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SEMICLASSICAL LIMIT OF THE SPECTRAL
DECOMPOSITION OF A SCHRODINGER OPERATOR
IN ONE DIMENSION

YANG LIU

0. Introduction.

Let L = L, = —h?(d/dx)* + V(x) be a real differential operator in one variable
with a continuous potential ¥(x) and a parameter 1 = h > 0. Let H be I?(R) with
the canonical inner product and let 4:D+— H be a selfadjoint extension of
L operating on C3(R). Let A = [ AdE(J) be the spectral decomposition of A and
E(4)a corresponding projection belonging to a bounded interval 4. We are going
to investigate the semiclassical limit of the projections E(4).

Our basic result (Theorem 1) says that if V(x) = sup 4 + c?insomeinterval I, if
J is a subinterval of I whose distance to the boundary of I is d > 0 and y is the
characteristic function of J, then

IxE(Ayull < 8./5e=4?" |lu|

for all ue H provided that either |J| < d/2 and 0 < h < 1 or e " < 1/2. The
elementary proof combines the spectral decomposition with the fact that real
solutions of the equation f” = Vf are very convex in intervals where V > 0 is
large (see Lemma 2). The inequality means in particular that E(4) is a small
operator when restricted to intervals where ¥(x) > sup 4, i.e. the classically forbid-
den regions for a particle of energy not exceeding the least upper bound of 4.

The inequality above may be improved if we suppose that d > |J| and intro-
duce Agmon distance g(a, x) between two points a and x relative to the potential
U(x) = V(x) — sup 4, i.e. the distance relative to the metric U , (x) dx?. Then for
O<hgl,

IXE(d)ul| < 8¢~ re@I=HDDIR|y)
if U(x) 2 0in J and > 0in I\J\AI and y > 0 is so small that
1 — y? — hysgn(x — a)V'(x) tanh(ye(a, x)/h)/2U(x)** 2 0
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where ais an endpoint of J and x belongs to the corresponding component of I\J
and 0 < h £ 1. Here I(—s) denotes the set of points in I whose distance to the
boundary of I are at least s. (Below we shall also use I(s) for the set of points whose
distance to I are at most s.) Note that 0 < tanh(ye(a, x)/h) < 1. Note also that the
inequality holds withy = 1 and 0 < h < 1 when U(x) decreases away from J. We
can take 1=y > 0 arbitrarily close to 1, when & is sufficiently small and
V'(x)/U(x)*? is bounded in I\J.

Theorem 1 permits an approximate decomposition of E(4) into a sum of
projections F(4) belonging to selfadjoint realizations A(I) of L in intervals
I which cover potential wells of V(x) with respect to 4, i.e. intervals where
V(x) < sup 4. The domain of A(I) consists of the restrictions to I of all u € D which
vanish at the boundary of I. We shall also say that A(I) is the restriction of 4 to I.

The precise results are given in Theorem 2 and Theorem 3. Choose a number
c¢>0 and let I be an interval where V(x) < c? + sup4 and assume that
V(x) 2 ¢ +sup4 in I(2d + b)\I for some b > 0,d > 0. By the basic result
a function u such that E(4)u = uis very small in I(d + b)\I(d) and hence it ought
to be very close to some eigenspace of B = A(I(2d + b)) with spectrum close to 4.
This is indeed the case.

Let F be the spectral measure of B and let ¢ € C2(I(2d + b)) be 1 in I(d)and O in
1(2d + b\I(d + b) and chosen so that ¢’ = O(1/b) and ¢” = O(1/b%) in
I(d + b)\I(d). Then Theorem 2 says that if 2 = 4 is an interval and, v = E(Q)u
and E(4)u = u, then

IFE@))Nev) — vl = O(M(log 1/0)*/b*)e =" |v|

whered > 2b,0 < h £ 1,{ > 0 and M depends on a bound of V where ¢ + 0, 1.
Under the same conditions, the same inequality holds with v replaced by u and
Q by 4. To get the sense of this inequality and the next one, imagine that { > Ois
very small so that Q(+() is very close to Q.

This inequality has a counterpart (Theorem 3) with the roles of 4 and B rever-
sed,

) IE@Q(D)u — ull = O(M(log 1/0)*/(b*())e =" |ju|

where Q < 4, F(Q)u = u, u is continued by zero outside I(2d + b),{ > 0,d > 2b
and 1 = h > 0. When F(4)u = uand F(Q)u = 0 on the other hand, the same right
side majorizes || E(Q(— )ul.

