compactness of the image
{BXA|X e L(E,, E3), | X|| £ 1} of the unit ball in the weak topology of L(E, E,)
as a Banach space. The only known explicit result in this direction is contained in
[AW], where the Hilbert space case is settled: 4 A Bis weakly compact on L(I?) if
and only if 4 or B are compact operators on [2. There is also an extension in [M]
to the multiplication operator x — bxa on C*-algebras. Moreover, Diestel and
Faires [DF] considered the closely related problem of the stability of weak
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compactness under the e-tensor product on spaces with the Dunford-Pettis
property. Here we study the Banach algebra case L(E), where E is an arbitrary
Banach space over the real or complex field, although our methods are also
applicable to the general case. It appears that the results strongly depend on the
underlying Banach space E.

In section 2 we develop the required tools and under some restrictions on
E general characterizations of the weak compactness of the wedge operator are
given. Sufficient conditions for weak compactness are proved on arbitrary
Banach spaces. In section 3 the criteria are applied and precise conditions are
obtained for several concrete Banach spaces. These examples testify to the
diversity of the requirements on 4 and B in order that the wedge product 4 A B
be weakly compact. These conditions are influenced by several properties of the
underlying Banach space E, such as reflexivity, the Radon-Nikodym property,
the approximation property, the Dunford-Pettis property, as well as the struc-
ture of the closed ideals of L(E).

We are grateful to G. Racher for drawing our attention to [DF].

1. Preliminaries.

We will use standard Banach space notation as of [LT2]. Recall here that
Bg = {x€eE:|x| £ 1} denotes the closed unit ball of the Banach space E. We
identify E with its canonical image in E” whenever there is no possibility of
confusion. If E and F are Banach spaces, and x’'€ E, ye F, then x’ ® y stands for
the operator E — F given by x — {x',x>y.

Apart from L(E, F), the bounded linear operators, and K(E, F), the compact
operators E — F, we will use the components of some other ideals of operators
between the Banach spaces E and F. The operator S : E — F is said to be weakly
compact, and denoted Se W(E, F), if SBy is relatively compact in the weak
topology of F. The ideal of the strictly singular operators consists of the operators
R: E — F such that the restriction R|y, fails to be an isomorphism M — RM for
any closed infinite-dimensional subspace M < E.

We briefly recollect some relevant Banach space properties. A Banach space
E is said to possess the Radon-Nikodym property (abbreviated RNP), if for any
probability space (2, Z, 1) and for any u-continuous vector measure m: X — E
having finite variation there is a Bochner integrable function f: Q — E such that

m(A) = f fdy, AeZ.

A

Separable dual spaces and reflexive spaces are among the spaces with the RNP
while I!(0, 1) or spaces containing a copy of c, fail to have this property. The
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monograph [DU] is a convenient reference. A Banach space E has the approxi-
mation property (the AP), if for all compact subsets D < E and all ¢ > O there is
a finite-dimensional operator R : E — E satisfying

sup |x — Rx|| <e.
xeD
We refer to [LT2, 1.e] for a comprehensive discussion of this property. A Banach
space E has the Dunford-Pettis property if any weakly compact operator
S: E — F maps weakly compact sets B  E to norm compact sets SB.
The projective tensor product E ®,F of the Banach spaces E and F is the
completion of E®F with respect to the =n-norm, by definition

n

m(u) = inf { i Ixcl Iyl :u= 3 x, ® yi}. The trace tr(v) of an element
k=1

aQ a0
ve E'®,E isintroduced by tr(v) = ¥, xj(x,), wherev = ¥ x; ®x, is any tensor
k=1 k=1

representation of v satisfying Z Ixill Ixill < o0.
k=1

2. General results.

We commence by recording an elementary general observation that delimits our
task. The proof is included for completeness.

ProPOSITION 2.1. Let E be a Banach space and let A, Be L(E) be non-zero
operators. Then A€ W(E) and Be W(E) whenever A A Be W(L(E)).

Proor. If X' e E’ and ze€ E, then
(AABx ®z=AXx®B:.

Observe that each pair of elements u' e E' and w” e E” induces an evaluation
functional é, ,,jon L(E) through

By RY = CR"W',u'y, ReL(E).

The set {A'x'®Bz|x'€ By, z€ B} is relatively weakly compact in L(E) by as-
sumption. It is then easily seen from the Eberlein-Smulian theorem that
{Bz|ze Bg} and A’Bg., are relatively weakly compact in E and E', respectively, by
evaluating with the functionals é,. ,, for w € E’ and é, , for u” € E”. In the first
case pick x' € Bz and u € E with {A'x’,u) % 0 and in the second case ensure that
(W', Bz) % 0. Hence A is a weakly compact operator according to Gantmacher’s
theorem [DS, V1.4.8].

The intractable nature of I(E) constitutes an obvious obstacle in connection
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with the weak compactness of composition operators on L(E). However, it is
possible to approach the problem in an important class of spaces via explicit
representations of K(E) and K(E)". We first state an efficient and well-known
fundamental criterion for the weak compactness of operators.

LeEMMA 2.2. [DS, V1.4.2] Let E and F be Banach spaces. A linear operator
S € L(E, F) is weakly compact if and only if S"E" < F.

