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MEAN VALUES OF SUBHARMONIC
FUNCTIONS OVER GREEN SPHERES

N. A. WATSON

1. Introduction.

If wis subharmonic on R"for any n = 2, and #(w, x¢,) denotes the integral mean
value of w over the sphere of centre x, and radius r, it is well-known that
ZL(w, xy,r)is a real-valued, increasing function of r, and a convex function of (r),
where 7(r) = —logrifn =2, and 1(r) = r2 " if n = 3. Furthermore, w has a har-
monic majorant on R" if and only if #(w, x,, ") is bounded above. For certain
other special domains, such as a half-space, integral means have been found that
have analogous properties (see [ 7, 8] for references). It is the purpose of this paper
to present such means for arbitrary Dirichlet regular Greenian domains.

Some work on wide classes of domains has already been carried out. In [13],
Wu introduced a class of integral means on subdomains of R2, which had
convexity properties and were linked to the shape of the domains. The integrals
were taken over level curves of certain harmonic functions. In [7, 8], Gardiner
produced integral means that were completely analogous to £(w,xq,r), on
unbounded, locally Lipschitz domains in R" for any n = 2. Those means directly
generalized known means on certain special domains, and the integrals were
defined in terms of level surfaces of certain functions, but were unrelated to those
of Wu.

Let D be an arbitrary Dirichlet regular Greenian domain in R”, and let x, € D.
We define integral means Zp(w, xo, ) over level surfaces Gp(xo, )~ *({z(r)}) of the
Green function G 5(xo, - ) for D with pole at x,, an idea suggested by two papers of
Brelot and Choquet [2, 3], where such surfaces are called Green spheres. Since
the gradient of Gp(xo,*) may vanish at some points, we cannot assume that the
level sets are all smooth regular manifolds, but (Lebesgue) almost all of them are.
For the convexity theorem, we prove that there is a convex function ¢ such that
Fp(w,x0,7) = $(1(r)) for every r such that Gp(xo,-) ™ ({z(t)}) is a smooth regular
manifold. These means are completely analogous to, and direct generalizations
of, the mean .Z(w, x,, ), but do not directly generalize other known means for
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special domains, and are unrelated to those of Wu and Gardiner. For the
convexity theorem, our methods are based on the elementary approach to the
classical result for £(w, x,, ) given by Dinghas [4], but because #(w, x,,7) may
not be defined for all , we have to use more sophisticated calculus.

Theorem 1 establishes the properties of .%)p, with the exception of the convex-
ity, which is left to Theorem 2. Convexity results are proved not only for
Lp(w,x0,7), but also for Lp((w*)?, xo,7)'? whenever 1 < p < o0, and for
log Zp(e”, xo, 7). Theorem 3 extends most of the properties of %, to the asso-
ciated volume means /), and also establishes inequalities between %}, and 7,.

Our final result, Theorem 4, is a generalization of the classical three spheres
theorem, in which the spheres are replaced by level sets of Gg(xq,') for an
arbitrary Greenian subdomain E of R". For this result, we do not require any
smoothness of the level sets, so that we do not need to assume Dirichlet regular-
ity, or to avoid exceptional values of r. The level sets may meet the boundary of E,
but only in a harmonic measure null set, which creates no difficulties.

n
We put Vu = (Dyu,...,Du), {x,y> = Y x;y;, and ||x| = {x,x)'/?. On any
i=1

smooth surface, we use o to denote surface area measure, v to denote the outward
unit normal, and D,u to denote {Vu, v). The surface area of the unit ball in R" is
o,, and the volume is v,. Where no measure is specified, the term ‘almost
everywhere’ is to be interpreted with respect to Lebesgue measure, as is the term
‘measurable’. The words ‘increasing’ and ‘decreasing’ are used in the wide sense.
The characteristic function of a set S is denoted by xs. By a ‘smooth’ function, we
mean one which is twice continuously differentiable. For potential theoretic
generalities, we refer the reader to Doob’s book [5].