The two inequalities above hold also with Agmon distances in the exponent
under conditions indicated above and made precise in Remarks to Theorem
2 and 3 in the text.

If I is bounded, the spectrum of B is discrete with a separation of the order of
h and we can let Q cover just one eigenvalue of B and get two inequalities
depending on whether F(Q)u is zero not. The result is then that the eigenvalues of
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Bin 4 give rise to resonances in the sense (1) of the global operator 4 which get
sharper as h — 0.

When V(x) < ¢? + sup 4 defines a finite number of potential wells and un-
bounded wells appear, the physical significance of Theorem 2 and Theorem 3 is
that every eigenvalue of 4 in 4 produces resonances in the bounded wells and
that the eigenvalues in 4 comming from the bounded wells produce resonances of
A. In the general case, these discrete eigenvalues appear as imbedded in the
continuous spectra of the restrictions of 4 to the unbounded wells.

It follows from (1) that every bounded well gives rise to bound states or
resonances of the global operator. For Stark effect with potential wells,
V(x) = x + W(x)with W(x) periodic and analytic (Wannier’s ladder), existence of
resonances of A was proved before by dilation analytic method (see Herbst and
Howland, Agler and Froese). In this case every bounded well is paired to an
unbounded well on the same level with a continuous spectrum.

When there are no unbounded wells, our results are more or less included into
those of Helffer-Sjostrand 1984 which hold in several dimensions. Our paper
should also be compared with that of Briet, Combes and Duclos from 1988 (see
the references) where the emphasis is on an infinite number of wells and un-
bounded wells are permitted. They work in several dimensions with some
restrictions on the potential and use Agmon distance to show that the resolvent
R(z) has the property that R(z)u is exponentially small in the regions outside the
support of u where V exceeds the real part of z. When the minimal Agmon
distance between the wells is large enough, they are able to relate the resolvent
sets of L and its localizations to wells. Hence their basic Theorem 1 applies only
when there are gaps in the spectra of the latter.

The author thanks the referee for some suggestions which improve the paper.

1. Solutions of the equation u” = Vu where V > 0.

LemMa 1. Ifu” = Vuin an interval I and V 2 c* (c > 0) is a continuous function
there and u > 0 in the interval, then

u(x)/u(a) = coshc(x — a)

forIax = aandu'(a) = 0orfor Iax < aandu'(a) < 0. Ifu < Oin the interval, the
same inequality holds with reversed signs of the derivative.

PrROOF. Put v =coshc(x — a). Since (v —uv') =u"v —wv” =(V—c*)uv 20,
the Wronskian u'v — uv’ increases. Its value at x = a is u'(a) 2 0. Hence

(u/vy = @Wv —w)fv* 20
when x = a so that

u(x)/v(x) Z w(a)/v(a)
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when x 2 a which is the first case of Lemma 1. The other cases follow in the same
way.

REMARK. Let g(a,x) be Agmon distance between a and x relative to the
potential V] i.e. the distance relative to the metric V, (x)dx2. If we use

v(x) = coshyg(a,x), 1=2y>0

as a new comparison function instead of cosh ¢(x — a), we can obtain a better
estimate of u(x)/u(a) but it will involve a condition on the derivative of the
potential.

The estimate is

u(x)/u(a) = cosh yo(a, x)
provided V(x) > 0 in I and v is so small that the quantity
I'(a,t;7) = 1 — y* — ysgn(t — a)V'(¢t) tanh yo(a, t)/2V(1)**

is = 0 for all ¢t between a and x. In fact, the derivative of the new Wronskian is
I'Vuv. Note that if V decreases away from a, we can take y = 1.

LEMMA 2. Let I be an interval and V(x) 2 c?, ¢ > 0 be a continuous function in
I and let u be a real solution of the equation

" = Vu

in the interval. Let J be a bounded subinterval of I and f = 0 a square integrable
Sfunction with support in J. Then the integral

<fu(x) f(x) dx>2

4e—zc(y—lll)<Ju(x)f(x - BY)dx>2

is not greater than

wherey = |J|and ey + J < 1.

Here ¢ = + 1 and the signs are determined by the following situations.
(@) ux)+0inl.