We require some details of the duality theory of K(E) given in [FS]. The first
general results in this direction are due to Grothendieck. Assume E is a Banach
space such that E' or E” has the RNP. Consider the linear operator
V:E'®.E" — K(E),

(Vi RY = tr(R"u),

whenever ue E'®,E" and ReK(E). Then V is a metric surjection, that is
VBg-g e+ = By, and K(E) ~ E'®.E"/Ker V isometrically. Moreover, if E’
has the AP then Vis injective. For a proof of these claims see [FS, Theorem 1]. In
particular, if E' or E” has the RNP, then K(E)" is identified with the w*-closure of
{R"|ReK(E)} in L(E"). Here the w*-topology is taken with respect to the
well-known duality (E'® ,E") = L(E"), where

{R,u) = tr(Ru)

for ue E'® ,E” and R € L(E"). Under this identification the canonical embedding

K(E) —» K(E)"is the map S+ S”. Note also that K(E)” = L(E") whenever E' hasin
addition the AP and that in general this equality fails to hold if E’ fails the AP. For
these claims see [FS, 1.1 and Remark 3] and [GS, 1.1]. Observe that the
argumentsin [GS, 1.1 and 1.2] are independent of the scalar field despite the fact
that the paper in question only considers real Banach spaces. Similar representa-
tions are valid for K(E, F), when either E” or F’ has the RNP.

The following theorem establishes a basic general characterization of the weak
compactness of the wedge product (or of more general composition operators) on
the above class of Banach spaces for which the duality theory of K(E) is
satisfactory. The basic idea to use bi-duality in this problem is found for instance
in[AW], where it is applied in a slightly disguised manner to the C*-algebra L(/).
The theorem reduces the question to the particular range-inclusion problems
(2.1) and (2.4) below. In section 3 we determine the exact conditions on A and
B that result out of this characterization on several concrete Banach spaces.
Range-inclusion questions of analogous type were studied in [FoS] and [AF] for
elementary operators on L(I?).

THEOREM 2.3. Assume E is a Banach space such that E' or E" has the Ra-
don-Nikodym property and E' has the AP. Let A, B € L(E) be non-zero operators.
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Then the following conditions are equivalent
(i) A A B:L(E) = L(E) is weakly compact,
(i) 4,Be W(E) and

@2.1) {B"XA"| X e LIE")} < K(E"),
(iii) {B"XA"|X e L(E")} = {R"|ReK(E)}.

PrOOF. Let 4 A Bl € L(K(E)) be the restriction of A A B to K(E). We start
by verifying that its second adjoint satisfies the equality
(2.2) (A A Blg)" = A" A B":I(E") - L(E")

under these conditons on E. Let ¢ : L(E) - L(E") be the isometric embedding
¢(S) = §”, Se L(E). It is enough for (2.2) to establish that 4” A B” is w*-w*
continuous on L(E"), since A" A B"|4xE = ¢(A A Blkg) and since ¢K(E) is
invariant under A" A B”. Indeed, this allows one to identify
(4 A Blgg)” = A” A B” on account of the w*-density of ¢K(E) in L(E"). On the
other hand, the continuity of 4" A B":(L(E"), w*) — (L(E"), w*) is a consequence
of the duality

(2.3) A" A B = (B®,A").

Here B'®,A"e€ L(E'®,E") stands for the bounded linear extension of
(B®ANX'®Y"' =Bx®A"y", X®y'eE'QE". In order to verify (2.3), let
x'®y" € E'®.E" be a simple tensor. One obtains for all X € I(E") that

(A" A BYX,X ® ) = (B'XA',X ® y') = BXA'Y, X
= (XA"y",B'x"),
while also
(B@AYVX, X ® Y'Y = (X, BX ® AY"> = (XA"Y', BX.

Next we proceed to establish the equivalence of the conditions. If
A A Be W(L(E)), then A, B e W(E) according to Proposition 2.1. Clearly also the
restriction A A Bk € L(K(E)) is weakly compact. From Lemma 2.2 and (2.2)
one deduces that

(A" A B){E") = (A A Blg)' L(E") = {R"| Re K(E)} = K(E").

Assume that condition ii) is satisfied. If X e L(E"), then B"X A" e K(E") by
assumption. Observe that B’X A" e {R"|Re K(E)} if B'’XA"E < E and if B"X A"
is w* continuous on E”. Indeed, this enables us to identify B"XA"” = (V|g)’,
where V:E" - E is the astriction of the compact operator B"XA4". Clearly
B"XA"E < E according to Lemma 2.2 and the weak compactness of B. Let
W= {x"eE":|[{xX",x)| <¢k=1,...,n} be a basic w*-neighborhood of 0in E”
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for given x, € E' and ¢ > 0. Then
(B'XA") 'W = {x"eE":Kx",A"X'B"x )| < e,k = 1,...,n}

isa w*-neighborhood of O since A"'E"" <= E’ on account of the weak compactness
of A’. This entails condition iii).

If condition iii) is satisfied, then Lemma 2.2 and (2.2) imply that the restriction
A A Blk is weakly compact K(E) - K(E). Gantmacher’s theorem [DS, V1.4.8]
yields that its second adjoint A” A B” € L(L(E")) is also weakly compact. Hence
(A A BBpg is a relatively weakly compact subset of L(E), since
¢(A A B)Bpg) < (A" A B")Bygy and since (A” A B")Bpg = ¢K(E).

The conditions of the previous theorem are particularly simple on reflexive
Banach spaces.

COROLLARY 2.4. Let E be a reflexive Banach space with the AP and let
A, Be L(E) be non-zero operators. Then the product A A B is weakly compact on

L(E) if and only if
2.4) (BXA|X e L(E)} < K(E).

Proor. Reflexive spaces have the RNP [DU, p. 76] and a reflexive Banach
space E has the AP if and only if E’ also has the AP, cf. [LT2, 1.e.7].

REMARKS 2.5. i) Inasimilar manner one may prove a characterization for the
weak compactness of A A B:L(E,,E;)— L(E,,E,), if AeL(E,,E,),
Be I(E;, E,) are non-zero operators. In order to utilize the duality theory of
[FS], one requires the following assumptions on the spaces E;, i = 1,2,3,4:

- E, or Ej has the RNP, and E; or E} has the RNP,
- E, or E} has the AP.

Then A A Be W(L(E,, E5), L(E{,E,))ifand only if Ae W(E,E,), Be W(E,, E,)
and

(A" A B")L(E;,E5) « K(E{,Ey).