2. Preliminary discussion of surfaces and means.

Throughout this paper, G(x,,) denotes the fundamental superharmonic func-
tion with pole at x,, and 7, D, Gp(x,, ") are as described above. For any x € D, we
have

(1) Gp(xo,") = G(xo,") — h

on D, where h is the PWB solution of the Dirichlet problem for D with boundary
function G(x,,) [5, pp. 104, 136], since all boundary points of D are Dirichlet
regular (including the point at infinity if D is unbounded). For the same reason,
given any r such that 7(r) > 0, the set

Bp(x0,7) = {xe€D:Gp(xo,x) > t(r)}

is bounded and its closure is contained in D; it is also a domain [2, p. 118]. Since
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(1) shows that Gp(x,, *) is analytic on D\{x, }, for almost every r such that 1(r) > 0
the set

) {x€D:Gp(xe,x) = (r)}

isa smooth, regular, (n — 1)-dimensional manifold, by Sard’s theorem [12, p. 45].
(According to Kellogg [9, p. 276], in any bounded interval there are only finitely
many values of r such that VGp(x, ) has a zero at some point of the set (2), but
this does not seem to make any difference to our arguments.) We call such a value
of r a regular value. (To avoid confusion, the potential theoretic notion of
regularity is referred to as Dirichlet regularity.) For any regular value of r, the set
(2) is OBp(x,,r), and the outward unit normal to it is given by the standard
formula v = —VGp(xo,")||VGp(xe,*)l| 1.

We now define the surface means. Let k, = 0,, and kx, = (n — 2)g, if n = 3.
Given xy € D and a regular value of r, we put

Zo(u, Xo,1) =K, ! J IVGp(xo,*)llu do

0Bp(xo,r)

whenever the integral exists.

THEOREM 1. Let w be subharmonic on an open superset E of Bp(xo, 7).

(i) The function S+ Lp(x,, Xo,1) on the Borel subsets of 0Bp(xo,r), where r is
a regular value in ]0,ry], is the harmonic measure relative to x,. Therefore
W(xo) £ (W, X, 1) for all such r, and the function Fp(w, Xo,") is increasing and
finite-valued.

(ii) If D = E, then w has a harmonic majorant on D if and only if £p(w, x,,") is
bounded above.

PRrROOF. Let r be a regular value in ]0,r,], and let B = Bp(x,,r). We have two
representations of Gg(x,, ), namely

©) Gp(xo,") = G(xo,") — H,

where H is the PWB solution of the Dirichlet problem for B with boundary
function G(x,,), and

C) Gp(xo,) = Gp(xo,") — (r),

which is given in [2, p. 118]. The representation (3) shows that
Gp(xo,") — G(xo,") can be extended to a smooth function on B, and the identities
(4) and (1) then show that Gp(xe, ) — G(xo,') can be extended to a smooth
function on D, which is equal on 0B to — G(x,, ") because Bis Dirichlet regular. It
follows that the function
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S '—K:n_1 J‘DVGB(an‘)dG
N

on the Borel subsets of 0B is the harmonic measure relative to x, [5, p. 13].
However, in view of (4), on B we have

—D,Gg(x0,") = {VGp(xo,"), VGp(xo, )IVGp(Xo, ) "> = [IVGp(xo,")ll,
so that the first part of (i) is proved. The remainder of the theorem now follows
from [5, pp. 122-3].

We need a lemma on the transformation of integrals. For generality, we
sometimes work with domains bounded by two surfaces of the form 0Bp(x,,7),
where x, is fixed and r is regular. Such domains are direct generalizations of an
annulus. If xo € D, and ry, r, are regular values with r; < r,, we put

Ap(xo,71,72) = Bp(Xo,72)\Bp(xo,71).
It is sometimes convenient to write Ap(X,,0,r;) for Bp(xo, ;).