(a.1) If |u(x)| has its maximum in J at right endpoint of J, then ¢ = 1.
(a.2) If |u(x)| has its maximum in J at left endpoint of J, then e = —1.
(b) u has a zero in 1. Set

M= j u(x)f(x)dx, m= fu-(X)f (%) dx,
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where u, = max(u,0), u_ = max(—u,0).

(b.1) Ifuincreasesin I, thene =1if M = m, and ¢ = — 1 otherwise.
(b.2) Ifudecreasesin I, thene = —1if M = m, and ¢ = 1 otherwise.
(c) u = 0 on the boundary of I.

(c.1) If u = O at the right endpoint of I, then e = — 1.

(c.2) If u = 0 at the left endpoint of I, then ¢ = 1.

REMARK. Since u” = Vuand V > 0in I, u is convex towards the x-axis, and
hence the cases (a) and (b) cover all situations that can occur.

Using Remark of Lemma 1, we can replace the exponent —2c(y — |J|) in
Lemma 2 by —2yg(dI(— |J)),J) provided ¥(x) = 0in J and > 0 in I\J\0I, the
distance from J to the boundary of I is greater than |J| and I'(a, x; ) = O whenais
an endpoint of J and x is in the corresponding component of I\J. When V(x)
decreases away from J, we can take y = 1. We can take y arbitrarily close to 1,
when h is sufficiently small and V'(x)/V(x)*? is bounded in I\J.

PROOF OF LEMMA 2. Part (a).

Whenu > 0in I, 4" = Vu > 01in J so that u is convex in J. Hence it attains its
maximum in J at one of the endpoints. If it is the right endpoint §, by Lemma
1 (since ¥'(f) = 0),

u(x + y)/u(x) 2 u(x + y)/u(B) = coshe(x + y — f)

where xeJ,y = |J|and y + J < I. Since coshc(x + y — ) > e ** 72 > 0= 170/2
when x € J, this proves that

u(x) < 2e0"Vhy(x + y)

where xeJ, y = |J| and y + J < I. If we multiply this by f(x), integrate, square
and change variables we get the required inequality.

When the maximum is attained at the left endpoint, we get the same result with
¢ = —1 and the case u < 0 is similar.

Part (b). Since |u| is convex in I, u has at most one zero in I. In this case, either
u increases in I or u decreases in I. When u is increasing in I and M = m, then

Uu(X)f () dX>2 =M-m? M= (Ju+(X)f(x) dx)

where u . is convex and attains its maximum in J at its right endpoint. Hence we
can apply the part (a) with ¢ = 1. Whenuis decreasinginand M = m,u. attains
its maximum in J at its left endpoint and we can apply the part (a) withe = —1.
The case M < m is similar and (c) is proved in the same way.

2
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LEMMA 3. Ifu” and u are square integrable in a bounded interval K, then
W)l = OB~ |lull + b*7 |lu"ll),
lw'll = O®~ llull + bllu"ll)
and
u(x)l = O~ |ull + b |lu'|l)
where b is the length of K and ||u)|? is the square integral of u over K.

ProoF. Integrating the equality
u'(x)=u'(y) + J u"(t)dt
y

with respect to y between y, and y, and taking absolute value, we get

Y2 = yullW' ) = fu(yo)l + lu(y2)l + lyz — yalllwll s
where [lu”||, is the L'-norm of u” over K. Integrating with respect to y,, y, over
K gives
bAlu'(x)/3 < 2bllully + b |lu"]l1/3
so that, after passing to I?-norm,
W)l < 6072 lull + b2 |u”|

which is the first formula. Squaring and integrating gives the second one.
Starting with the equality

u(x) = u(y) + ju’(t) dt,

taking absolute value, integrating with respect to y over K and passing to
[?-norm gives the third formula.

