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AN APPLICATION OF JONSSON MODULES
TO SOME QUESTIONS CONCERNING
PROPER SUBRINGS

ROBERT GILMER!' and WILLIAM HEINZER?

Abstract.

Given a commutative ring S and the proper subring R of S, it is shown that if each proper subring of
S containing R is Artinian, then S is Artinian. Examples are given to show that the corresponding
statement for Noetherian rings fails. The structure of pairs (R, S), where S is not Noetherian but each
proper subring of S containing R is Noetherian, is determined.

All rings considered in this paper are assumed to be commutative and to contain
aunity element. If R is a subring of S, we assume that the unity of S is contained in
R, and hence is the unity of R; we use the term S-overring of R to mean a subring of
S containing R, a proper S-overring of R is an S-overring of R distinct from S. We
use Z to denote the ring of integers, and Q to denote the field of rational numbers.

Several papers (for example, [G,],[W,],[W,], [GH,],[GH,], [GHs]) have
dealt with what are called Noetherian and zero-dimensional pairs of rings,
hereditarily Noetherian rings, and hereditarily zero-dimensional rings. In a gen-
eral context, the definitions are as follows. If E is a ring-theoretic property and if
R is a subring of S, then (R, S) is said to be an E-pair if each S-overring of R has
property E, and S has property E hereditarily if each subring of S has property
E — that is, if (r, S) is an E-pair, where = is the prime subring of S. In considering
a pair (R, S) of rings and a class € of intermediate rings, one question that
naturally arises asks whether (R, S) is an E-pair if each element of ¢ has property
E. In this paper we consider the particular case of this problem where € is the
class of all proper S-overrings of R and E is one of the three properties (1)
Noetherian, (2) Artinian or (3) being of dimension at most n, where n is a fixed
nonnegative integer. In the case of properties (3) and (2), we show in Theorems
1 and 2 that (R, S)is an E-pair, but even in the absolute case R = =, S need not be
Noetherian if each proper subring of S is Noetherian. Theorem 4 and Corollary
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4 are the definitive results we obtain in the Noetherian case. In our work on the
Artinian and Noetherian properties, we use the theory of Jonsson wy-generated
modules developed in [GH,]. The definition is as follows. If « is an infinite
cardinal (w, denotes the first infinite cardinal) and if M is a unitary module over
the ring R, then M is a Jonsson a-generated R-module if M has a generating set of
cardinality &, no generating set of cardinality less than «, and each proper
submodule of M has a generating set of cardinality less than «. Thus a Jonsson
wo-generated module is a module which is not finitely generated, while each of its
proper submodules is finitely generated.
We begin with property (3), concerning dimension, mentioned above.

THEOREM 1. Suppose R is a proper subring of aring S, n is a nonnegative integer,
and that each proper S-overring of R that is finitely generated as an R-algebra has
dimension at most n. Then S has dimension at most n.

Proor. We use induction on n, considering first the case where n = 0. Assume
that dim S > 0, choose proper primes P and Q of S such that P < Q, and choose
teQ — P. Then R[t] and R[t*] have positive dimension since the contractions of
P and Q to these rings are distinct. Hence S = R[t] = R[t?]. The expression of
t as an element of R[t2] shows that ¢ satisfies a polynomial f(X)e R[X] whose
coefficient of X is — 1. Because f(X) is a regular element of R[X] [G,, Prop.
28.7], it follows that the kernel I of the canonical R-homomorphism
R[X] - R[t] is contained in no minimal prime of R[X]. Therefore
dim § = dim R[t] < dim R[X] = 1[G,, Cor. 30.3]. This contradiction yields
the desired conclusion in the case where n = 0.

At the inductive step, we again assume that dim S > n, where n is positive, and
we seek a contradiction. Thus, take a chain Py < P, < ... < P,,, of proper
prime ideals of S. Replacing the rings between R and S by their factors modulo
the contraction of P,, we assume without loss of generality that S is an integral
domain and P, = (0). Again choosing t;e P;,,; — P;for0 < i < n, we conclude as
in the case where n = O that S = R[t,,t,,...,t,]. In particular, S is affine over R,
and by replacing R by an appropriate affine S-overring of R, we may assume
without loss of generality that S = R[t] is a simple extension of R. Now ¢ is not
transcendential over R, for otherwise R[t>] would be a proper S-overring of R of
dimension greater than n. Hence ¢ is algebraic over R, so P; meets each proper
S-overring of R nontrivially. Thus, R* = R/(P; nR) is a proper subring of
§/P; = $* such that each proper affine S*-overring of R* has dimension at most
n — 1, while dim $* = n. This contradiction of the induction hypothesis forn — 1
yields the inductive step, thereby completing the proof of Theorem 1.

