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BOUNDARY VALUE PROBLEMS FOR THE
NONSTATIONARY NAVIER-STOKES EQUATIONS
TREATED BY PSEUDO-DIFFERENTIAL METHODS.

GERD GRUBB and VSEVOLOD A. SOLONNIKOV

1. Introduction.

Let Q be a bounded connected open set in R" with smooth boundary 6Q2 = I',and
denote by # = (ny,...,n,) the unit interior normal vector field defined near I'. Let
I =10,b[, where be J0,0],let Q = Q x I,andlet S = I" x I. Denote f|; = yof
and 7,0“f = y.f, where 0,f = Xi_y n0;f, 0,f = 0f/0x;. We consider the
Navier-Stokes problem

(i) du— Au + X}_ u;0;u + gradp = f for(x,1)€Q,

(ii) divu =0 for(x,t)eQ,
(.1 (iii) T (Z) =g, for(x,)€S,
(iv) Uly—o = uy for xef,
where u is the velocity vector u = (uy,...,u,) and p is the pressure. Here T, is one

of the boundary operators

u u u
(12) Tl (p) = f1U — )’opﬁ, Tb(p) = YoU, Or TZ(p) = (XIu)t + yOuvﬁa

v,7 resp. v, stand for the normal resp. tangential components of a vector field
v defined near I', and g, is the special first order boundary operator defined via
the strain tensor S(u) = (Ou; + 0;u;)ij=1,..n aS

.....

(1.3) X1u =S = Vo(Zj(ai“j + O;un)i=1,...n-

The case k = 1 (considered earlier e.g. in Solonnikov [S2,3]) is important for the
study of non-stationary free boundary problems (cf. [S5,6]); it has been studied
much less than the Dirichlet case k = 0 (that is the main subject of an abundant
literature) or the intermediate case k = 2, that enters in stationary free boundary
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problems (cf. [S4]). Also the following boundary operators will be studied:

u N u -
(1.4) T3 (p) =7y u—yph, T, (p) = Y1U, + You, .

Intermediate conditions like the cases k = 2 or 4 have been studied e.g. by
Miyakawa [Mi] and Giga [Gi2], see also Solonnikov and S¢adilov [S-S5]).
Mogilevski [Mo] made a systematic study of general boundary conditions in
dimension 3.

Along with (1.1) we consider the Stokes problem (the linearized Navier-Stokes
problem):

(i) ou— du +gradp=f for (x,t)eQ,

with (ii), (iii) and (iv) as in (1.1),
which is used in the treatment of (1.1). Let J(R2) = {ue L,(2)"|divu = 0} and
Jo(Q) = {ue L,(2)"|divu = 0, you, = 0}, and denote

Jv=J fork=13 J,=Jy fork=0,24
pr,, = the orthogonal projection of L,(£2)" onto Ji(£2).

(1.5)

(1.6)

Then we assume that the data satisfying
(1.7) ug€J, for each k, and ¢, , = 0 when k = 0,2 or 4.

We shall present a pseudo-differential treatment of these problems that was
developed primarily to handle the case k = 1, but works also for the other cases,
when suitably modified.

The main difficulty with the linearized problem (1.5) is that the “interior”
operator L:

- _ (0 — 4 grad\(u
a5

is only degenerate parabolic, in the sense that its principal symbol

it+1E* ... 0 il
(1.9) o= , it-|:-|§|2 zc

(considered for (¢, 7)€ R"* ') has the determinant — (it + |£|2)" ™~ !||?, that is zero
not only when (£,7) = (0,0) but also when ¢ =0, t + 0. Then the standard
parabolic theory is not directly applicable, and various techniques have been
invented to circumvent the problem. Most of the known methods involve
working in the “solenoidal” spaces J, and J (cf. e.g. Fujita and Kato [F-K],
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Ladyzhenskaya [L], Temam [T1, 2], [Gil,2], [Mi],...) and treating homogene-
ous boundary conditions. In the cases k = 0, 2 or 4, there is a well-known
reduction of (1.5) (with ¢, = 0) to a problem for — pr; 4 in the space J,, but the
cases k =1 and 3 do not give the analogous operator in J. Moreover, from
a systematic point of view, working in J, or J is somewhat inconvenient, because
the property divu = 0 is easily violated under standard differential equation
techniques such as change of variables, multiplication by cut off functions, etc.