2. Estimates of projections.

Let L, A, E(4) be as in the introduction. Since A is represented by a differential
operator, A has a concrete diagonalization (see Appendix). There are two Radon
measures dy; 2 0 on the real axis and a unitary mapping

E(R)af+F = (F,(4), F;(A))e LR, ) ® (R, p5)
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which diagonalizes A. Here F is defined as

FiA) = jej(l, x)f(x)dx

when f has compact support and e;(4, x) are real eigenfunctions of L,
Lej(l,x) = Aej(A,x), j=1,2

which are of class C? in x, measurable with respect to the product measure
dx x du;and measurable with respect to the measure dy; for fixed x. The inverse
of the mapping f+— F is given by

2
k) = ; jF i(Dej(4, x) dp(4)

when F has compact support. In particular we get Parseval’s identity

jf (x)?dx = jF 1(A)* duy(A) + j F(2)? dpy(2)

where f e I*(R) or FeI*(R, u;) ® (R, uy).
In terms of the diagonalizing mapping, we have

2
Edfx) =} jF,-(l)e,-(l, x) du;(4).
i=1

LEMMA 4. Assume that A is an interval on the A-axis and that I is an interval on
the x-axis where

V(x) —supd = 2

with ¢ > 0 a fixed number. If J is a subinterval of I and f a square integrable
function with support in J,

)] IE@)f ] < 8e~@ VM 1]
where d is the distance from J to the boundary of  and d 2 |J| and 0 < h < 1.

REMARK. Using Remark of Lemma 2 applied to an equation h%u” =
(V — sup 4)u, we may replace the exponent —c(d — |J|)/h by —ye(3I(—|J|), J)/h
provided U(x) = V(x) — sup 4 = 0inJ and > 0in I\J\dI and the distance from
J to the boundary of I is greater than |J| and

1 — 92 — hysgn(x — a)V'(x) tanh(yo(a, x)/h)/2U(x)*'*

is = O when ais an endpoint of J and x belongs to the corresponding component
of I\J and 0 < h £ 1 where g refers to U. When U decreases away from J, we can
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take y = 1. Note that we can take y arbitrarily close to 1, when 4 is sufficiently
small and V'(x)/U(x)*? is bounded in I\J.

ProoF: By Parseval’s formula

IEA)f11? = J Fy()?duy(4) + J Fy(2)* du>(3)

a4 4

where
Fi(4) = Je (A, x) f(x) dx.

Assume first that f = 0. We can then apply Lemma 2 with u(x) = ej(4,x), Ae 4
and y = d. If we write

T = ¢~ 2@~k
the result is
2
FiA)? < 4T<jej(,l, x)f(x — &;(A)y) dx)

where gj(41) = + 1. Hence

JF (A duy(d) < 4Tf(je (A x)f(x —y) dx)2 dui(2)
2

2 .
+ 4TJ( j e, 0)f(x + ) dx) dys(4).

Summing for j = 1,2 and by Parseval’s formula again

IEQ)f|1> < 4T j f(x — y)*dx + 4T f f(x + y)dx
so that
IEA)S] £ 2/2T2|If].

If we write f = f, — f_ as a sum of positive and negative parts, then

IEQ)S 1| S 1B+ || + IEQ)- || < 42T 2| f].
For complex f we have

IE@fI1? = IEQRSI + |EA3SfI* < 64T f11*.
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This proves Lemma 4.

REMARK. Since the spectral theory applies also to the restrictions A(K) to
intervals K, the proof above applies also to this case.

THEOREM 1. Assume that V(x) — sup 4 = c2,¢ > 0, in an interval I and that J is
a subinterval of I whose distance to the boundary of I is d > 0, then

&) IE)f] < 8,/5e42"||f|

if either |J| £ d/2 and 0 < h £ 1 or e™*¥" < 1/2 and in both cases f is a square
integrable function with support in J. Under the same conditions,

@ s EA)S Il < 8/5e 2| f|
where fe H and y; is the characteristic function of J.

REMARK. When E(4) refers to a restriction A(K) of 4 to an interval K, (3) and
(4) hold when the distance of J to the boundary of I = K is = d. This follows from
the previous remark.

Proor. If |J| £ d/2, the theorem follows from Lemma 4. If |J| > d/2, we can
write |J| = Nd/2 + | where 0 <1 <d/2 and N is an integer. With a the left
endpoint of J, put J,=[a+ (k — 1)d/2,a + kd/2] where 1< k<N and
Jy+1=1[a+ Nd/2,a + Nd/2 + I]. Let x, be the characteristic function of J,
where 1 £k £ N + 1and let f; = x.f. By Lemma 4, we have

) IEA)fll < e~k £

where d, is the distance from J; to the boundary of I. The definition of J, gives
[Jil £ d/2 and d,, = min((k + 1)d/2,(N — k + 2)d/2) where k < N so that

©6) di — |J| Z min(kd/2,(N — k + 1)d/2)
where k £ N and

() dy+y — [Ineal Z d/2.