LEMMA 1. Let F be ameasurable function on Ap(xo,r,,r;), whereQ < ry <ry If

Fdx

Ap(x0,r1,r2)
exists as a Lebesgue integral, then it is equal to

r2

- J.t'(p)dp J F|VGp(xo,-)ll~ 'da.
r 0Bp(x0,p)

Proor. Define g on R" by putting g(x) = Gp(xo,x) if x€Ap(xp,71,72),
g(x) = 1(ry) if x€Bp(xo,r;) (if ry > 0), and g(x) = 1(r,) otherwise. Then g is
a Lipschitz function on R". Define F, and f on R" by putting Fy(x) = F(x) if
x€ Ap(Xo,71,72), Fo(x) =0 otherwise, and f = F,||Vg| ~'. Suppose first that
F = 0. Noting that Federer uses the term ‘integrable’ to mean ‘has a well-defined
integral’, we can apply the coarea formula [6, p. 249] to f, and obtain

JfllVg]ldx=Idt J fdo.
R™ R gi(®) ’

Hence
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wry)

[ ] o

Ap(x0,r1,r2) wr2) g~ '({n)

=—JT'(P)dP f F||VGp(xo,")| ~ 'do.
ry OBp(x0,p)

If now F is arbitrary, the result follows when the above formula is applied to the
positive and negative parts of F.

3. An essential lemma.
The next result forms the basis of our proof of the convexity theorem.

LEMMA 2. Let w be a smooth function on an open superset E of Ap(Xo,71,72),
where O < r; <r,. Then there is an absolutely continuous function f on [ry,r,]
such that f(r) = %W, xo,r) for all regular values of re[ry,r,], and

5) o () = f D,wdo
. 0Bp(xo,r)

whenever f'(r) exists (hence a.e.). If, in addition, Aw = 0 on E, then [’ exists
everywhere on [ry,r,], is absolutely continuous there, and satisfies

©) el () =1t 7" j IVGp(x0,-)I ~* Awds
OBp(xo,r)
for almost all re[ry,r,], where ¢, = 6,5, and ¢, = 6,/(n — 2) if n = 3.

Proor. Ifvisasmoothfunction on E, and A is a domain, with closure in E, for
which the divergence theorem is applicable, the identity

wdv = i Di(wD;v) — {Vw,Vv)
i=1

implies that

@ I(w Av + {(Vw,Vo))dx = wavv do.
A

04

Interchanging v and w, then taking v = 1, we obtain
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(8) JAW dx = ~J‘Dvw do.
A 04
By using the notation Ap(xe,7;,r;) in the statement of the lemma, we have
implicitly assumed that r, and r, are regular values. Let r be a regular value in
Jri,r2],and put Ap = Ap(xo,7y,7). Wetake A = Apin(7),and apply Lemma 1 to
obtain

( J - J >vav do = — Jt'(p)dp f wav + {Vw, VD) VG, |~ do,
0Bp()  OBp(ry) r OBp(p)
®

where Bp(r) = Bp(xo,7)and G, = Gp(xo,* ). In(9) we take v = 17 1(Gp),so that on
Ap we have Vv = (17 1)(Gp)VGp and dv = (t71)(Gp)||VGp| 2. Therefore, on
0Bp(p) where Gp=r1(p), we have —7(p)Vv = —VGp, and
—1(p) 4 v = 1"(p)v'(p) “2||VGpl|%. Therefore the right side of (9) divided by o, is

o, ! |dp J W' (p)'(p) " 2IIVGp| — <Vw,VGp)[IVGpll ™ )do

r 0Bp(p)

=(n-— l)x;ljdp J p" 2|VGpllwds + o, ! fdp f D wdo
ri.  OBp(p) ri  0Bp(p)
= (n - 1) Jpn_ng(w’ Xos p)dp + O',I_IJ‘ J Dvw do
r r1 0Bp(p)

for all n = 2. Furthermore, on dBp(p) we have o, !(z"!)(Gp) = 0, 't (p) "' =

—k, 1p" 71, so that the left side of (9) divided by o, is

( I - f )WG.T 1(z™'Y(Gp)D,Gpdo

OBp(r)  0Bp(r1)

=K..'1("'"' j -t I)IIVGnllwda

0Bp(r) 0Bp(r1)
= r“— l.‘Z’D(‘v’ xO’r) - r';— l’?‘)(w’ xOr rl)
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for all n = 2. Hence

(10) r"_‘%(WvXOar) - r’ll_l%(w,XO’rl)

= (n - 1) Jpn—ng(w, X0, P)dp + a.n_1 J‘dp f DdeO'.
r ri 0Bp(p)

The right side of (10) defines an absolutely continuous function of r on [ry,7,],
so that (10) enables us to extend %p(w, xo, * ) to an absolutely continuous function
f on [ry,r,] such that

roe) =T )= — l)jp"'zf(p)dp +0, ! Jdp J Dwdo
r ry 0Bp(p)

for all re[r,,r,]. The function f is differentiable a.e., with

@) =0 = )3 + ot f D,wda,
OBp(r)
so that (5) holds.