Taking R to be the prime subring of S in Theorem 1 yields the following
absolute case of that result.
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COROLLARY 1. Suppose n is a nonnegative integer and that the ring S admits
a proper subring. If each finitely generated proper subring of S has dimension at
most n, then S has dimension at most n.

We use Theorem 1 in proving Theorem 2, an analogue of Theorem 1 for the
Artinian property.

THEOREM 2. Suppose R is a proper subring of a ring S and that each proper
S-overring of R is Artinian. Then S is Artinian.

PrOOF. Theorem 1 shows that S is zero-dimensional. Assume that S is not
Artinian. Then Sis not Noetherian [ZS, Th. 2, p. 203]. Let I be an ideal of S that is
not finitely generated. Replacing S and R by S/(I »n R) and R/(I n R), we may
assume without loss of generality that I n R = (0); in this connection we note that
S/(I » R)S is not Noetherian, for since I N R is a finitely generated ideal of R,
I/(I ~ R)S is not finitely generated as an ideal of S/(I » R)S. Now [ is not finitely
generated as anideal of R + I,so R + I = S and the sum R + [ isdirect as a sum
of Abelian groups. If J is an ideal of S properly contained in I, then
R+ J < R+ 1,50 R + J is Noetherian and J is finitely generated both as an
ideal of R + J and of S. Therefore I is a Jonsson w,-generated module over S, and
this contradicts Remark 1.3 of [GH, ], which shows that a zero-dimensional ring
does not admit a Jonsson a-module for any infinite cardinal a. Therefore S is
Artinian, as asserted.

COROLLARY 2. Ifthering S admits a proper subring, and if each proper subring of
S is Artinian, then S is Artinian.

In Corollary 2, it is not sufficient to assume that each finitely generated proper
subring is Artinian. For example, if S is hereditarily zero-dimensional, then each
finitely generated subring of S is Artinian, but S need not be Artinian. A specific
example of thiskind is F[{X;}2,1/({X;X;}), where Fis a finite field and {X;} , is
a set of indeterminates over F.

In contrast with the situation indicated by Corollary 2, a ring S need not be
Noetherian if each proper subring of S is Noetherian. For example, if S = Z(+)G
is the idealization (see [H, p. 161]) of Z and a p-quasicyclic group G, then S is not
Noetherian (G is the unique ideal of S that is not finitely generated; each other
ideal of S is principal), but any proper subring of S is of the form Z(+)H for some
proper, hence finite, subgroup H of G. Therefore each proper subring of S is
Noetherian. More generally, if R is a Noetherian ring of positive dimension, then
R admits a Jonsson w,-generated module M [GH,, Theorem 2.7], and if
S = R(+)M, then S is not Noetherian, but each proper S-overring of R is
Noetherian (cf. [GH3, (E3), p. 134]). In general one cannot expect S to be of the
form R(+)N for some Jonsson w,-generated R-module N; for example, if
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S = Z(+)G as above and if R = Z(+)H, where H is a nonzero proper subgroup
of G, then R is not a direct sumand of the additive group (S, +) since H is not
a pure subgroup of (S, +) [F, Section 26]. In the preceding example it is true that
S = R + G, where G is a JOnsson w-generated ideal of S, and in fact, it is easy to
show in general that if R, is a Noetherian subring of a ring Sy and if S; = Ry + [
for some Jonsson w,-generated ideal I of Sq, then S, is not Noetherian but each
proper Sp-overring of R, is Noetherian. We note that [ is also a Jonsson
wo-generated module over R, in this latter case, and if I is faithful as an
Ry-module, then Ry n I = (0) [GH,, Corollary 1.2], and hence S, = Ro(+)I.
Theorem 4 indicates more precisely what the situation is in the general case. The
proof of Theorem 4 uses Theorem 3, and for reference in the proof of Theorems
3 and 4, we record here a result from [GH,].

ProrosITION 1. ([GH,, Prop. 1.3]) Assume that R is a subring of S and N is
anilpotent ideal of S such that S = R + N. Then N is finitely generated as an ideal
of S if and only if N is a finitely generated R-module.

THEOREM 3. Suppose R is a proper subring of a ring S, each proper S-overring of
R is Noetherian, and S is not Noetherian. Let I be an ideal of S that is not finitely
generated.