Now

N
IEASf] = ’;0 IE(4) il

which, by Schwarz’ inequality and (5), does not exceed 8|| f'|| times the square root
of the sum

N
Z e~ 2cldk— Wik
k=0
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which, by virtue of (6) and (7), is not greater than
2e—cd/h i e—ckd/h + e—cd/h = ze—cd/h/(l _ e—cd/h) + e—cd/h

k=0

which proves the inequality (3).
To prove (4) write

IEASfI1? = EA)S, 1EA)f) = (f, Q)Y E)f)).

Hence (4) follows by applying Schwarz’ inequality to the last term and using (3).
This proves Theorem 1.

LeEMMA 5. Under the same conditions as in Theorem 1,let K < I be an interval of
length b whose distance to the boundary of I is d > 0, then for 0 < h £ 1

Ixx(EAS) | = OXMbh™2 + b~ )| xkE(A)S |
if 4 is bounded, M = M(K) = max(sup e |4}, SUpsex | V(X)|) and f e H.
Proor. We have for feH,

2
LE(A)f(x) = ‘Zl IFJ(A)Ae,-(A, x) dp;(4).

Since 4 is bounded, LE(4)f € D and hence (E(4)f)” is square integrable on K.
Hence Lemma 3 gives with y = xx

IXCEDS | = OGIXEDN || + b~ I XEAS ).
Now \
AEA) (X)) = x(—LE(A)f + V(X)E(4)f)/h*
so that, by Parseval’s formula,

IXEDNII = (SAUE A XEA)Sf | + sup [V(x)llIxE(4)f lI)/h2

xeK
which gives

IX(E)fY | < OUXMbh™2 + b~ )| xE(A)S Il

3. Approximation of E(4)H in a potential well.

Let A be a bounded spectral interval, suppose that E(4)u = u, let Q2 < 4 and
consider the function v = E(Q)u. By Theorem 1, v is small in intervals where
V(x) > A. We shall see that v, when multiplied by a suitable cut-off function, is
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close to being an eigenfunction of F(Q') where Q' > Q is close to Q and F(2) is
a spectral projection belonging to the restriction of 4 to an interval such that
V(x) > 4 at its boundary. The precise statement is given below.

THEOREM 2. Let A be a bounded spectral interval and ¢ > 0 a positive number.
Let I % R be an interval and assume V(x) = c¢* + sup 4 in 1(2d + b)\I for some
b>0,d>0. Put B= A(I(2d + b)), let Q be a spectral interval and let F(Q) be
a corresponding projection relative to B. Let ¢ € C*(I(2d + b)) be one in 1(d) and
zero in 1(2d + b\I(d + b) and chosen so that ¢’ = O(1/b), ¢" = O(1/b?) in
I(d + b)\I(d).

Assume also that E(A)u = u and that v = E(Q)u where Q is an interval contained
in A. Then

@ IFOXev) — pv]| = O(M(log 1/0)*/(b* (e ™" |lv]|
forall { >0, M = M(I(d + b\I(d)) and 0 < h < 1 provided d > 2b.

REMARK. When V(x) > sup 4 in I, F(4) vanishes. The interval I may contain
one or several potential wells where V(x) < sup4. To get a good estimate,
I(2d + b) should be large and b small relative to d. When V(x) = ¢* + sup 4 on
the complement of I,1(2d + b) tends to R and A(I(2d + b)) to A as d — o0.

We can apply Remark of Lemma 4 to replace the exponent —cd/2h by a better
one. To do this let I, and J; be the right parts of I(2d + b)\I and I(d + b)\I(d)
respectively and let I _; and J _, the left parts. The new exponent is

mlin1 70(01(— |J.I), I )/h
provided d > b, 0<h =1, Ux)=V(x) —supd4=20in J_;uJ; and >0 in
T-\J-y) VI \IJ N\ -y v 1y)and

1 — y? — hysgn(x — a)V'(x) tanh(ye(a, x)/h)/2U(x)*?* = 0

when a is an endpoint of J, and x belongs to the corresponding component of
I\J.and 0 < h £ 1. When U(x) decreases away from J _, and J, respectively, we
can take y = 1. We can also take y arbitrarily close to 1, when & is sufficiently
small and V'(x)/U(x)3? is bounded in (I_;\J - ) U (I;\J}).