We now suppose that 4w = 0, apply (8) with A = Ap, and use Lemma 1 with
F = Aw. Thus

r

J Dwdo = — It’(p)dp f IVGp|| =t 4wde.
0Ap ry 0Bp(p)

It now follows from (5) that, for almost all re[r;,r,],

r

(11) o (" () — T (r) = — f T(p)dp J IVGpl = dwdo.
r 0Bp(p)

(Since we can vary r, and r, slightly without affecting the statement of the lemma,
we can assume that (5) holds when re {r,,r,}, and then (11) holds with r = r;.)
The right side of (11) defines an absolutely continuous function of r on [ry,7,], so
that (11) enables us to extend f’ to an absolutely continuous function g on
[r1,r2]. Then f is the indefinite integral of g, so that f'(r) exists and (11) holds for
all re[ry,r,]. Since f' = g, it is differentiable a.e., and (6) follows from (11).
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4. Convexity of surface means of subharmonic functions.
We are now able to complete the list of desirable properties of .%,.

THEOREM 2. Let w be subharmonic on an open superset E of Ap(xo,71,7,), where
0 <ry <r,. Then there are convex functions ¢,, 1 < p < oo, such that for all
regular values of re[ry,r,],

Zp(w, xo, r)= ¢1(T(r)),
L(W*)P,x0,1)'P = ¢, (x(r)) if 1 < p < 0,
log %(ew, X0, r) = ¢oo(T(r))‘

PrOOF. Suppose first that w is smooth and has a positive lower bound. Put
Yit)=tPif 1 < p < o0,and P(t) = € if p = o0. Then Y satisfies the conditions

(12) Y1) >0, P()>0, s¥()?*=YRYP'(®

forallt > 0,whered =1—p 'ifl < p<oo,andd = 1if p = co. By Lemma 2,
there is an absolutely continuous function f on [r,,r,] such that f(r) = Z(¥(w),
Xo, 1) for all regular values of r, f* exists and is absolutely continuous on [r,,7,],

(13) o, " f(r) = ¥Y'(w)D,wdo
0Bp(r)

for all r, and

(14) e )y =1t 7" IVGp(xo,°)Il =t 4 (¥(W)) da
OBp(r)

for almost all r. Since A(¥(w)) = P"(W)||Vw||?> + ¥'(w) 4w, it follows from (14)
that

(15) e )Y 2t J P(wW)| Vw2 |VGp(xo, ") ~* do.
9Bp(r)
Putting di = x,; *|VGp(xe,)l|do, so that f(r) = Y(w)dA for all regular
0Bp(r)

values of r, we deduce from (13) that
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f)=0,"r'""x, J P(w)' (¥’ (W) (W)~ 2D,w|| VGp(xo," )l ')A

OBp(r)

S K0, 1r“”f(r)m( J 'I”(W)ZY’(W)"(DVW)ZIIVGD(xo,‘)Il‘zdl>m,
0Bp(r)

so that

F@)? £ k0,227 2(r) J P'(w)*P(w) " IVWI2 I VGp(xo,°)l ~ do.
OBp(r)

It now follows from (12) and (15) that

S0 < k0, 21272 f(r) S~ WIVWI2IVGp(xo," )l do
0Bp(r)

ST,

so that

(16) rfOf"() + (n — D) f'(r) — orf'(r)* 2 0.
Let ® = ¥, so that

a7 o) >0, P1)>0, &)= —ot~'d(r),

in view of (12). The function g on [ry,r,], given by g(r) = & f()(r)"!, is
differentiable, with

(18) gr) = U@ )" — SSfO)e(r) " *0'().