The general case reveals phenomena that are not clear in the algebra setting.
For instance, fix 1 <p <r < oo. Then A A Be W(L(I', "), L(I', I’)) whenever
Ae L(I") and Be L(IP). This is immediate from the above criteria and the fact that
any operator X :I" — I? is compact [LT2, 2.c.3]. Alternatively, one may appeal to
the fact that L(I", I?) is reflexive when 1 < p < r < oo, cf. [FS, Corollary 1.4].

ii) The proof of 2.3 yields the following criterion for the weak compactness of
A A Bl Let E' or E” have the RNP and let A4, B e L(E) be non-zero operators.
Then A A Be W(K(E)) if and only if 4, Be W(E) and (4" A B")K(E)" = K(E").
Analogous criteria may also be stated for the weak compactness of certain
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induced operators (for instance, B'®,A") between n- or e-tensor products of
Banach spaces, see also [DF].

iii) Let I(E) be the components of a normed operator ideal I in the sense of
Pietsch [P]. Itis a general problem, which will not be pursued here, to determine
when the induced operator 4 A B:I(E) — I(E) is weakly compact.

The condition of RNP in Theorem 2.3 excludes concrete spaces such as C(0, 1)
and L[}(0,1), see [DU, p. 219]. Moreover, there exist subspaces M c I?,
2 < p < o, failing the AP, such that K(M)" § L(M), see [FS, Remark 3]. Our
next aim is to derive sufficient conditions for the weak compactness of the wedge
product on arbitrary Banach spaces.

A useful representation of the compact operators was considered by Kalton
[K]. Let E be a Banach space and set K = Bg. x Bg., which is a compact
Hausdorff space when B and Bg.- are equipped with their respective w*-topolo-
gies. Let y:L(E)—I®(K) be the linear isometric embedding defined by
1(R)Y',x") = (y',R"x") for (¥, x") € K and R € L(E). The “if” part of the following
useful observation is already contained in [K, Lemma 1], whereas the converse is
crucial for our purpose.

LEMMA 2.6. Let E be a Banach space and let Rel(E). Then
1(R)e C((K,w* x w*)) if and only if R € K(E).

PrOOF. There remains to prove the “only if” part. Assume that x(R) is
w* x w*-continuous on K and let L be the compact Hausdorff space (Bg-, w*).
Consider for any y eBg the continuous functions f,:L —K, f,(x") = (¥,
R"x"),x"€Bg... Clearly {f, |y €Bg} is a bounded subset of C(L); indeed
Ifyllo < |R]l for all y'e Bg.. We claim that {f, |y € Bg '} is an equicontinuous
family in C(L). Assume this is not the case. According to the linearity of R it is
easily seen that the equicontinuity fails at 0. Let % be some neighborhood basis
for the relative w*-topology at 0 in Bg... Consequently there is ¢ > 0 such that for
any neighborhood U e % there are elements x;, € U and y, € By satisfying

Ifyoxo)l = 1<y, R"x )| > &

Observe that (x;)y.q is a net (under reverse inclusion on %) which converges w*
to 0. Moreover, the net (yy)yes has a w*-convergent subnet (y),., due to the
compactness of (Bg,w*). Let y, ———) as aeA It follows that

lim {y,,R"x, » = {y’,0) = 0 because of the joint w* x w*-continuity of x(R).
aed

Clearly this contradicts the fact that |[{y,, R"x, Y| > ¢ for all x€ A.
Consequently {f, |y’ € Bg} is a precompact subset of C(L) according to the
Ascoli-Arzela theorem. Let u > 0 be arbitrary. Then there is a finite set
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{V1s..-» ¥} © Bg such that for any y'e Bg. one may pick ke {l,...,n} with the
property that

IRY — Ry, = sup KRY —Ry,x"> = sup Ky =y R'x"|
x "eBg " x "eBE "
= ”./;n - f;v;‘"oo < H.

This states that R': E' — E' is a compact operator and hence so is R.

The previous representation yields a fundamental criterion for weak conver-
gence in K(E).

LemMA 2.7. (See [K, Theorem 1].) Let E be a Banach space and let (K,,) = K(E)
be abounded sequence. ThenK,, —— K asn — oo, for some K € K(E), if and only if
lim {y, K} x") = {y,K"x") pointwise for all (y', x")€ Bg. X Bg-.

n-— oo

The global strategy of our argument is to reduce the general case to the case of
reflexive spaces via suitable factorizations. Hence we commence by establishing
the requisite reflexive version, where the assumptions are tailored to the require-
ments of the reduction.

PROPOSITION 2.8. Assume that E, G and H are Banach spaces with G and
H reflexive. Let A € L{G, E) and Be L(E, H). Then A A Be W(L(E), L(G, H)) when-
ever Ae K(G,E) or Be K(E, H).

ProoF. The strategy is based on the criterion of Lemma 2.7. On account of the
Eberlein-Smulian theorem and the fact that K(G, H) is a closed subspace of
L(G, H)it is enough to find for each sequence (X,) = By, some subsequence (still
denoted by (X,)) such that the sequence of compact operators (BX, A) converges
weakly in K(G, H) to a compact operator R: G — H as n — oo. General results are
available which allow one to deduce the existence of w-Cauchy subsequences of
(BX, A)nen, see [FS, 1.3]. However, we are required to make this construction
more explicit in order to see where the properties of A or Benter. We treat the two
possible cases separately, since the respective choices are different.

