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AN APPROXIMATION THEOREM FOR INTEGRABLE
HARMONIC VECTOR FIELDS

BJORN GUSTAFSSON and MAKOTO SAKAI

0. Introduction.

It is known that every component of a harmonic vector field in a domain
Q c RY(N = 2)is a harmonic function which has zero net flux across any closed
hypersurface in Q. In the present paper we are concerned with the question
whether, conversely, every such harmonic function can be approximated by
linear combinations of components of harmonic vector fields.

Our main result concerns approximation in the L'-norm (with respect to
N-dimensional Lebesgue measure) and gives an affirmative answer to the ques-
tion in case Q is bounded, finitely connected and, if N = 3, satisfies a mild (but
necessary) additional condition. More specifically the result shows that any
integrable harmonic function in Q with zero flux across any closed hypersurface
then can be approximated by linear combinations of the functions (of
xeQ)Ej(x — y)for yedQand 1 <j < N, where E; = 0E/0x; and E denotes the
spherically symmetric fundamental solution of (minus) the Laplacian.

This main result is stated in full and proved in §3. The proof uses a kind of
(weighted) converse Poincaré inequality for harmonic functions, which is stated
and proved in §2. Section one, finally, contains some general observations
concerning harmonic vector fields.

1. Some background.

By a harmonic vector field in a domain Q = RY(N 2 2) we mean a vector field
f=fi,..., fn):Q — R" satisfying

1.1 divf =0,
(1.2) rot f=0
(i.e. YN, 9f;/0x; = 0and df;/ 0x, — dfi/0x; = Ofor all kand j). Thus a vector field

is a harmonic vector field if and only if it locally is the gradient of a harmonic
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function. Each component of a harmonic vector field is a harmonic function, but
not every harmonic function is a component of a harmonic vector field (although
locally this is true).

We need some notation:

H(Q) = {harmonic functions in Q},
A(R) = {harmonic vector fields in Q},
AQ); = {f;: feAQ)}

(j =1,...,N). Thus by the above remarks A(Q); = H(£) for all j.

When N = 2(1.1)}H1.2) reduce to the anti-Cauchy-Riemann equations, so that
f=(f1, f2)€ A(Q) if and only if f; — if; is an analytic function in Q. Since the
operator (fi, f2)— (f2, —f1) (“multiplication by i”) acts on A(2) we have
A(R2), = A(2), when N = 2. Moreover it is well-known that a harmonic function
u is the real (or imaginary) part of an analytic function in Q if and only if

ou
(1.3) J?f:ds =0

Y
for every closed oriented smooth curve y in Q.
Thus in two dimensions we have

(1.4 A(Q), = A(Q); = H(Q)o,

where H(Q), denotes the set of functions ue H(Q) satisfying (1.3). In higher
dimension the situation is slightly more complicated as we shall see.
For arbitrary N = 2 set

(1.5) H(Q)o = {ueH(Q):J%da=0for
r

every closed oriented smooth hypersurface I in Q},

where du/0n denotes the normal derivative on I' in the direction singled out by
the orientation and where do denotes the hypersurface measure on I'.

Using differential forms and the Hodge’s star operator [Wa] the condition in
(1.5) can also be written [ * du = 0 for every closed oriented smooth hypersur-
face I' in Q. By de Rham’s theorem [Wa] this condition is equivalent to the
(closed) (N — 1)-form *du being exact, i.e. to the existence of an (N — 2)-form
v satisfying

(1.6) *du = dv.
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When N = 2 vis the usual harmonic conjugate function of u (determined up to an
additive constant) and (1.6) is the Cauchy-Riemann system. For N = 3 v can be
regarded as some kind of generalized harmonic conjugate of u, but is far from
uniquely determined.

It was observed in [Gu 1, p. 238] that 4(Q); = H(f), for allj. For convenience
let us reproduce the simple proof. Let f € A(RQ) and consider f; for example. With
I as above and using (1.1), (1.2) and Stokes’ theorem we get

N T T
.[ o do—u jgl(—l)l ox, dx;...dx;...dxy

r
.
= gide de + Z ( 1)" j fJ dx Xy . d de
y a v
r~
_ gfl dxy + z (—1y- J‘d(jjdxz dxy)
T

—Z(wf(w%azaﬁa

as desired (dx; .. .fi},-. ..dxymeans dx;...dx;_dx;;...dxy)

Another observation (made in [Gu2]) is that when N 2 3 then A(Q); in
general depends on j (even if Q is rotationally symmetric). Consider e.g. a punc-
tured ball, say 2 = B(0,r)\{0}. When N = 3 Q is simply connected, hence every
f e A(2) can be written f = Vufor some ue H(Q). Taking into account what kind
of singularities at x = 0 which are possible for u one easily sees that among those
functions in Q which do not behave worse than |x|' ~" at x = 0 we have in 4(Q);,
for any fixed 1 <j < N, only functions of the form

x'
J
aJW + uj

with a;e R and u;e H(B(0, ). From this it is clear that A(Q), + A(2); when k & j
in the present case.