Since w has a positive lower bound, so does f. Therefore the right side of (18) is an
absolutely continuous function of r, so that g” exists a.e. and

g'(r) = (NS0 1)~ + SN/ )™ = 28 (F NS ()e(r) ()
(19) + 20(f()(r) ~*7()? — S (e(r) 21" ().

We now put h(s) = g(r), where s = 1(r) "}, so that k'(s) = —g'(rNz~1)(s™*)s 2 for
all s, and

H'(s) = g"(r Xz~ Y™™ + g@Xa ™) (s™ s ™ + 290X ) (s Y)s 3
=7() 3" T — g (T() + 29 () () 2() )
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for almost all s. It now follows from (17), (18), (19) and the identity
(r) = (1 — n)t'(r)r ! that

h'(s) = ()7 s~ @ (FENS()*2(r) " 7' () + PSS (rye(r) ™ <'(r)
= NS ()yer) ™ ")
= POV @) s (= P T0) + [ OT) — SO ()
= SO)) 270 T =0 () + rf( () + (n = DFOVS()).

Therefore (16) implies that h” = 0 for almost all s. Since g’ is absolutely continu-
ous, the same is true of h'. Therefore h’ is increasing, and so h is convex. Thus
&(f(r))t(r) ! is a convex function of 7(r) " !, which means that &(f(r)) is a convex
function of (r).

If wis now an arbitrary non-negative subharmonic function, we take a decreas-
ing sequence {w;} of smooth subharmonic functions which converges to w on
a neighbourhood of Ap(xo,7y,7;). Then {w; + j~ !} has similar properties, and
each v; = w; + j~! has a positive lower bound, so that each &(L(¥(v)), xo, 7)) is
equal at the regular values of r to a convex function ¥; of 7(r). Hence, at such
points,

¢($(W(W), X0, r» = hm ¢($(‘P(U1)’ X0, r)) = hm Wj("-’(")),

and lim y; is convex. )

If pe {1, oo}, the result is easily extended to arbitrary lower bounded subhar-
monic functions, and then to arbitrary subharmonic functions by another ap-
proximation argument.

COROLLARY. Let w be subharmonic on an open superset E of Ap(xo,71,72),
whereQ < ry < r,.Ifvisdefined on 0By(xq,r)for all regular values of r€ Jr,r,[ by

ox) = LW, Xo,7~ *(Gpl(xo, X)),
then v can be extended to a subharmonic function on Ap(xq,r1,73).

Proor. By Theorem 2, there is a convex function ¢ on [(r,), ©(r,)] such that
(x) = ¢(Gp(xo,x)) wherever »(x) is defined. Since Gp(xy,*) is harmonic on
Ap(xo,ry,r2), the function ¢ o Gp(x,,-) is subharmonic there.

5. Volume means of subharmonic functions.

Let A, = vy,and 4, = (n — 2)?v, if n 2 3. For any r (such that () > 0), and any
xq€ D, we put
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Ap(t, Xo,7) = A r ™" f 77 (Gp(x0,"))*" 2| VGp(xo," )| *udx
Bp(xo,r)
whenever the integral exists, in which case it follows from Lemma 1 that
(20) A p(u, xo,7) = nr=" Jp”‘lfp(u, Xo, p)p.
0

Since Theorem 1 implies that #(1, x,,r) = 1 for all x, and regular values of r, it
follows that .&/p(1, xo,7) = 1 for all x, and r. Since subharmonic functions are
locally bounded above, it follows that .o/,(w, x,,7) is defined whenever w is
subharmonic on an open superset of Bp(xo,7).

THEOREM 3. Let w be subharmonic on an open superset of Bp(xq,r). Then:
(l) w(xO) é dp(w, x09 ’ ) on ]09 rO];

(ii) Zp(w, xq, ) is finite-valued and increasing on 10,r4];

(iil) there is a convex function W such that for all r€0,r,]

(W, xo,7) = Y(z(r));
(iv) for all regular values of re]0,r,],
MD(W, X0, r) é .?D(W, xO, r);

(v) ifk = e Y2 whenn = 2,andx = (2/n)*"~ 2 whenn = 3, then for all regular
values of kr€]0,kr,] we have