What we propose here is a different method that eliminates the condition
divu =0 altogether; in fact we “divide out” the degeneracy by use of
pseudo-differential techniques. The price one pays for this is that one then has to
deal with a system containing certain nonlocal operators (so-called singular
Green operators); on the other hand, the problem one obtains is parabolic in the
nondegenerate sense (and nonhomogeneous boundary conditions are naturally
included). For parabolic pseudo-differential initial-boundary value problems,
a general solvability theory was set up in Grubb [G4], and further elaborated in
Grubb and Solonnikov [G-S4], where the mapping properties of the solution
operators are studied in anisotropic L, Sobolev-Slobodetskii spaces. We apply
that theory here; and note the advantage that the delicate study of roots of
polynomials associated with (1.9) and the boundary conditions (as in [Mo]),
where the complexity increases with the dimension, is replaced by general limit
considerations independent of the dimension (cf. Section 6).

The present method easily allows lower order terms in the first line of (1.1) and
(1.5), i.e. allows — Au to be replaced by the (generally nonselfadjoint) operator

(1.10) —Au + Bu, where Bu=Y7_, Bjoju + Bou,

the By(x),. .., B,(x) being n x n-matrices; this includes the Oseen equation [O],
where the B; are constants times the identity matrix.

Pseudo-differential methods have been used before by Giga in [Gil,2], treat-
ing the cases k = 0, 2, 4 (and other cases where the operator in (1.5) takes the form
—pr;,4 onJo)inan L, framework (1 < g < c0); and the main point there was to
reduce the problem to the study of parameter-dependent pseudo-differential
operators in the boundary I', which is itself a boundaryless (n — 1)-dimensional
manifold. Let us also recall the singular integral operator approach in Fabes,
Lewis and Riviére [F-L-R], leading to L, ,, estimates. In those works, the
pressure p does not enter in the boundary conditions. In the present study, where
p does enter in the boundary condition (for k = 1 and 3), we draw on the full
calculus of parameter-dependent pseudo-differential boundary operators pres-
ented in [G4] (associated with the manifold € and its boundary I'), generalizing
the calculus of Boutet de Monvel [BM].

Part of the reésults have already been published: [G-S1] gives a short account of
the reduction of the linear problems (1.5) to pseudo-differential problems and
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states the ensuing linear solvability theorem; [G-S2] gives a survey; and [G-S3]
presents in detail the deduction of the nonlinear results from the linear results.
However, the explanation of the parabolicity of the reduced problems is not
shown in detail in those papers, and that is a main object of the present paper.
Here one must show that the singular Green operators occurring in the reduced
problem are of class < 2. We account for this in detail, presenting several choices
that shed light on the precise contributions from the various data in (1.1); this also
allows us to establish finer estimates of p in anisotropic Sobolev spaces.

The present paper has been under way for a long time (in fact the writing up
was started before that of [G-S1]), so the authors must apologize for the delay,
which is partly due to a slowness in communication.

Here is an outline of the contents:

Section 2 contains definitions and introductory material. We first recall the
definition of anisotropic Sobolev spaces, and then we recall some elements of the
Boutet de Monvel calculus of pseudo-differential boundary operators, and list
their mapping properties in the anisotropic spaces (taken from [G-S4]). Among
other examples we study the projection operators pr;,, that are shown to belong
to the calculus. Section 3 gives the appropriate Green’s formulas linking the
boundary conditions with sesquilinear forms, and shows an ellipticity property
for each fixed value of a certain parameter. In Section 4, we explain the precise
reduction of the Neumann type problems (the cases k = 1 and 3) to pseudo-
differential boundary problems (notably containing singular Green operators),
for the linear as well as nonlinear Navier-Stokes systems. In Section 5 we show
how the method is modified to include the Dirichlet and intermediate cases
(k = 0,2, and 4), and sum up the results. In Section 6 we show the parabolicity of
the linear reduced problems, that hinges on (i) the normality of the boundary
conditions, (ii) the fact that the reductions have been made in such a way that the
singular Green terms only contain y; withj < 1 (i.e., are “of class < 2”). A conse-
quence (based on [G4]) is drawn concerning resolvent estimates for the station-
ary problems. In Sections 7, we first define the appropriate compatibility condi-
tions, both for the linear and the nonlinear time-dependent problems, and show
how they correspond to compatibility conditions for the reduced problems. Then
we derive the general solvability results for the linear cases in H™"/?(Q) spaces
(r = 0) on the basis of [G-S4] and discuss various improvements of the estimates
of p. Finally, we connect this to the nonlinear treatment in [G-S3] by a brief
outline (when r + 2 = n/2); also here there are improved estimates of p, when
r + 2 > n/2. Section 8 gives further comments: on the solvability with less regular
initial data when f and ¢, equal zero; on the solvability when I = 0, co[; on the
realizations of the stationary linear problems restricted to the solenoidal spaces
Ji(Q); and on the spectra of these realizations, where we obtain an eigenvalue
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estimate in the cases k = 1,2, 3, 4, by perturbation from a result of Kozhevnikov
[K] for the Dirichlet case.