In order to prove Theorem 2 we need a preliminary result.

LEMMA 6. Let Q be a rectangle symmetric with respect to the real axis and with
the projection A = [, ] on the real axis. Let f(z) be positive on A, analyticin Q and
on the boundary except at o,  and assume that

() = J 1f(2)l dlzl/|3z]
)
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is finite. Assume also that the distance 6 from A to A is positive and that E(A)u = u.
Then

&) I/ (B)ou)ll = O(T(/)M/(b*6))e /> ||u]|
when 0 < h £ 1 and a suitable choice of .

PROOF OF LEMMA 6. Let R(z) and S(z) be the resolvents of A and B respectively.
Put

w(z) = f(z2)(S(z)eu) — @R(z)u).
Spectral theory shows that

(2mi)~! JW(Z) dz = f(B)(pu) — @f (A)u
2

where f is supposed to be continued by zero outside A on the right. Since
E(4)u = u, f(A)u vanishes.

The function w(z) belongs to D(B) and hence it can be written as S(z)(L — z)w(z)
which turns out to be

J(@8(@)Lp, LIR(2)u = f(2)S(z)[ @, LIE(AR(2)u

since E(4) commutes with R(z). Hence we can write the integral of w(z) as
@2mi)~* jf (2)S(z)[ @, L1IE(A)R(z)u dz.
Q

Here [, L] = h*(2¢'(x)(d/dx) + ¢"(x)) is supported in I(d + b)\I(d) where we
can choose ¢ so that ¢’ = O(1/b) and ¢” = O(1/b?). Hence by Theorem 1 and
Lemma 5,

Lo, LIE(A)R@E)ull < O(1)Mb~2e ™" | R(Z)E(4)ul.
Here
IR@E(d)ull = O™ ")|ull
uniformly on Q and this proves Lemma 6 since ||S(z)v|| = O(||v||/|3z]).

PRrROOF OF THEOREM 2. Let us first note that the left side of (8) equals to
F(Q(0YXv) where Q({)° is the complement of Q({).
Next, choose the function f be as in Lemma 6 to be

1 -2
fe) = <l°g e - z))
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where § — o = 1 which makes f(x) > 0 when « < x < . A simple computation
shows that T(f) = O(1). Let

fl’fZa'”

be one way translates of f away from Q on one side of the interval. We assume
that the overlap is constant equal to |4|/3 which makes the sum

Y S(x)?

positive, bounded and bounded from below away from then the endpoint of the
support A, of f; which is closest to Q. In particular, by chosing A, at a distance
{/2 from Q we are sure that for some C > 0,

(10) > fl(x)?* 2 Clog1/0)™*

in points not closer than { to Q. By Lemma 6 and since T(f;) = T(f) = O(1),

(11 I£,(B)ev)ll = OM/(b*3;))e ~<4'2*|[v]|

where d; is the distance of the support of f; to ©2. By construction, the square sum
5 18}

converges and is O({ ~2). Hence

(X Si(BY(¢v), 0v) = X 1 fi(B) )| = O(M?/((*b*))e ™ [v]| 2.

By the spectral theorem and (10), the left side is larger than a positive constant
times

(log 1/0)~* | F(K)(¢v)||*

where K is an unbounded interval on one side of 2 with the distance { to Q. If we
add two such estimates, one for each side of 2, Theorem 2 follows.

The point of Theorem 2 is that a function with spectrum relative to the global
operator in an interval which is dominated by a potential well localizes by
multiplication to a function with about the same spectrum relative to the
operator localized to the well.

Our next result is a converse of Theorem 2. We shall see among other things
that the eigenfunctions of the local operator when extended by zero turn into
resonances of the global operator.

THEOREM 3. Assume that the first hypotheses of Theorem 2 hold, let Q be
a subinterval of 4 and d > 2b.
1) If F(Qu = u and u is continued by zero outside of I(2d + b) then

(12) IE@Q(Q) — ull = O(M(log 1/0)*/(b*()e =" |lul|
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for{>0and0<h<1.

2) If F(4)u = u and F(Q)u = 0, then
(13) IE@(—O)ull = O(M(log 1/0)*/(b*0))e /" |lul
for{>0and0<h < 1.