(W, X, kr) S p(W, Xo,7),
and the constant k is the best possible.
PRrOOF. Properties (i) and (iv) follow from (20) and the inequalities
w(Xo) £ Lp(W, X0, p) = Lp(W, Xo,7)

of Theorem 1. The proofs of (ii) and (iii) follow those in [11, p. 9]. Thus, by
Theorem 2 there is a convex function ¢ such that Z(w, x,, p) = ¢d(1(p)) for all
regular values of p € ]0, 7, ]. The convexity of ¢ ensures that t ~'¢(t) - aast — oo,
for some a > — oo. Since %p(w, x,, ") is increasing by Theorem 1, ¢ is decreasing
and hence o < 0. In particular o € R, so that

p" " oW, X0, p) = (" ' 2(p))e(p) " P(t(p) - O

as p — 0. Thus the integrand in (20) is equal a.e. to a real continuous function on
[0, ro]. Therefore o7 p(w, x,, * ) is real-valued, and we can approximate the integral
in (20) by Riemann sums. Thus



318 N. A. WATSON

(W, Xo,r) = lim (n ; J k" pla(r/ k))),

k— o0
and properties (ii) and (iii) follow easily.
The inequality in (v) is proved by an application of Jensen’s inequality,
following Beardon’s proof [1] for the case D = R". Thus, if kr is a regular value in
10, xro], then by Theorem 2 there is a convex function ¢; such that

Zp(w, X0, k1) = ¢y (t(kr))

r

= ¢1(nr’" j p"“t(p)dp>

0

r

< nr"'Jp”"dh(r(p))dp
0
= MD(W, X0, T)
in view of (20). Finally, if w = — Gp(x,, ") then Z(w, xo, p) = —1(p), so that, by
(20),
A p(W, Xo,7) = —nr"'jp""r(p)dp = —1(kr).
0

Therefore if 1 > k we have p(w, xo,7) < LW, X0, Ar).

6. The generalized three spheres theorem.

In Theorem 2, we could have made p — oo and concluded that the maximum of
a non-negative subharmonic function over dBp(xo, ) is equal a.e. to a convex
function of 1(r), and subsequently used an approximation argument to remove
the non-negativity hypothesis. However, we can obtain a better result under less
stringent conditions on the domain, and now proceed to do so.

THEOREM 4. Let E be an arbitrary Greenian subdomain of R". Let w be subhar-
monic and bounded above on Ay = {x€E:1(r;) < Gg(xo,X) < ©(ry)} (where
1(r,) > 0), and define w on 0 A, to make it upper semicontinuous on A,. If, for each
refry,ry], we put

F5(r) = Fw, xo,7) = sup {w(x): Gg(x0, X) = 1(r)},

then there is a finite-valued, convex function ¢ such that F(r) = ¢(z(r)).for all
refry,ry].
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PROOF. Letr; <5; <5, Sry,andput A = {xe E:1(s;) < Gg(xo,x) < ©(sy))}-
If F(s;) = — oo, then {x€ E: Gg(xo,X) = t(s;)} is a harmonic measure null set
relative to A. Since d A N JE is also a harmonic measure null set (by [2, p. 119] or
[3, p. 228]), the whole of 04\ {x € E : Gg(xo, x) = (s,)} is negligible, contrary to
the fact that Gg(x,, ) is constant on the remainder of 94 but not on 4. A similar
argument works if #(s,) = — o0, so that % is real-valued.

The rest of the proof'is a slight modification of the standard proof for spheresin
[10, p. 131]. The function u, defined for all xe E by

©(s1)FE(52) — ©(s2)FE(s1) + (F(51) — FE(52))GE(X0, X)
©sy) — t(s2) ’

ux) =

is harmonic on the open superset E\{x,} of 4. Therefore w — u is subharmonic
on A, and is upper semicontinuous and bounded above on 4. Furthermore,
whenever ie {1,2} and Gg(xo, y) = (s;), we have w(y) — u(y) = w(y) — F(s;)) £ 0.
Since 04 N JE is a harmonic measure null set, it follows that w < u on A, so that

(t(s) — ©(52))FE(s1) + (z(s1) — ©(5)Fx(s2)
©(sy) — (s3)

Fels) =
whenever se[s,s;].
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