There are two appendices, one giving the details concerning the decomposition
of vectors and differential operators into a normal and a tangential part near the
boundary, the other containing the proofs of the auxiliary estimates of the
bilinear term K(u,v) = X7_, u;0;v used in the present paper and in [G-S3].

In addition to the fact that the present results include the less frequently
studied cases k = 1 and 3, and include B, let us point to the following features of
interest: 1) The treatment of truly non-homogeneous initial-boundary value
problems in high generality, allowing nonzero boundary values ¢, and allowing
f € L,(Q)" (in the nonlinear case, f € L,(Q)" is allowed for n < 4). 2) The explicit
compatibility conditions of all orders (formulated without reference to fractional
powers of operators), leading e.g. to solutions that are as smooth as one may
want on @, including the “corner” I' x {0}. 3) The fact that the half-integer cases
of r are included, by integral compatibility conditions. 4) The study of smoothless
of pint.

The present paper and its precedents have all been concerned with L, Sobolev
estimates. There is a recent extension of the parabolic pseudo-differential theory
to L, Sobolev spaces (for 1 < g < o) that will be applicable in a similar way to
these problems, cf. Grubb and Kokholm [G7], [G-K]. (It may be of interest that
also spaces of negative order (r < 0) are included there to some extent.)

The Danish author thanks Lars Hormander for helpful discussions.

2. Preliminaries.

2.1. Sobolev spaces. In the following, 2 denotes a bounded open connected
subset of R" with smooth boundary dQ = I'; or in some cases 2 = R", =
{xeR"|x, > 0}, with 0Q = R"~ !, whose points are denoted x' = (xy,...,Xy—1)-
(2 can also be equal to R".) With I = I, = ]0,b[ for some be]0, 0], we set
Q= Q x Iand S = I' x I (the notation Q, resp. S, can be used if the dependence
on b must be stated explicitly). The vectors x and x’ (and ¢, ¢, etc.) are usually
understood as column vectors. In circumstances where they enter as row vectors,
we may indicate this explicitly by writing ‘x resp. ‘x’, etc. {x) stands for
(1 + |x|>)''? (also if x € C"), and [s] denotes the largest integer <s. We denote

(21) u(x, t)lxs[‘ = YolU, u(x’ t)|t=1o = r'ou;

and we sometimes write 2 x {to} = Q,andI' x {to} = Iy, instead of just 2 or
I'. The higher order boundary operators are denoted y; = 700", see Appendix
A for precise definitions of these and other particular operators entering in the
theory. We generally work with complex valued functions, although the original
problems are real.

The problems will be considered in Sobolev-Slobodetskii spaces over 2and I,
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and over Q and S (in the latter case they are anisotropic in (x, t)), for which we use
a standard notation, that is explained in detail in [G-S4]. Let us here just recall
afew elements. For r e R, H"(R") denotes the space of distributions ve §'(R") such
that the following norm is finite: ||v]| grgmy = (27) ~"2|I<ED" F || L@ (here F de-
notes the Fourier transform v(x)— 8(¢) = [ e~ "v(x) dx). H'(€) is the space of
restrictions to £,