Thus in higher dimension we should not consider the individual A(€); but
rather their sum A(Q), + ... + A(Q)y. Since A(2); = H(Q), for each j we have

1.7 A + ... + AQ)y = H(Q)o.

We do not know whether the inclusion in (1.7) can be strict. However we have the
following.
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PROPOSITION. Let Q = R be an arbitrary domain. Then A(Q), + ... + A(Q)y
is dense in H(Q), in the topology of uniform convergence on compact sets.

PRrOOF. Let

1.
cy log|—x| if N=2
CN

- 1 >
FLE if N=23

so that —AE = §,, the Dirac measure at the origin (hence cy > 0). Also, set

OE
Ej-———ax—j

so that VE = (E4,. .., Ey). Then, as functions of x, E(x — y)e H(Q), VE(x — y)e
A(Q), Ei(x — y)e A(Q); for ye €. Since equations (1.1), (1.2) (and the Laplace
equation) have constant coefficients any derivative of a function in any of the
above spaces remain in the same space.

It follows that for any y € Q° and any multiindex a with ja| = 1

(1.8) D*E(x — y)e A(2); +... + A(Q)N

as a function of x.

Now we shall actually prove that the linear span of the functions in (1.8) is
dense in H(Q),. Let L: H(2)o » R be a continuous linear functional which
annihilates all the functions in (1.8). We then have to prove that L = 0.

L can be represented by a (signed) measure u with supp p < Q so that
L(u) = {udy for ue H(Q),. Thus by (1.8)

JD" E(x — y)du(x) =0

for every ye Q° and |a| = 1. In terms of the Newtonian potential U* = E * u of
u this simply says that

(1.9) D°U*=0 on &

for every |o| = 1.

Let N be an open set with smooth boundary ON and satisfying
supp 4 = N cc Qand such that each component of N° meets °. Obseve that U*
is harmonic and hence real analytic in a neighbourhood of N¢. Therefore (1.9)
implies that U* is constant in each component of N°. In particular 0U*/dn = 0 on
ON and U* is constant on each component of dN. For any u € H(Q), we therefore
obtain
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(3
L) = |udp = — u-avrdm = — | U udm — | w246 + | U+ 240 =0,
on on
N

oN

as desired (m denotes N-dimensional Lebesgue measure).

REMARK. Observe that we actually proved that the linear span of the functions
in (1.8) is dense in H(Q),. Even more, one may e.g. choose just one point y in each
component of ° and use only the D* E(x — y) then obtained (for all || = 1). Also
note that all the functions in (1.8) are components of vector fields in A(2) which
globally (in Q) are gradients of harmonic functions. Thus the proposition remains
true with A(Q) replaced by the set of gradients of harmonic functions (i.e., with

A(Q); replaced by {:—;‘ ‘ue H (Q)}).
j

2. An estimate.
Set
HIX(Q) = H(Q) N (),
HI(Q)o = H(Q)o N E(9),
ALP(Q) = A(Q)n E(Q)Y,
AB@); = {f;: feAL©)

for 1 £ p £ o and where I?(Q) = I7(;m). Clearly AI?(Q); = A(Q); N I#(), and
in general strict inclusion holds because, taking N = 2 and Q simply connected for
example, a harmonic function may be in I?(Q) without its harmonic conjugate
being there.

By (1.7)
@.1) AL(Q); + ... + AQ)y = HIZ(Q)o,

and in [Gu 2] the question was raised whether the left member in (2.1) is dense in
the right member when p = 1 and Q is bounded. Our main result states that this is
the case under certain assumptions on . For the proof we need the following
lemma which might be of independent interest.

LeMMA. Let Q = RY be any bounded open set and set
d(x) = dist (x, ).