(1) S=R +1and S/l ~ R(I~R).IfI1 "R = (0),then I is a Jonsson wy-gener-
ated module over both S and R and S = R(+)1.

(2) S/I nR)S = [R/(I ~n R)J(+)[I/(I ~ R)S], where I/(I nR)S is a Jonsson
wo-generated module over S/(I N R)S and over R/(I n R).

(3) I* = (I " R)S and S has Noetherian spectrum.

(4) If J is an ideal of S contained in (I N R)S, then (R + J) < S, s0 R+ J is
Noetherian and J is finitely generated both as anideal of R + J and as anideal of S.

(5) S is not an integral domain.

(6) The nilradical N of S is not finitely generated, and hence S = R + N.
Moreover, (N N R)S is a Noetherian R-module.

(7) IfRisreduced,thenS = R(+ )N, where N is a Jonsson wq-generated module
over both S and R.

ProoF. (1): Theequality S = R + I follows because R + I is not Noetherian,
and isomorphism of S/I and R/(I " R) is a consequence of this equality. If
INnR=() and if J is an ideal of S properly contained in I, then
R+ J <R+ I =S8. Therefore R + J is Noetherian and J is finitely generated
both as an ideal of R + J and as an ideal of S. It follows that I is a Jonsson
wo-generated ideal of S, so I? = (0) [GH,, Corollary 1.2] and S = R(+)I, as
asserted.

(2): Therings R/(I n R)and S/(I n R)S satisfy the conditions on R and S in the
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statement of Theorem 3, and I/(I » R)S is a non-finitely generated ideal of
S/(I ~ R)S that meets R/(I N R) in (0). Thus, (2) follows from (1).

(3): It follows from (2) that I2 = (I N R)S, so rad(I) is the radical of the finitely
generated ideal (I N R)S. Because [ is a arbitrary non-finitely generated ideal of S,
each radical ideal of S is the radical of a finitely generated ideal, so S has
Noetherian spectrum [OP, Prop. 2.1].

(4): Suppose S = R + J, where J is an ideal of S contained in (I n R)S. Then
I=1InS=I1In(R+J)=UnR)+ J. Thus I/J is finitely generated, I/(I n R)S
is finitely generated, and hence I is finitely generated. This contradiction shows
that (R + J) < S for each J.

(5): Suppose, to the contrary, that S is an integral domain. Then (1) implies
that xI is finitely generated as an ideal of S. Because x is not a zero divisor in S, it
follows that I is also finitely generated, a contradiction.

(6): If P is a proper prime ideal of S, then each proper (S/P)-overring of
R/P n R) is Noetherian, so (5) implies that S/P is Noetherian. Since S has
Noetherian spectrum, there are only finitely many minimal primes Py, P,,..., P,
of S[K, Prop. 4.9, p. 25], and since each S/P; is Noetherian, S/(n}_, P;) = S/N is
also Noetherian [N, (3.16)]. Because S is not Noetherian, there exists a prime
ideal Q of S thatis not finitely generated. Since Q/N is finitely generated, it follows
that N is not finitely generated, and (1) shows that S = R + N. Now (4) implies
that R + (N n R)S is Noetherian, and since (N n R)S is nilpotent, Proposition
1 implies that (N n R)S is a finitely generated, hence Noetherian, R-module.

(7) follows immediately from (1) and (6).

In connection with part (5) of Theorem 3, we remark that a proof similar to that
of Theorem 2.1 of [GH;] shows that under the notation and hypothesis of
Theorem 3, S = R + K for each regular ideal K of S, and K = (K n R)S if
(K n R)S isaregular ideal of S. An alternate proof of (5) can be obtained from this
assertion.

THEOREM 4. Suppose R is a Noetherian subring of a non-N oetherian ring T, and
let N and M denote the nilradicals of T and R, respectively. The following
conditions are equivalent.

(1) Each proper T-overring of R is Noetherian.

(2) Each proper T-overring of R is a finitely generated R-module.

(3) N/MT is a Jonsson wy-generated module over R/M.