Case 1. AeK(G,E). The compactness of BX, A4, neN, implies that M =
9 Im (BX,A) is a separable subspace of H. However, in case H is already
separable we put M = H and then the following construction is simpler. Let
U,: G = M be the astriction of BX,A,ne N,and I : M — H the inclusion. Observe
that according to elementary duality M’ ~ H'/M* is separable and reflexive,
I' = Q is the quotient map H' — H'/M* while A'X,B’ = U,Q, neN. The separ-
ability of H’/M* provides us with a linearly independent sequence (z;, + M* )en
such that ||z;|| < 2, ke N, and with the corresponding “rational” linear hull L of
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{zi + M*|keN) norm-dense in H'/M*. Clearly {U,(z; + M*)|neN,
keN} < 2||B|| A’ Bg is arelatively compact subset of G’ due to the compactness of
A'. Diagonalization furnishes us with a subsequence, still denoted by (U}), with
the property that

lim U,(z, + M*) = w|, for each keN,

n— o
in the norm of G. Define the linear mapping R:L - G through
R(Y ri(z; + M*)) = Y r;w,. Observe that there is according to norm-density

i J -
a bounded linear extension R: H'/M* — G’ such that
lim U(x' + M*) = R(x' + M*) for all X' e H',

since | Ru|| < ||B| |lull foranyue L. Let R = RQ € L(H', G'). Then the norm-limit
lim A'X,B'x’ = Rx' for all x'e H’' and in particular

(2.5) lim (x',BX,Ay) = lim {A'X,B'x',y)> = (Rx',y)> = {(x',R'y)

pointwise for (x', y)e By x Bg.

We claim that the mapping (x',y)— (Rx,y> is w x w-continuous on
By x Bg. From the decomposition {R(x, — X'),y, — ¥) = {RX},y,) —
{Rx',y,> — {Rx,,y> + {Rx',y) it is easily seen that it suffices to verify continu-
ity at(0,0). Let ((x,, ¥x))eca bE @ netin By, x Bgsuch thatx, —— 0,y, —— 0Oas
o€ Aand let ¢ > 0. According to the compactness of A’ there is a finite set K = G’
satisfying

(A'X.,Bx,|neN,aeA} < K + —g—BG,.

- &
Observe that the norm-limit Rx; e K + 3 Bg- so that for each « we may choose

k,e K with |Rx, — k,|| £ -g— Since y, —— 0 as a€ A there is oy € A with the

property that

£
sup |<k9yu>| < E
keK
for all @ = a,. This yields the estimate
[<RXgs Yadl S IRxG — ko || 1Yall + [<kas yadl < &

whenever a = a,.
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Consequently Lemmas 2.6 and 2.7 together with (2.5) entail that
BX,A —— R'e K(G, H) in L(G, H) as n — co. We use implicitly the elementary
fact that the w- and the w*-topologies coincide on the unit balls of reflexive
spaces.

Case 2. Be K(E, G). We only outline the construction of the limit operator,
since the rest of the argument is analogous to that of Case 1. From the compact-

ness of B’ one obtains that N = | ) Im(4'X, B’) is a separable subspace of G'.

However, if G is itself separable we put N = G'. Elementary duality gives
N’'~G/*N, which is separable and reflexive. Let Q be the quotient map
G - G/*N. There is for every ne N a compact operator U,: G/*N — H such that
U,Q = BX,A while Q'U;,, = A’X, B/, where Q' is the inclusion N — G’ and U, is
the astriction H' — N of A’X, B, ne N. Pick some linearly independent sequence
(xx + *N) < Bgun, Ixll < 2 for ke N, with the corresponding “rational” linear
hull norm-dense in the separable space G/ N. According to the compactness of
B one obtains that {U,(x, + *N)|keN,neN} < 2| 4| B(Bg) s a relatively com-
pact set. Diagonalization and density give rise to a subsequence, still denoted by
(U), and a bounded linear operator S:G/*N — H satisfying

lim U,(x + *N) = §(x + *N), xeG. Upon setting S = SQ one secures that

n—o

lim BX,Ax = Sx in the norm for all x € G. One establishes the w x w-continuity

of the mapping (x', y)— {x’,Sy) on By. x Bgfrom the compactness of Bjust asin
Case 1. As before this means that BX,4 —— S, as n — 00, in L(G, H) and we are
done.

These preparations pave the way for announced result.

THEOREM 2.9. Let E be an arbitrary Banach space and let A, Be L(E). Then
A A Be W(L(E)) whenever (A € K(E) and Be W(E)) or (A € W(E) and B € K(E)).

Proor. The Davis-Figiel-Johnson-Pelczynski factorization theorem [DU,
VIIL4.8] states that there exists relative to the weakly compact operator A a re-
flexive space G as well as operators Ay € L(E, G), I € L(G, E) satisfying A = I A,.
Moreover, for any & > 0 there is n(¢) > 0 such that IBg < n(e)ABg + eBg. In
particular, this means that I is a compact operator whenever A is compact. We
refer to [N, 2.1] for a discussion of the DFJP-factorization from this point of
view. We factorize B by applying a “predual” factorization scheme due to
Gonzales and Onieva. According to [GO, Proposition 1.1.] there is for each
Be W(E) areflexive space H as well as Q € L(E, H), B, € L(H, E) with the property
that B = B,Q. Moreover, we may ensure that B' = Q'By is the DFJP-factoriz-
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ation of B’ through H'. In particular, if Be K(E) then Q' and also Q are compact
operators by the above observation. Now the claim follows from the factoriz-
ation

A A B=(Ag A BolI A Q)
and Proposition 2.8.

Note that a similar sufficiency result can be established in the case of several
spaces by making the required notational changes in the arguments of 2.8 and
2.9. The condition of the previous theorem is exact on the Hilbert space I> [AW,
2.3] as well on the non-reflexive James space J (see Proposition 3.8 below). We
proceed to establish that the maximal condition of Proposition 2.1 is the correct
one on several classical Banach spaces with the Dunford-Pettis property. There
is thus a complete analogue of the compactness result of Vala in these cases. This
was stated as a problem in the first version of the paper. It was solved by G.
Racher who applied [ DF, Theorem 4] and duality theory in his proof. However,
we prefer to indicate a direct proof based on the criterion of Remark 2.5.1.