Then there exists a constant C such that
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2.2) jé(x)IVu(x)l dm(x) £ C J |u| dm
2 2
for all ue HL} (Q).
ReMARK. The above estimate easily generalizes to
2.3) 6VullLr < CllullLe
for any 1 < p < oo (and all ue H I2(£2)).
PROOF. Set
Qp = {xeQ:4(x) > 1},
Q,={xeQ:27" < (x) 27"}

(n=1,2,...). Let a be a fixed large number. (Some of the assertions below depend

on a being sufficiently large.) For each n let {Q,1, Qnz,. . ., Q.;,} be those cubes of
. 4+ 1

the type Qi 4, = {xe R":L <x £ ki + 1gig N)} (k;eZ) which meet

a” — 2"
Q,. Then

in
2,c(g,ce
ji=1
(n=0,1,...). Let c,j denote the center of Q,,;.
Let ue HL}(2). Then

© jn
2.4 J&(x)qu(x)l dm(x)< Y Z J O(x)|Vu(x)| dm(x)
0 n=0j=1 O
and we shall estimate the integrals to the right. First of all we have
(2.5) S(x) £27"*% for xeQ,

As to Vu(x) it follows from the Poisson integral formula that there exists
a constant C (independent of x and r) such that

2.6) Vu(o) < < sup lu
r B(x;r)

whenever B(x;r) = Q. ((2.5), (2.6) by the way immediately give (2.3) in the case
p = o0.) For each ye B(x;r) the meanvalue property gives that
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@.7) ) S f ] dm

B(y;n)
for some other constant C and assuming that B(x;2r) = Q. Throughout the proof

the letter C will denote various constants which are different in different formulas.
Combining (2.6) and (2.7) gives

23) Vo) < ey f jul dm,

B(x;2r)

holding whenever B(x;2r) = Q.

Next we can find a number 8 > 1 such that B(x; cx12") c B(c,, i E%;) whenever

x € Q. Choosing then 2r = in (2.8) and setting B,; = B(c,,j; %) gives

a2"

2.9 [Vu(x)] £ C(e2mN*1 j|u| dm
Bnj

for xe Q,;. Observe that B,; = Q if « was chosen large enough. f can be chosen
. . N
independently of «; in fact any f > 32£ + 1 works.

Combining (2.5) and (2.9) and integrating over Q,; gives

(2.10) j 8(x)|Vu(x)|dm(x) £ C-«a J {uj dm.
QOnj Bnj

Now taking the union over all j and n

U B,;=2Q
nJj

and it is easy to see that there is an upper bound for the overlappings between the
B,, jo

ZXan é C < m.
n.j

By this the desired inequality (2.2) follows directly from (2.10).
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3. The main result.

Throughout this section Q will be assumed to be a bounded domain in R¥(N = 2)
such that Q¢ has only finitely many components. Let S denote the linear span of the
functions (of xe Q) E{(x — y)for yedQ2and 1 <j £ N and let S denote the linear
span of S together with all functions of the form E(x — y) — E(x — z) with y,z€0Q
belonging to the same component of €°. Then

Sc AL(Q), + ... + AL(Q)y = HL(R),,
S < § < HIXQ),.

It was proved in [Gu 2, Lemma 1.3] that Sis dense in AI}(Q), + ... + AL(Q)y.
Thus ALQ), + ... + AL}(Q)y is dense in HI}(Q), if and only if S is dense in
HIL!(),. Our main result below shows that this is the case under mild topologi-
cal assumptions on Q but not in complete generality (if N = 3).

THEOREM. With Q, S and § as above
(i) S is dense in HI}(8),.
(ii) If N = 2 then even S is dense in H}(Q),.
(i) If N = 3 then S is dense in HI!(), provided Q satisfies some suitable
additional assumption, e.g. the following.

3.1) For each component K of Q¥ there is a dense subset K* of K such that
) any two points in K* can be joined by a rectifiable arc within K.

(iv) Forevery N = 3 there are examples of domains Q (not satisfying (3.1)) for
which S is not dense in H L} (Q),.

Note that (3.1) holds e.g. if Q equals the interior of its closure. A necessary and
sufficient, but less explicit, condition for S to be dense in §'is given by (3.12). The
proof below is based on a technique which has earlier been used, for related
results, in [Be], [He], [Sa 1-3], [Gu 2].

PROOF. Any continuous linear functional on H L!(R), can be represented by
a function g e L°(€). That g annihilates S means that |5 Ej(x — y)g(x)dm(x) = 0
for all yedQ and all 1 <j £ N and that it annihilates S means that moreover
fo(E(x — y) — E(x — z))g(x)dm(x) = O whenever y, z€dQ belong to the same
component of €. Denoting the components of Q° by K,..., K, and extending
g by zero outside 2 we thus see that, in terms of the Newtonian potential U? of g,
g annihilates S if and only if

(3.2) VU?=0 on 0%,
and g annihilates § if and only if (3.2) and
(3.3) U=c; on 0K; (1Sj<r)



86 BJORN GUSTAFSSON AND MAKOTO SAKAI

hold for some constants c,,...,c,. Observe that 0K; = (02) n K ;.