PROOF. (1) <> (2): It is clear that (2) implies (1). If (1) holds, then part (6) of
Theorem 3 shows that T = R + N. Hence if S is a proper T-overring of R, then
S = R + (S n N),where S n N is nilpotent. Proposition 1 then implies that S " N
is a finitely generated R-module, so S = R + (S n N) is also a finitely generated
module over R.
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(1) <> (3): Parts (6) and (2) of Theorem 3 show that (1) implies (3). We show
that (2) follows from (3). Thus, assume that (3) is satisfied and let S be a proper
T-overring of R. As in the preceeding paragraph, we have S = R + (S~ N),
where M (SN N)< N. Suppose N=(SAN)+ MT=(SnN)+ MR +
MN =(SnN)+ MN. Then N=(8nN)+ M[(SAN)+ MN]=(SnN)+
M?N, and by an easy induction argument, N = (S n N) + M*N for each positive
integer k. Since M* = (0) for some k, it follows that N = S n N, a contradiction.
Therefore (SN N)+ MT < N, so by hypothesis, [(SNN)+ MT]/MT ~
(S~ N)/(S n MT)is a finitely generated R-module. Part (6) of Theorem 3 shows
that SN MT is also a finitely generated R-module. Therefore S~ N and
S = R + (S n N) are finitely generated R-modules, (2) is satisfied, and this com-
pletes the proof of Theorem 4.

As previously stated, a zero-dimensional ring does not admit a Jonsson
wo-generated module [GH,, Remark 1.3]. This fact and Theorem 4 (or part (2) of
Theorem 3) yield the next result.

COROLLARY 3. Suppose R is a proper subring of a ring S and that each proper
S-overring of R is Noetherian. Then S is Noetherian if either R or § is zero-
dimensional.

Part (7) of Theorem 3 and Corollary 3 settle the absolute case of the problem
under consideration, as follows:

COROLLARY 4. Suppose each proper subring of the ring S is Noetherian. Then
either S is Noetherian or else S = Z(+)G, where G is a p-quasicyclic group.

PrOOF. Suppose S is not Noetherian. Then Corollary 3 implies that Z is the
prime subring of S, and part (7) of Theorem 3 shows that S = Z(+)M, where M is
a Jonsson wy-generated Z-module — that is, a non-finitely generated abelian
group, each of whose proper subgroups is finitely generated. Since the additive
group of Q admits proper subgroups that are not finitely generated, the group
M is not torsion-free [GH,, Theorem 1.4]. Hence M is a torsion group, and in
this case it is known that, in fact, M must be p-quasicyclic [ F, Exercise 4, p. 105],
[GH,, page 46].

Ifthe notation and hypothesis are as in the statement of Theorem 4, we remark
that N itself need not be a Jonsson wy-generated module over T. For an example
to establish this assertion, let G be the direct sum of an infinite cyclic group C and
a quasicyclic group H. Let T = Z(+)G and let R = Z + C. The conditions of
Theorem 4 are satisfied, but the nilradical of T is G, and G is not a Jonsson
wy-generated module over R.

We remark that in the paper [GO], Gilmer and O’Malley impose no condi-
tions concerning existence of a unity element in their use of the terms ring and
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subring. In this more general sense, they show that the p-quasicyclic groups,
under trivial multiplication, are the only non-Noetherian rings for which each
proper subring is Noetherian; they also show that this conclusion remains valid
even for rings that need not be commutative, provided the Noetherian condition
is replaced by the ascending chain condition for left (or right) ideals. If one
restricts to commutative rings with unity, it is easily seen that if S is a ring with
unity element e and if each proper subring of S containing e is Noetherian, then
any proper subring R of S containing any unity element is Noetherian; this
follows since R is a direct summand, and hence a homomorphic image, of the
subring R[e] of S.

ReMARK. If Risasubring ofa ring T, then T'is said to be a J-algebra over R (for
Jonsson wq-generated algebra) if T is not finitely generated as an algebra over R,
but each proper T-overring of R is finitely generated as an algebra over R.
Theorem 4 shows that if R is Noetherian, T is non-Noetherian, and if each proper
T-overring of R is Noetherian, then T is a J-algebra over R. The theory of
J-algebras is developed in [GH,]. If R and T satisfy the equivalent conditions of
Theorem 4, then N/M T is also a JoOnsson wy-generated module over T/MT by
part (7) of Theorem 3, and therefore also over T. (Since the structure of N/MT as
a module over T/MT is essentially the same as its structure as a module over
T [G,, p. 8].) By [GH,, Prop. 1.1] the annihilator in T of N/M T'is a prime ideal
Q of T. The prime ideal Q is nonmaximal, but need not be a minimal prime of T.
For example, let R be the polynomial ring Z[ X], let G be a p-quasicyclic group,
and define G as a Z[ X]-module by defining Xg = O for each ge G. Then G is
aJonsson w,-generated R-module. Henceif T = R(+ )G, then R and T satisfy the
equivalent conditions of Theorem 4, but the prime ideal Q = XR + G is non-
minimal and is the annihilator of the Jonsson wy-generated T-module G.