THEOREM 2.10. Suppose that E is a Banach space such that E" has the Dun-
ford-Pettis property and E' has the approximation property. Then A A Be W(L(E))
whenever A, Be W(E).

ProoF. Factorize the weakly compact operators 4 and B through reflexive
spaces G and H as A= AA,, B= BB, with Aqe {E,G),A,€eL(G,E),
Boe L(E,H) and B, € L(H,E) [DU, VIIL.4.8]. It suffices to verify that

(2.6) {BySAJ:SeL(G,E")} < K(E", H)

in order to see that A, A Boe W(L(G, E), L(E, H)), in view of Remark 2.5.i. One
requires the fact that the reflexive spaces G and H' have the Radon-Nikodym
property [DU, I11.2.13] and that E’ has the approximation property by assump-
tion. Since Bj e W(E", H) and since any S € L(G, E") is weakly compact it follows
from the Dunford-Pettis property of E” that By S is compact and hence (2.6)
holds. Moreover, {SA,:S€By g} © ¢ Byg,g With ¢ = ||4,]| and thus

{BSA :Se BL(E)} = (ld A Bl){(AO A Bo)SA1 : SeBL(E)}
< c-(id A By)(4o A Bo)BL.p
is a relatively weakly compact subset of L(E).

We refer to [LT1, IL.5.b] for the definitions of the #*- and the ¥ *-spaces.
Recall that I}(0, 1) and C(0, 1) are among the #!-spaces while C(0, 1), I and
L*(0, 1) are examples of &£ *-spaces.
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COROLLARY 2.11. Suppose that E is a £*- or a £ ®-space and that A, Be L(E)
are non-zero operators. Then

A A Be W(L(E)) if and only if A, Be W(E).

PrOOF. It is known that E' is a #®-space if E is a #!-space and that F’ is
a P-space if F is a #®-space [LT1,I1.5.7]. Moreover, any .#*- or #®-space
has the approximation property [LT1,11.5.9] as well as the Dunford-Pettis
property [LT1,11.4.30 and I1.5.7]. The claim follows from Theorem 2.10 and 2.1.

3. Concrete examples.

In this section we determine the precise conditions on A, Be L(E) for some
concrete Banach spaces E in order that the wedge product A A B be a weakly
compact operator. The main purpose of these examples is to point out how these
conditions may vary within the limits allowed by Proposition 2.1 and Theorem
2.9. Most of the examples are drawn from the class of spaces where Theorem 2.3
provides an exact abstract characterization of weak compactness.

The subspaces of I are among the simplest Banach spaces from a structural
point of view. In the reflexive cases the result is similar to that of Akemann and
Wright [AW, 2.3] for L(I?). We commence by stating an operator theoretic
version of block basis techniques from Banach space theory in order to be able to
handle non-compact operators.

LEmMMA 3.1. Let E be a Banach space with a normalized Schauder basis (e,). If
R ¢ K(E), then there is a constant 6 > 0 such that for all ¢ > O there are block bases
(xx) and (y;) with respect to (e,) satisfying the following properties:
(i) lIxll = 1 and dist(Rx,,[Rx;:1 £ 1<k —1]) =4, keN,

() Y IRx -yl <e
k=1

Proor. See [T,1.2.]

PROPOSITION 3.2. Assume that M c I, 1 < p < 0, is a closed infinite-dimen-
sional subspace and that A, Be L(M). Then A A Be W(L(M)) if and only if
Ae K(M) or Be K(M).

Proor. In view of Proposition 2.8 one has 4 A Be W(L(M)) whenever
Ae K(M) or Be K(M). Towards the converse, according to Remark 2.5.ii the
restriction A A Blgy is weakly compact on K(M) if and only if

3.1 BX AeK(M) for all X eK(M)".

Here K(M)" = K(MY', the closure in L(M) with respect to the topology 7 of
uniform convergence on compact sets in M, [GS, 1.2]. Hence it suffices on
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account of (3.1) to exhibit, for any given A ¢ K(M) and B¢ K(M), an operator
X € K(M)" such that BX 4 ¢ K(M). It is well known that an operator R € L(M) is
compact if and only if

(3.2) inf {||QyR||: N = M subspace, dimN < oo} = 0.

Here Qy: M — M/N is the quotient map.
Consequently, if A ¢ K(M), then one finds inductively with the help of (3.2)
a sequence (x,) in By, with the properties ||x,|| = | and

(3.3) dist (Ax,, [Ax;:1 S 1<k — 1]) > 62

for some 6 > 0 and for all ke N. We may assume due to the reflexivity of M that
(xi) is weakly convergent in M. Passing to w, = X3,+1 — X2k, k€N, one ensures
that w, —— 0 and Aw, —— 0, as k — oo, while | Aw,|| > 36 from (3.3). Hence
standard applications of the Bessaga-Pelczynski selection principle
[LT2, 1.a.12], here considered for /7, yield blocks (z;) and (u,) with respect to the
standard coordinate basis in [? as well as a subsequence of (w;) (still denoted by
(wy) for simplicity) such that |z,|| = 1 and 36 < |lu|| < 2|/ 4|l for all ke N, while

e o) o)
Z we — zll < § and Z I Awe — well < 3.
k=1 k=1
Well-known perturbation results for Schauder bases (see [LT2, 1.a.9]) guarantee
that the sequences (w;) and (Aw,) are equivalent to the unit vector basis of /” and
moreover that their closed linear spans [w,] and [Aw, ] are complemented in M.
This means that there are constants ¢; > 0,i = 1, 2, 3, 4, such that

® 1/p ®© ) i/p
(3.4) 61( Y Mkl") Y A £ c2< Y I/M") ,
k=1 k=1 k=1
and
© 1/p © © 1/p
(3.5) Ca( Z Mklp> = Z AW C4< Z Mk'p>
k=1 k=1 k=1

for all (4;) € I?. Clearly (3.4) together with (3.5) express the fact that the restriction
Aly, N = [w,], is an isomorphism N — AN and that AN ~ [P. The assumption
that B¢ K(M) provides us similarly with a (complemented) copy R of I in M such
that the restriction B|g is an isomorphism R — BR. Let X, be an isomorphism
AN — R and let P: M — AN be a projection. Denote X = X, P € L(M). Clearly
BX A ¢ K(M) since the restriction BX A|y is an isomorphism.