(2.3 Null ey = Nul gy + Ya=p14r ID*ull?- ) 4,00 Where

T f f 10— SO —2Y for se10,1L.
aJe [x — |

The norm is also simply denoted |ul|,, when Q is understood. For re R, Hpy(Q)
denotes the closed subspace of H"(R") consisting of those elements that are
supported in Q. For r = 0, the elements of H}(Q) are identified with the L,
functions they define on Q (extended by zero on R™\ ), and
@4 Il = Wil + % | 10" U0 g P forall 2.0

) lullaga =~ lullarg + o LG hrroe Gy forall r 2 0.
Here the H;(€2) norm is strictly stronger than the H'(2) norm, whenr — 1/2€N,
whereas when r — 1/2e R, \ N, H}(€) equals the closure of C?(2) in H'(Q) (it is
precisely the set where the traces y;u with j < r — 1/2 are 0).

For r and s = 0, we define
25 H*(Q) = Lo(5 H'(Q)  H( Lo(9),
With norm IIuHHr..(Q) = ("u"fdu;”"(ﬂ)) + "u"?,su;l‘z(n)))llz,

also written ||ul|, ; and denote by H{g) (Q) the closed subspace of H™*(£2 x ] — 0, b[)
consisting of the functions supported in {t = 0}. (An extension to negative certain
orders is described in Appendix B.) The space H, (Q) identifies with a subspace
of H™*(Q), closed if s + 1/2¢ N (then it is the subspace of functions u with
rod®u = 0for 2j + 1 < s), and dense but not closed if s + 1/2 € N; and the norm is
equivalent with

dt
2.6)  luldga = lulErag + L 1D 4l o) =g for all 1, s 2 .

There is a continuous imbedding
27 H'(GH' Q)< H*Q x I),when0<r <r,0<s <s(r—r)/r.

The definitions generalize easily to vector valued functions; and when E is
a Hermitian C*® vector bundle over €, the corresponding Sobolev spaces of
sections are denoted H'(Q,E), etc., possibly abbreviated to H"(E). When
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E = @ x CN, we just write H'(Q)". When E is a vector bundle over 2, we denote
by E its lifting to Q (or to € x I’ for other intervals I’), and use a similar notation
for liftings from I to S.

2.2. Pseudo-differential boundary operators. We shall use the calculus of
pseudo-differential boundary operators as defined in Boutet de Monvel [BM],
and further elaborated in Grubb [G4] and (for parabolic problems) in [G-S4].
Referring to these works for details, we just recall some definitions.

A pseudo-differential operator (ps.d.o.) P on R" with symbol p(x, £), a Poisson
operator K (going from R" ™! to R".) with symbol-kernel k(x, &), a trace operator
T' of class 0 (going from R", to R"~!) with symbol-kernel I'(x, '), resp. a singular
Green operator (s.g.0.) G’ of class 0 (going from R to R") with symbol-kernel
G'(x'y X, Yus €), s defined by the formula, respectively,

Pu(x) = OP (p)u(x) = (2m)™" J "ei"'cp(x, Qa8 de,

Ko(x) = OPK (k)o(x) = (27t)”"J e k(x', x,, ) 6(8) A,
Rn-1

T'u(x') = OPT (¥)u(x')
2.8) - -
=(Q2n)' " e P, xp, &) U(E, x,) dx, AT

JRn-t Jo
G'u(x) = OPG (§")u(x)
= | e [ i s
here (&) = Fopu(x), (&) = Foopv(x'), and UL, x,) = Froy u(x’,x,). The
symbol resp. symbol-kernels are C* functions satisfying estimates:
IDD% p(x, &)] < e(x)<E* 1,

D% X D% D% k(' Xy &L, , qmy S cx)CEHT 2T HITmE,
(2.9) IDE. X1 D D% E(x', Xy €)1, gy S X)CEDHTY 2 lelmmtm

D4 Xy DYy Dy D%g' (X', Xy Ys €Nl Ls sy (Re xR

S c(x)(E YAl mmam ok,

for all indices (here c(x) and c(x’) denote arbitrary continuous functions of x resp.

x'), and the operators and symbol(-kernel)s are then said to be of order d. The
symbols of K, T’ resp. G’ are k(x', &) = ¢, k(x, &), t'(x, &) = Z;, ¢, T(%,8),
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resp. g'(x, &, & n) = Fr ne, Fyon, G(X' X0, Yo €); here F is the conjugate
Fourier transform f(x,) - [ e* ™" f(x,)dx,.