If R is a subring of a ring T and if R and T satisfy the equivalent conditions of
Theorem 4, then the following result describes finite generation of certain ideals
of T.

PROPOSITION 2. Suppose R is a Noetherian subring of a non-Noetherian ring
T and that T is a J-algebra over R. Let M and N denote the nilradicals of R and T,
respectively, and let Q be the annihilator in T of the module N/MT. Then Q is
a prime ideal in T. If I is an ideal of T that is not contained in Q, then I is finitely
generated. On the other hand, each prime ideal of T contained in Q is not finitely
generated.

PrOOF. By Theorem 4, N/MT is a Jonsson w,-generated module over R/M,
and as remarked above, it follows that N/M T = G s also a Jonsson w,-generated
module over T, so that by [GH,, Prop. 1.1], Q is a prime ideal. Moreover, by this
same reference, for each t € T, either tG = G, or tG = (0). Since Cohen’s Theorem
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[N, (3.3)] implies that any ideal in a ring maximal with respect to not being
finitely generated is a prime ideal, to show that an ideal I of T'is finitely generated,
it suffices to show that every prime ideal containing I is finitely generated.
A prime ideal P of T is finitely generated if and only if P/M T is finitely generated.
Therefore by passing to R/M and T/MT, we are reduced to the case where R is
areduced Noetherianringand T'is a J-algebra over R. By part(7) of Theorem 3, it
follows that T = R(+)G, where G is the nilradical of T. If P is not contained in Q,
choose ye P — Q. Then yG = G so that yT contains G, and hence T/yT=
R/(yT n R). Therefore T/yTis Noetherian and P is finitely generated. For any
prime P of T, we have G = P,sothat P = (PN R) + G. If P < Q, then PG = (0)
and any set of generators of P as an ideal of T = R(+)G has the property that the
components in G of the generators generate G. Since G is not finitely generated, it
follows that P is not finitely generated if P < Q.

COROLLARY 5. Suppose R is a proper subring of the ring T and that each proper
T-overring of R is a principal ideal ring (PIR). Then T is Noetherian, but T need not
be a PIR, even in the absolute case where R is the prime subring of T.

PrROOF. Assume that T is not Noetherian. If N and M denote the nilradicals of
T and R, respectively, then Theorem 4 and part (7) of Theorem 3 show that we can
replace T and R by T/M T and R/M, thereby assuming that T = R(+)N, where
R is reduced and N is a Jonsson w,-generated module over both R and T. Let
Q and P denote the annihilators of N in T and R, respectively. As in the proof of
Proposition 2, Q and P are prime ideals of T and R, respectively, and P is also an
ideal of T. Since P is principal, Proposition 2 shows that Q/P is not finitely
generated. Thus, by replacing T and R by T/P and R/P, we further assume
without loss of generality that T = R(+)N, where R is a PID that is not a field
and N is a faithful Jonsson w,-generated module over R. In this case we obtain
the contradiction that there exists a proper T-overring of R that is not a PIR as
follows. If H is a proper R-submodule of N, if S =R + H, if he H, and if r is
a nonzero element of R, then it is straightforward to show that the ideal
I = Sr + Sh of S is principal if and only if h is divisible by r in S. However, N is
either a torsion module over T, or else N is torsion-free [GH,, Prop. 2.1]. If N is
a torsion module, let H be any nonzero proper submodule of N. Since H is finitely
generated, the annihilator dR of H is nonzero; taking r = d and h to be any
nonzero element of H, we conclude that the ideal Sr + Sh of S = R + H is not
principal in this case. On the other hand, if N is torsion-free, then to within
isomorphism, N is the quotient field of R [GH,, Theorem 1.4]. Then if H = R,
h =1, and r is any nonzero element of R, then Sr + Sh is not principal in the
proper T-overring S = R + H of R. We conclude that T is Noetherian, as
asserted.

If R is any prime ring, it is straightforward to show that there exists an
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R-module G such that if T = R(+)G, then T is not a PIR, but each proper
T-overring of R (that is, each proper subring of T)is a PIR. To wit, if R = Z, then
we take G to be a cyclic group of prime order; if R = Z/nZ, where n > 1isdivisible
by p? for some prime p, then again we take G to be a cyclic group of order p and
T = R(+)G; if, on the other hand, nis divisible by the prime p, but is not divisible
by p?,let Gbe H @ H, where H is the cyclic group of order p (the R-multiplication
on G in each case is that induced by considering G as a Z-module).
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