It remains to verify that X e K(M)". Observe first the elementary fact that
K(M)" = K(M) is a closed 2-sided ideal of L(M). Here t denotes the topology of
uniform convergence on compact sets. Since AN ~ [P has the approximation
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property there is a bounded net (S,),., of finite-dimensional operators on AN
satisfying S, ——id 4y on AN as a € A. Clearly the net (S, P),. 4 converges in t to
P on M and consequently both P and X = X, P belong to K(M)".

The following simple proposition exhibits cases where actually all weakly
compact wedge operators A A B are compact. Recall that the Banach space
E has the Schur property if all weakly convergent sequences (x,) in E are
norm-convergent. The standard example is I' [DU, p. 105].

PROPOSITION 3.3. Let E be a Banach space such that W(E) = K(E). If A,
Be L(E)\{0}, then A A Be W(L(E)) if and only if Ae K(E) and Be K(E). The
equality W(E) = K(E) holds for instance if E or E’ has the Schur property or if
E < ¢q is a closed subspace.

Proor. The first statement is obvious from Proposition 2.1 and the known
compact case [ V]. The equality W(M) = K(M)lies somewhat deeper for subspa-
ces M < ¢y. Assume that R ¢ K(M). Lemma 3.1 provides us with a normalized
basic sequence (x,) in M such that (Rx,) is also a basic sequence, and with the
property that (x,) and (Rx,) are equivalent to blocks of the unit basis in c,.
Consequently R|,; is an isomorphism onto [Rx,] ~ ¢o, and one has R ¢ W(M).

We mention in passing that it follows from the proof of Proposition 3.2 that
K (M) coincides with the ideals consisting of the strictly singular and the strictly
cosingular operators whenever M < [P. It is of interest to compare this to the fact
that K(/?) is the unique proper closed ideal of L(I?) [P,5.1], since there exists
asubspace M < IP,2 < p < oo, failing the approximation property and satisfying
the strict inclusions % (M) § K(M) § K(M)' § L(M) (see [FS, Remark 3]).
Here # (M) denotes the finite-dimensional operators on M.

More complicated conditions are already seen on the direct sums P @I,
1 < p < r < oo. Prior to this we record an elementary observation on the ideal
property of the preimages of the weakly compact operators under the wedge
product.

LEMMA 3.4. Let E be a Banach space and fix the operators A, Be L(E). Then the
sets

A4 ={UeL(E)|A A Ue W(L(E))}
and

Ap ={UeL(E)|U A Be W(L(E))}
are closed 2-sided ideals of L(E).
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PROOF. A4, 4and A, p are the preimages of the closed subspace W(L(E)) under
the bounded linear operators U~ A A U and U— U A B, respectively, and
hence norm-closed subspaces of L(E). The ideal property is seen from
straight-forward composition formulae such as

(AX) A B=(X A id)(A A B), for X e L(E).

It will be convenient to represent bounded operators S on direct sums E @ F as
S 11 S 12
S21 S22
Si1,€L(F,E) etc. are introduced by S;;=PSI;, for ij=12, where
P,:E®F - E; P,:E® F — F are the natural projections and I,:E - E® F,
I,:F - E @ F the corresponding embeddings. Consequently any closed ideal
I « L(E @ F) is uniquely determined by its norm-closed components

Iij = {S,-jZHSEI,SU = PlSI]}

2 x 2 operator matrices S =( ) Here the operators S;, € L(E),

for i,j = 1,2, which possess obvious properties.

The spaces P@I', 1 < p <r < o0, admit the somewhat surprising property
that the actual conditions for the weak compactness of 4 A B are non-symmetric
in A and B.

PROPOSITION 3.5. Let 1l <p<r < oo and let A,Be L(IP ®I'). Then A A Be
W(L(I?P @ I")) if and only if

(3.6) AecK(P®TI) or BeK(IP®T) or

K(®) L(,P) P L P
(A e(L(l", N L ) and Be <L(l", n K@) ))-

K@) L,P) Ly Lenr)
ProoFr. Observe first that I, = (L(l", n L )and L, = (L(I”, n K@) )
are maximal proper closed ideals of L(I? @ I), since K(F) is the unique proper
closed ideal of L(FF) for 1 < s < oo [P, 5.1].
The criterion of Corollary 2.4 states in this case that A A Be W(L(F @ I')) if
and only if

3.7 BXAeK(P®T) forany Xe (P D).

Hence it remains to verify towards the “if” part that condition (3.7) is satisfied
whenever A €1, and BeI,. Recall that all operators S: I — I are compact since
l<p<r<oo [LT2, 2.c.3]. Consequently there is no loss of generality in
assuming, by disregarding compact perturbationsin (3.7), that 4 and B are of the
respective forms
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0 0 Z 0
A=(U V)ell and B=<Y 0)512,

X,y O
and that X ( X, X
BX A = 0. This means that A A Be W(L(I" @ I')) whenever (3.6) holds.

In order to establish the converse we claim that A A B¢ W(L(I? @ I')) when-
ever the pair (A4, B) of operators fails to satisfy (3.6). A simple consideration shows
that the possibilities for A, Be L(I? @ I') are among the following.

i) A¢l, and Be LAK(P®TI),
ii) Bél,and Ae L[\K(" @),

iii) A¢I, and B¢I,.