For integer | > 0, trace and singular Green operators of class | and order d are
operators of the form, respectively,

Tu=Yosjsi-1 Syju + T'u,

2.10
( ) Gu=20§j§1_1 ijju+G'u,

where the y; are the standard trace operators (cf. (A.7)), the S; are
pseudo-differential operators in R"~! of order d — j, the K are Poisson oper-
ators of order d — j,and T’ resp. G’ are trace resp. s.g.0.s of class 0 and order d as
described above. They have the symbols, respectively,

tx', &) = 20§j§1~1 si(x', EVEL + 1'(x, &),
9, &) = Yosizi-1 ki(x, E)m + ' (X', &, 1)

In the present paper we mainly consider polyhomogeneous symbols, namely
symbols that have expansions in series of terms homogeneous in & resp. (&, 1,,) (the
homogeneity is required for |¢] = 1 for p but only for |¢'| = 1 when k, t and g are
considered). Then the principal symbol p° (resp. k°, t°, g°) is defined as the term of
highest degree in the expansion, the degree being d for P and T and d — 1 for
K and G.

When P is a ps.d.o on R", the truncated operated Py, on  is defined by

2.12) Py = roPeq,

@.11)

where e, denotes extension by zero on R"\ Q and r,, denotes restriction from R"
to Q. To assure that Py, has good continuity properties in the Sobolev spaces over
@, P is assumed to have the so-called transmission property at I" (two-sided, cf.
[G-H]); this is in particular satisfied by operators composed of differential
operators and inverses of elliptic differential operators, and it requires the order
d of P to be integer (under the assumption of polyhomogeneity).

For each of the types of operators Py, K, T and G, the principal boundary
symbol operator denotes the operator defined for functions on R ;. by applying the
operator definition to the principal symbol (at x, = 0 for P) with respect to the
x,-variable alone (so that x’ and ¢’ are kept as parameters); it is also called the
“model operator”. The operator classes are preserved under coordinate changes.
In particular, the principal boundary symbol operators are preserved, when
a coordinate change x'— k(x’) is accompanied by the change &'+ (0x/0x’) " ¢&,
where dx/0x’ is the functional matrix (Ox;/0xy);k=1,...n-1-

The definition of K, T and G is carried over from the case 2 = R", to the
general case of @ = R" by the help of local coordinates. One can moreover define
the operators in smooth vector bundles over Q resp. I'.
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In addition to the abovementioned operators we also need to consider ps.d.o.s
S over I', of any order.

Singular Green operators arise typically when Poisson and trace operators are
composed (as in G = KT); another source is the composition of truncated
ps.d.o.s., where

(2.13) L(P,Q) = (PQ)o — PaQq

is a singular Green operator.

The five types of operators Py, S, K, T and G intoduced above have the
property that compositions among them again lead to operators belonging to
these types (together, they form an “algebra”). They are usually considered
together in systems, generally of the form

Po+G K H(Q,E) H 4(Q,E)
(2.14) o = : X - x R
T S Hs—l/Z(F, F) Hs—d—l/Z(F’F/)

where E and E’ are C*® vector bundles over &, F and F’ are C* vector bundles
over I'; we have here taken all orders equal to d. The indicated Sobolev space
continuity holds for s > | — 1/2, when G and T are of class < [, and extends to
s > —1/2for Ppand to seR for K and S. We also have that &/ is continuous from
C*(Q,E) x C*(I', F) to C*(Q,E") x C*(I', F).

When such a system .« has a certain ellipticity (consisting of invertibility of the
principal symbol of P for each x, each || 2 1, and invertibility of the principal
boundary symbol operator for each x', each |&'| = 1), then it has a parametrix
(essentially an inverse) belonging to the calculus.

G and T do not apply to the full space L,(2, E) unless their class is zero.