Since g e [*(R2) U? and VU’ are continuous everywhere and harmonic in the
interior of Q. Moreover |VU?(x)| — 0 as |x| - + 0. Therefore the maximum
principle shows that (3.2) implies that

(3.4) VU’=0 on .

(Hence (3.2) and (3.4) are equivalent.) Note that (3.4) implies that U? = constant
(=0)in a neighbourhood of infinity. Therefore it also follows from the maximum
principle that (3.2) and (3.3) together imply

(3.5) Ui=c; on K; (1Zj<).

Thus it follows that ge L*(Q) annihilates S if and only if (3.4) holds and
annihilates S if and only if (3.4) and (3.5) hold (for some ¢ )

Now, to prove (i) of the theorem it is enough, by the Hahn-Banach theorem, to
prove that g e [°(£2) annihilates all H I} (), whenever it annihilates S, i.e. to show
that (3.4) and (3.5) imply that

(3.6) Jug dm=0 forall ueHI(Q),.
Q

So assume that (3.4) and (3.5) hold. We first need some estimates.
It is well-known [Gii] (and elementary to prove) that

(3.7 IVU*(x) — VU*(y)l = Clx — yllog =]

for |x — y| < e~ 2. To avoid some inconveniences when dist (x, £) is not small we

now redefine §(x) to be the minimum of dist (x, 2) and e 2. Then (3.4), (3.7) give
1

3.8 i(x) < —_— Q).

(338) VUG < Colog 5o (xe )

Moreover, combining (3.8) with (3.5) gives

1
(3.9) %) — ] S o092 log 55

when x € Q is close to K.

In order to integrate by parts in [qugdm = —[uAdU?dm we need certain
cutoff functions w, with decay matching (3.8), (3.9). (The construction of these
goes back to Ahlfors and Bers [Be]; see also [He]). Choose a function y € C*(R)
satisfying0 S Yy < L, y(t) =0fort £ 1, Y(t) = 1 for t = 2 and set
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w0nx) =¥ [
log logm

for xe Q. Then w, is Lipschitz continuous, has compact support in Q and
lim w,(x) = 1 for each x € Q. A straightforward computation shows that

n—* o

(3.10) Vo, (x) < ;1 (xeQ).
nd(x)log —3&—)-

Now consider the left member of (3.6). Using dominated convergence, the
definition of U? and integration by parts we get

Jugdm = lim fw,,ugdm

n— o

Q2
= — lim fw,,uAU’dm
n— o 0

= lim Jqu,.VU“ dm + jw,,Vu VU’dm]
Bt Q

= lim Jqu,,VU’ dm —
n— o L_n

— JU‘Vw,, Vudm — Jw,, ue Audm]
Q 2

(3.11) = lim [Jqu, vU?dm — fU‘Vw,,Vu dm].

Here the first term vanishes (in the limit) as a consequence of (3.8), (3.10) and the
integrability of u.

As to the second term, choose small (disjoint) neighbourhoods N; of the
K;(1 £j <r)in Q. Observe that supp Vw, = | ) N;and w, = 1in Q\ | ) N; for
j=1 j=1
n large enough. Thus we get
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c; JVw,, Vu dm. +

Nj

UU"Vw,,Vudm. <y
i=1
2

J(U’ - cj)Vco,,Vudm‘,

Nj

r
+ 2
j=1

where

JVw,.Vudm = J Ou do — jw,,Audm

0 —
" on
N; ON; Nj
ou
= ——do=0
J on
(ONj)NQ

for large n, and
U(U” - cj)Vco,,VudmI =<
Ny

n
N;

gﬁfa(xnwwmg%fauwmg
o]

I\
s|a

-0

by (3.9), (3.10) and the lemma in §2. Thus also the second term in (3.11) vanishes
(in the limit) and (3.6) is proved. This proves (i) of the theorem.