The cases i) and ii) are handled with the help of Lemma 3.4 and a maximality
argument.

Case i). According to the first part of the proof one has for each
Be L\K(IP @ I') that

LcAp={AcL"®F)| A n Be W(L({" ® I')}.

Here A, g is a closed 2-sided ideal of L(I” @ I") (Lemma 3.4). In order to conclude
that A, 3 = I, for Be L,\K(I”? @ I) it suffices to verify that A, 3 + L(I? ® I'), since
I, is a maximal proper closed ideal of L(I? @ I'). It is enough to note that
idpgr A B fails to be weakly compact on L(P@®I). Indeed,
B = Bidpg-¢ K(I? @ I') since Be L\K(I? @ I'). Then (3.7) implies that 4 A Bis
not weakly compact in this case.

Case ii) is handled similarly while the remaining case is verified directly.

Caseiii). If A¢ 1, and if B¢ I,, then it is again assumed by neglecting compact
perturbations in (3.7) that

Ay, O > (B“ 0 )

A= 3 B = >
(An Ay, B, B22

0 0

Z 0

)e L(? @ T'). A simple computation shows then that

where A;; ¢ K(I’)and B,,¢ K(I'). Let X = (

0 0
BXA = (BzzlA“ 0).

In view of (3.7) it remains to exhibit some operator Z e L(I?,I") such that
B,,ZA,, ¢ K(I?,I'). As in the proof of Proposition 3.2 one finds from A, ¢ K(/?)
a block basic sequence (x;) with respect to the unit basis in /” such that the
restriction A|,; is an isomorphism [x,] — [Ax,] and with [ Ax,] complemented
in I? by a projection P. The assumption B, ¢ K(I) yields similarly a copy N of I
such that B|y:N — BN is an isomorphism. Let U:[Ax,] = /?, V:N - T be
isomorphisms and denote by I: [P — I the non-compact natural inclusion. Then

)e L(I” @ I') and observe that
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the choice Z = V™ 1IU Pe L(I’, I) is easily seen to provide us with non-compact
products B,,ZA,, and BX A. This ends the proof of the proposition.

PROBLEM 3.6. Determine the contents of the characterization in Corollary 2.4
in the case of the reflexive spaces I7(0,1),1 < p < oo, p + 2. Itis well-known that
IP @ I? is isomorphic to a complemented subspace of I#(0, 1) and consequently
similar behavior as in the previous proposition is already seen on this copy.
Moreover, the structure of closed ideals in L(I?(0,1)) is very complicated
[P, 5.3.9].

We proceed to solve as examples the range-inclusion problem in Theorem 2.3
for some simple non-reflexive Banach spaces.

PROPOSITION 3.7. Let p satisfy 1 < p < oo and let A, Be L(I° @ c,) be non-zero
operators. Then A A Be W(L(I" @ c,)) if and only if

(3.8) (Ae WP ® co) and Be K(I"? ® cy)) or

K@) Lo, ,
Me(L(l",co) K(co) ) and Be W(I? @ c,)).

ProOF. We may assume, due to Proposition 2.1, that 4, Be W(I? ® c,). Ob-

|4 |4
serve that W(’ @ co) = ( L(Llf’lc)o) Lffc’j))) since W(co) = K(co). Clearly

(P ® co) = I @ I* has the RNP as well as the approximation property. The-
orem 2.3 states that 4 A Be W(L(I? ® c,)) if and only if
(3.9) B"XA"e K(IP ®1°) for all XeL(I°P ®I%).

Again there is no loss in neglecting compact perturbations and hence in writing

(A O _(B:+ O »
A_<A2 O)’ B-(B2 O)eL(lEDco)

X, X
since  L{co, I?) = K(co, 1) [LT2,2.c.3]. Let X=( oz

P @ I°).
X1 Xn)e” &)

A computation yields the equality

Bi(X,14, + X,4%) 0)

(3.10 B"XA”=< ! 27
) 2(X114; + X;,45) 0

Here X,,A’ admits the factorization 7 —42» [ %12, [P through the space I®
having the Dunford-Pettis property. It is then obvious that the product X,,45 €
K(I?) (see [LT1,11.4.k]), since both A% and X, , are weakly compact operators.
Consequently (3.10) implies that B"X A" € K(I? @ I®) for all xe L(I° @ **) pre-
cisely when
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(3.11) B;X,;;A,eK(PP) and B}X,,A4,€ K(I?,I°) for all X, e L(I).
Clearly (3.11) holds for all X, € L(I?) whenever
(3.12) (B,€K(I") and B,eK(l",cy)) or A e K(lP).

It remains to show the converse, that is, to exhibit Z e L(I?) such that (3.11) and
equivalently also (3.9) fail to hold whenever the weakly compact operators 4 and
Bon P ® ¢y do not satisfy the condition (3.12). Consequently we suppose that the
pair A = (Al 0), B= (Bl 0) € (I’ ® c,) has the property that (B, ¢ K(I?) or

A, O B, 0
B, ¢ K(l?,co)) and A, ¢ K(I?).

Case 1. If A{, B, ¢ K(I?), then one finds Z € L(/”) such that the product B, Z A4,
is non-compact as in the proof of Proposition 3.2.

Case 2. Suppose that 4, ¢ K(I) and that B, ¢ K(I?, c,). As before one obtains
a normalized block basis (x,) of the unit basis in I? such that the restriction 4|,
is an isomorphism [x,] — [A, x,] and such that there is a projection P: I —
[A4; x]. Moreover, since B, ¢ K(I?, co) an application of Lemma 3.1 yields a nor-
malized block basic sequence (y,) with respect to the unit basis of I and 6 > 0
such that ||B,yl| =6, keN. Let Z = X,P, where X,:[A:x,] =[] is the
isomorphism mapping 4, x, to y,, ke N. Observe that x, —— 0, k — oo, while
|B3ZA; x|l = J for all keN. It is then well known that B3ZA, cannot be
compact.