ExampLE 2.1. The solution operator Kp: ¢+ u for the semi-homogeneous
Dirichlet problem

(2.15) —Au=0inQ, you=¢onl,

is a Poisson operator of order 0, with principal symbol-kernel e ~¥'*" (in suitable
local coordinates where  is replaced by R",). The solution operator Rp: fi—>u
for the other semi-honogeneous Dirichlet problem

(2.16) —Au=finQ, yu=0onT,

isof the form Ry = Qg + Gp, where Q is the ps.d.o. OP(|¢] ~2)and Gpisasingular
Green operator of order —2 and class 0 (G, equals — KpyoQg). Altogether, the
system
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Ly(Q) L,(R)
—4
2.17) ( >:H 2@ —» x hastheinverse (R, Kp): x — H*®Q).
o H¥(T) HYX(T')

It follows e.g. from variational considerations that R;, extends to a continuous
operator
(2.18) Rp:H™Y(Q) - HL\(9),
still solving (2.16). (It extends to a mapping from H%(Q) to H**?(Q) for all
s > —3/2,cf. [G6, Ex. 3.15], but we shall not use more than (2.18) in the present
paper.)

The Neumann problem
(2.19) —du=finQ, yu=¢onl,

has a solution u, uniquely determined up to a constant, provided that f and
¢ satisfy the one-dimensional condition

(2.20) f, 1)L,(ﬂ) - (o, l)l.z(r) =0.
It is customary to fix the solution u by requiring that either
(2:21) @) @), =0, or (b) (yot, 1)L,y =0,

the choice (2.21 b) is convenient for some later calculations (in Theorem 2.6 and
Section 5). Then we can define u by extension of

(2.22) u=Ryf+ Kyo,

where Ry and Ky solve the respective semi-homogeneous problems. Here
(Ry Kjy) can be supplied with a mapping with a one-dimensional C* range to

-4
give a parametrix of ( . ) on the full space H%(); and considered in this way,
1

Ky defined a Poisson operator of order — 1, and Ry equals Q, + Gy with Q as
above and Gy a singular Green operator of order —2 and class 0. Then we have
that

(‘A>(RN KN)=((I) (1)) on the set {{, ¢}|(2.20) holds};

1
(2.23)

(R KN)(;A> =1 on the set {u|(2.21a) resp. (2.21 b) holds},
1

with ue H*(), fe L,(2) and ¢ € H/*(Q). Here Ky has the principal symbol-
kernel —|¢'|~* e~ *"¢'l (in suitable local coordinates where Q is replaced by R",),
and Gy = Ry — Qg ~ — Ky7,Qq (modulo an operator of rank 1).
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When the time variable ¢ is included, the operators Py, S, K, T and G defined
above as mappings between C® spaces in x extend to mappings between C®
spaces in (x, t), when considered as constant in t. Then they furthermore extend to
continuous mappings between anisotropic Sobolev spaces H*(Q) and H"*(S) as
follows (cf. [G-S4] for the proofs):

PROPOSITION 2.2. Let Py, S, K, T and G be operators of order d, as defined above;
T and G being of class I. Let r =2 max {d,0} and s 2 0. The operators have the
continuity properties (where (r — d)s/r is read as s whenr = 0):

(2.29 Py H™*(Q) - H"~**(Q) with s' = min {(r — d)s/r,s};
2.25) S: H(S) - H'~*5(S) with s' = min {(r — d)s/r, s};
(2.26) K:H~Y25(8) » H~*5(Q) for
r21/2,d<1/2
(2.27) K:H~Y2e=12sr(gy _, gr-ae-asiQy for
r21/2,d2 12
(2.28) T:H™(Q) — H 4~ 125 (S) for r > | — 1/2, with

s =min{(r — d — 1/2)s/r,s} if | =0;
S =min{(r—d—12)s/r,r =1+ 1/)s/r} if 1 2 1

(2.29) G:H™(Q) —» H "% (Q) for r > | — 1/2, with

s’ = min{(r — d)s/r,s} ifl=0;
s’ = min {(r — d)s/r,(r — 1 + 1/2)s/r} if [ 2 1.