ReEMARK. When I is bounded, B has a discrete spectrum and the formulas (12)
and (13) say that an eigenvalue of B in A gives a resonance of A and that an
interval between two such eigenvalues gives a non-resonant spectral interval of
A. The estimates are rather good. By the mini-max principle, the number of
eigenvalues <t of B is O(1/h) when t is bounded. Hence the average distance

between two eigenvalues of B in a bounded interval has the order h.
The exponent —cd/2h may be improved as in Remark after Theorem 2.

PROOF OF THEOREM 3. By Remark of Theorem 1,u — ou = O(e~*/?*)| u||. This
inequality is used to prove the following counterpiece to Lemma 6.

LEMMA 6'. Let f(z) be as in Lemma 6 and assume also that the distance 6 from
A to Q is positive and that F(Q)u = u. Then

(14) If(Aull = OMT(f)/(b>8))e /" |lu|
when0 < h < 1.

PRrOOF OF LEMMA 6'. By the inequality above and the boundedness of f(A), to
prove the inequality (14), it suffices to prove the same inequality with left side
replaced by || f(A)¢u)| where ¢ is as in Theorem 2. Now the proof goes as the
proof of Lemma 6 with the roles of R(z) and S(z) ‘interchanged.

The proof of the first part of Theorem 3 runs as the proof of Theorem 2 with the
same choice of f.

To prove (13), note that F(Q)u = u and use f based on Q(—{/2). It is then easy
to verify that

(f(Au,u) = || f(A)ull?
exceeds a positive constant times
(log 1/0) *(E(€(—{))u, u)
and a similar Lemma 6’ holds. This proves the (13).

Appendix.

When a(4) = (a(4)) is a family of non-decreasing 2 x 2 real symmetric matrices
whose elements are of bounded variation on every bounded interval, let I*(R, a)
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be the space of functions u(4) = (u,(4), u,(1)) measurable with respect to da(A)
such that

2
(u, W, = Z “j(i)“k(}-) dajk('l)
jk=1
is finite.
As in the introduction, let 4: D+ H be a selfadjoint extension of L operating
on C3(R). Also, let u,(4, x) and u,(4, x) be real basis of the space of solutions of

Lu = Au with real 1. By the spectral theory (see Coddington-Levinson 1955, pp.
246-252) there is such a basis which is analyticin Aand amap U : f +— Uf given by

U N =uiA f) = j“j(l, x)f(x)dx, j=1,2
which is unitary from I?>(R) to some I?(R, a) and defined pointwise when f has
compact support. We shall prove

LEMMA 7. There is a basis e, (A, x) and e,(A, x) of the solutions of the Lu = Au
which is measurable with respect to db(A) = dtra(A) and such that the map

(ul (A" f)’ uZ('L f) — (el()H f)’ eZ(A’ f))

is unitary from I2(R, a) to a space I>(R, b) with the inner product

J- (lex(4, NI? + lez(4, )I?) db(A).

PRrooF. Let I be the unit 2 x 2 matrix and let a be as above. It is immediately
verified that Idb — da = 0 since

Ib(p) — a(u) — (Ib(A) — a(4)) = tr(a(w) — a(d)) — (a(w) — a(2)) 2 0

when u = Aandj, k = 1,2. Itfollows from Radon-Nikodym theorem that there is
a measurable family c(4) of 2 x 2 matrices such that da(4) = c(4) db(A). It is clear
that c(4) = 0 almost everywhere with respect to db.

To prove Lemma 7 we only have to write the quadratic forms

Z Cjk ()*)uj(Tf)uk(l: N
as sums of squares in a measurable way. To do this put ¢() = ¢ to simplify and
e1(4,x) = c}2u (4, x) + c1aci?uy(4, x)
‘and

e,(4,x) = (detc/cy 1) uy(4, x)
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when ¢y, > 0, put
e;(4,x) =0, ey(4,x)=ciPuy(4,x)

when ¢;; =0, ¢35 > 0 and e (4, x) = e,(4,x) = 0 when ¢ = 0. We have then
Y i, Xui(4, x) = Y lej(4, x)| 2.

The same equality holds for e;(4,/) = [e;(4,x)f(x)dx and uj(4, ) = [u;(4,%)f(x)dx.
This proves Lemma 7.
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