As our final non-reflexive example we show that the minimal conditions of
Theorem 2.9 for the weak compactness of the multiplication operator A A B are
exactly realized on the standard quasi-reflexive James space J. Recall that the
James space J consists of all sequences x = (x,) of scalars converging to 0 for
which the norm

1 m—1 5 1/2
"x" = sup ( Z ‘xpk - ka+ 1|2 + Ime - x?ll ) < 0.
N

The supremum is taken over all choices of meN and p; <p, <...<p,. Itis
known that J is of codimension 1 in J”, see [LT2,1.d.2]. We will identify
J” = J ® Ke, where e is the constant sequence (1,1, 1,...).

PROPOSITION 3.8. Let A, B € L(J) be non-zero operators. Then A A Be W(L(J))
if and only if

(AeK(J) and Be W(J)) or (AeW(J) and Be K(J)).

S21 S22
S,;1€L(J) and where S;,, S,; and S,, are suitable, at most 1-dimensional

Proor. Operators Se L(J") are written in the form S = (S“ S”) with
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operators. We may restrict attention to operators A, Be W(J) because of Prop-
. A A B By\ .

osition 2.1. Hence A” = ( 0 0°>, B = ( 0 0°>, since A”J" < J (Lemma 2.2).

Observe that J’' has the RNP as a separable dual [DU, II1.3.1]. Theorem 2.3

states, after discarding finite-dimensional perturbations, that A A B is weakly

compact on L(J) if and only if

(3.13) BS,,AeK(J) for all S;;eL(J).

Clearly we are left with the task of verifying that (3.13) fails to hold whenever
A¢ K(J)and B¢ K(J).

Let (e,) be the standard unit vector basis of J. Assume first that 4 ¢ K(J).
Lemma 3.1 provides us with a constant 6 > 0 and for all preassigned 4 > 0 with
block basic sequences (x,) and (z,) with respect to (e,) such that the following
properties are satisfied:

(i) lixill = 1and [[Ax]| = 6, keN,

(i) Z lAx, — zill < p.

k=1
In the inductive constructions of (x,) and (z,) one may easily ensure, by starting
the next block further out if necessary, that the supports of (x;) and (z;) are
separated in the sense that

13
X = .Z %jéj
J =Pk

where p; ., — gx = 2 for all ke N (and similarly for (z;)). This implies, according
to [HW, Lemma 1] that the basic sequences (x,;) and (z;) are equivalent to the unit
vector basis of /2. A standard perturbation argument for Schauder bases [LT2,
1.a.9] ensures that (4x,) is also a basic sequence equivalent to the unit basis in 2
once u is chosen small enough. Deduce as in the proof of Proposition 3.2 that the
restriction U = A|(,,j determines an isomorphism [x;] — [4x,]. The application
of [CLL, Corollary 11] yields an infinite-dimensional subspace M < [Ax,]
which is complemented in J by a projection P:J — M. In a similar manner, from
B¢ K(J) one obtains a copy N of I? in J where the restriction By is an isomor-
phism onto BN. Finally, let V be some isomorphism M — N and let S,, = VP.
Clearly the restriction BS;; A|y -1 is bounded below. Consequently (3.13) fails
to hold with this choice. This completes the proof.

REMARK 3.9. Observe that K(J) § W(J), since J contains complemented co-
pies of 1?2, see [CLL]. The above argument actually shows that if R is
a non-compact operator on J, then R is an isomorphism between suitable
(complemented) copies of I2. Hence K(J) coincides with the strictly singular and
the strictly cosingular operators on J.
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As our final topic we briefly review the relevance of our results on the Banach
algebra L(E)for some attempts to define “weakly compact” elements of arbitrary
Banach algebras. Since this problem is not of central interest from the point of
view of this paper we refer to [BMSW, R.5 and C*.1] for a comprehensive
discussion and for further references.

Let A be a Banach algebra. An element a€ A is said to be weakly completely
continuous [O], if both the left and the right multiplications x+ ax and x+sxa
are weakly compact operators A — A. This concept is a trivial one in the Banach
algebra L(E) for non-reflexive Banach spaces E because of Proposition 2.1. The
closed ideal consisting of the weakly completely continuous elements of I(E)
coincides with the set of compact operators on the closed subspaces E = I and
on E=PFP@®I, 1 <p<r< o, according to Propositions 3.2 and 3.5. It is
unclear to us whether this always holds.

An element a€ A4 is weakly semi-completely continuous if the multiplication
operator x — axa determines a weakly compact operator on A. This concept was
considered in [TW] and it is the weakly compact analogue of the compact
elements previously introduced by Vala and J. C. Alexander. If E is a Banach
space we set

Wsc(E) = {Ae L(E)| A is a weakly semi-completely continuous element of L(E)}.
PropoSITION 3.10. i) If E is a Banach space, then
K(E) = Wsc(E) = W(E).

il) Wsc(l’) = K(IP), 1 < p < o0, Wsc(J) = K(J).
’ _( K@) Lr,PF)

iii) Wsc(IP @ I') = (L(l”,l') K(F) ), l<p<r<oo.
iv) Wsc(E) = W(E)if E is a #*- or a ¥ -space.

Proor. Parti)follows from [V, Theorem 3] and Proposition 2.1. Parts ii}-iv)
are restatements of 3.2, 3.5, 3.8 and 2.11 for the special case A A A.

Ylinen[Y1,3.1],[Y2,3.1](cf. also [AW, p. 146]) established the surprising fact
that the set of weakly completely continuous elements of any C*-algebra A co-
incides with the set of weakly semi-completely continuous elements of 4. This
equality fails in the natural class of Banach algebras of the form L(E) on reflexive
spaces E, since in part iii) of the above proposition K(I? @ I') § Wsc(P @ I').
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