One has in particular:

(2.30) Pg: HP"2(Q) — Hr ~4minle=ai2si2) gy,

(2.31) §: Hr"12(S) — Hr ~4mintt = 01212)(s);

(2.32) K:Hr~U2e-12i2(g) , g =4"(Q) forr 2 1/2 and
¥ = min{(r — 1/2)/2, (r — d)/2};

2.33) T:H'"2(Q) — H' =4~ 112" (S) forr > 1 — 1/2 and

¥ =min{(r —d — 1/2)/2,r/2} if I=0;
¥ =min{(r—d— 12/, —1+1/2/2} if 21

(2.39) G:H""*(Q) » H'~*"(Q) forr >1—1/2and

¥ =min{(r — d)/2,r/2} if I =0
¥ =min{(r—dy2,r—1+1/2)/2} iflz 1
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All the rules extend without difficulty to operators between vector bundles.

There are also more refined estimates in spaces that are anisotropic in (x, s),
where x'e I’ and s is the normal coordinate. To avoid the most complicated
statements, let us just mention that when a Poisson operator of order d is
considered from R" ™! to R",, and we define the space H"(R") (as in [H1]) by

(2.35) HeM(RY) = {u=r"v|&¢¢H D) e L,(RY)}
(provided with an infimum norm as in (2.2)), then K has the continuity properties:
2.36) I K|l gomr -m-a@ny < Cllollgr - 12@n-1),

"KU"Lz([;H(m.r’—m—d)(Rr;) < C"U”Lzu;ﬂ(r'—l/Z)(Rn—1)) for all m = 0, re R;

note that here negative norms over the boundary are allowed. One interest of this
is that it shows that normal derivatives y; of any order can be applied to K,
giving that y;Kve L,(I; H" ~ 2747 i(R"~Y)) when ve L,(I; H" ~ **(R"~")); in fact,
one can show that y;K is a pseudo-differential operator on I' of order d + j.

ExaMPLE 2.3. For the operators introduced in Example 2.1 we find the
following continuity properties when the ¢ variable is included:

Q0,Gp, Gy, Rp, Ry: H™*(Q) » H'**%(Q) forr 20,5 20,
2.37) Kp:H ~Y258) —» H™(Q) forr 2 1/2,5 2 0,
Ky:H ~Y25(S) > H™*15(Q) forr 2 1/2,5 2 0.
Since the operators are extensions by continuity of operators on C* spaces, we

-4
have also in these t-dependent spaces that (R, Kj) is the inverse of ( . ); and
0

Y1

(2.21a) and (2.21 b) replaced by (2.38), (2.39 a) and (2.39 b), respectively:

that (Ry Ky)is a parametrix of ( - A); more precisely, (2.23) holds with (2.20),

(2.38) L (s Deg = (@, Dieynyl* dt = 0

(2.39) (a) f (w, D @l* dt = 0; (b) f (o t4, Dyl dt = 0
1 1
(i.e.,(2.20),(2.21 a), resp. (2.21 b) hold for almost every t € I). R, has moreover the
continuity property
(2.40) Rp: H(I; H~1(Q)) » H¥(I; H}(R2)) fors =0,

where it acts as an inverse of — 4. By (2.36), K, and Ky have the continuity
properties (in local coordinates)
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Kp:H'™/2(RY) o Hmr (R,

Kp: Ly(I; H ™ Y2(R"™1) = Ly(l; H™ ™ (RY),
Ky:H' T2 (RP1) o Himrt1=m(Ry,),

Ky Ly(I; H ™ H2(R™Y) — Ly(I; H™ 1 =m(R") for re R, meN;

(2.41)

in particular,
Kp:H™'V2(I) - L,y(Q),
Kp:L,(LH™ V(1) - Ly(Q),
Ky:H™Y3(I) - H'(Q),
Ky :L,(I; HY2(I')) - Ly(I; H (Q)).

(2.42)

Also here, yoKp = I, and K, solves (2.15). For Ky we have that y; Ky maps
H~Y2(I') resp. Lo(I; H Y*(I')) into itself; and that for @eH Y*(I') resp.
L,(I; H™Y2(I')) satisfying (¢, 1 > = 0 (resp. satisfying it for almost everyinteI),
Kxo is an exact solution of the Neumann problem (2.19) with f = 0.