To prove (ii) it is, by (i), enough to prove that S is dense in § when N = 2. So let
y and z be two points on 092 belonging to the same component, say K, of €. Then
we have to show that log|x — y| — log|x — z| can be approximated by linear
combinations of functions in S. For any small ¢ > 0 choose y" € B(y; &) » 2 and
2" € B(z;¢) N Q. Let y', 2’ be points on K which minimize the distance to y” and z”
respectively. Then |y’ — y| < 2¢, |z — z| < 2¢ and the (open) line segments y'y”
and z'z" are contained in K*. Since ¢ is arbitrary is enough if we can approximate
u(x) = log|x — y'| — log|x — 2’| by functions in S.

Clearly y” and z” can be joined by, say, a polygonal line within K°. By the
preceeding paragraph this line can be extended to a polygonal line y joining y’
and z'. Except for the endpoints (y' and z') y lies entirely in K°.
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Since K is connected u has a single-valued branch v(x) in K of its harmonic
conjugate arg(x — y') — arg(x — z'). The existence of the polygonal line y easily
implies that v is bounded in K° In fact, v is certainly bounded on 7, say
|v]| £ M < oo ony,and we claim that |v(x)| never exceeds M + 4n anywhere in K°.

To prove this, let x, be an arbitrary point in K°. We may assume that
xo€(K U 7). Let w(x) be a single-valued branch of arg (x — y') — arg(x — z')in»*
such that w(x) = v(x) in a neighbourhood of x,. Now K° is connected and
y separates K¢, so (K u y)° has exactly two components. In the component to
which x, belongs we have v(x) = w(x) and in the other one v(x) = w(x) + 2n or
v(x) = w(x) — 2n (since we can reach that component from the first one by
crossing y). We may further assume that x, is not on the straight line passing
through y' and z'. The straight line L passing through x, and (y' + z')/2 must
intersecty. Let y, be a first point of intersection, counted from x,, so that the open
segment X, yo does not meet y, and let w(y,) denote the boundary value of w at y,
along this segment. Then |w(yo) — w(xo)l £ 27 and hence |v(xg)| = [W(xo)| £
[W(o)l + 27 < [v(yo)] + 4 < M + 4m, as claimed.

The above shows that u + iv is an integrable analytic function in Q ((u, —v) €
AL'(®) in our notation). Therefore by a theorem of Bers [Be] u + iv can be
approximated by complex linear combinations of 1/(x — &) with £€dQ (here
x and ¢& are regarded as complex numbers). Taking the real part of this approxi-
mation we obtain the desired approximation of u. This completes the proof of (ii).

To prove (iii) first notice, by the Hahn-Banach theorem and by what was said
in the beginning of the proof, that S is dense in S'if and only if (3.4) implies (3.5) for
any g € L*(Q). This implication is a condition on €, which can be stated in a form
free from g as follows.

If a function u e C!(R") satisfies Aue [°(RY) and Vu = 0 on °

3.12) then u is constant on each component of €*.

In fact, if (3.12) holds then taking u = U? (g € L*(£2)) shows that (3.4) implies
(3.5). Conversely, assume that (3.4) implies (3.5), let ue C'(R"), due L*(R),
Vu = 0 on ©° and we shall see that uis constant on each component of €. Clearly
uis constant in a neighbourhood of infinity and we may assume that this constant
is zero. Since Aue L*(R"), u is in the Sobolev space W,2.P(R¥) for every p < oo,
and by [Ki-St, Lemma A.4 p. 53] the assumption Vu = 0 on Q° then implies that
Au = divVu = 0 a.e. on . Setting g = — Au it follows that ge [*(RY), u = U?
and that g = 0 a.e. on Q°. Since VU? = Vu = 0 on €, U’ satisfies (3.4), hence it
satisfies (3.5), hence u is constant on each component of € as desired.

Thus, S is dense in § (and hence in HI!(),) if and only if (3.12) holds.

To finish the proof of (iii) one just has to observe that (3.1) implies (3.12). In fact,
ifue C'(RV)and Vu = 0 on K then by (3.1) Vu can be integrated between any two
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points in K* yielding that u is constant on K*, and then, by continuity, it is
constant also on K.

As to (iv) Whitney [Wh] gives an example of a function ue CN ™! (R¥) such that
Vu = 0 on a compact non-rectifiable arc K but nevertheless u is not constant on
K. This u can be taken to vanish identically outside a compact set. If N = 3 then
ue C%(R¥)so that Aue L*(R"). Thus we get a counterexample to (3.12), with e.g.
Q = B(0;r)\K for r large enough. Hence S is not always dense in § when N > 3.

This completes the proof of the theorem.

REMARK. Note that we have proved that (3.12) always holds when N = 2.
Thus, in Whitney’s example [Wh], 4u is not in [°(R?) when N = 2.
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