Finally, we list the following simple continuity properties for operations with
respect to the t direction (recall (2.1))

3 H™(Q) — HE~Vss=1(Q) for s 2 1;

1, H(Q) —» HE~1/2r5(Qq, ) for s > 1/2; in particular,
3, H™12(Q) — H'~212-1(Q) for r 2 2;

ro H(Q) » H 18y, forr>1;

(2.43)

the same formulas hold with Q and Q replaced by S and I'.
2.3. The boundary value of the normal component. The trace operator
(2.44) Py iU poli - u)(= you)
is well-defined on H*(Q)" for s > 1/2, cf. (A.7) ff. We shall need the observation
that its defintion extends to the space

(2.49) Hg;,(Q) = {ue L,(R)"|divue L,(2)}, with norm
lulla,, = (lullf o + Ildiv ul?,@) ">
To see this, note that C*()" is dense in this space, and that ue L,()",

divue L,(Q) imply, by (A.21),
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u,€ L,(]0,0[; L,(I)
du, = divu — div'u, — (div#A)u, e L,(]0,6[; H™(I")

(where X is represented by I' x ]—3,d[). Recall the basic consideration from
Lions and Magenes [L-M, Chap. 1]:

LEMMA 2.4. Let X and Y be Hilbert spaces such that X < Y densely, with
continuous injection. Let W be the Hilbert space of functions u: s€ ]0,0[— u(s)€ Y,
for whichue L,(]0,6[; X) and d,ue L,(10,6[; Y). Then C*([0, 6]; X) is dense in W,
and the mapping u ' ul,— o from this space to X extends by continuity to a continu-
ous and surjective mapping from W to the interpolated space [X, Y],,,. In fact,
W < C°([0,6]; [X, Y1i2).

This applies to show that the mapping y, extends by continuity to a continuous
mapping:
(2.46) Vv: Haw(Q) = [Lo(D), H™ ()]s )2 = H™VA(I).

Note that y, grad fis well-defined as an element of H~Y/?(I') when f € H'(Q) with
Afe L,(Q), since grad f € Hy;,(Q) then; and we can denote y,grad f =y, f for
such f, since they can be approximated by C*(€) functions in the norm

(£13 + 14f13)

In particular, one can define the “solenoidal” spaces

J(Q) = {ue L,(2)"|divu = 0},

(2.47) Jo(@) = {ue L,(Q)"|divu = 0,3,u = 0},

that are closed subspaces of L,(£). Itis well-known that C® ()" N J().s Jense in
J(£), and that C(Q)" N Jo(2) is dense in Jy(£2), and that the orthogonal comple-
ments of J() resp. Jo(£2) in L,(£2)" are the spaces

J@)' = Go(Q) = {w = grad f | f e Hy(D)},
Jo@' = G@Q) ={w=grad f|feH'(Q)},

where Go(Q) equals the L, closure of {w = grad f| f € C3 ()} and G(R) equals
the L, closure of {w = grad f| fe C*(£)}. These facts can be shown for quite
general sets Q (cf. e.g. [L], [L-S], [T],...). With the presently assumed smooth-
ness of &, we can describe the orthogonal projections pr, and pr;, of L,(2)" onto
J(Q) resp. Jo(R) in terms of the pseudo-differential boundary operator calculus,
as follows:

(2.48)

THEOREM 2.5. The orthogonal projections pr; and pr; of L,(8)" onto J(€) resp.
Jo(Q) are described by the formulas
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pr; = I + grad Ry div,
pry, = (I — grad Kyy,) pry;

where Rp and Ky are as defined in Example 2.3.

Both of the projectors pr; and pr; have the form: I + (grad OP(|¢| ~?)div)g plus
a singular Green operator of order 0 and class 0; and grad Kyy, pr, is a s.g.0. of
order O and class 0.

The operators are continuous for all r,s = 0:

pry, Pty H'(Q) - H'(Q),
Prs; Py, H™5(Q)" — H™(Q)".

Proor. The operator in the first line of (2.49) is well-defined on L,(2)" in view
of (2.18). Clearly, (I + grad Rpdiv)u = u if divu = 0, and on the other hand,
div(I + grad R, div)u = Osince —divgrad R, = Ion H™ }(2)by(2.17),(2.18);s0
the expression does indeed define a projection of L,(22)" onto J(). Since
grad R, div maps L,(2)" into Go(Q) = J()*, the projection is orthogonal, hence
equals pry.

For the second line, the operator y, pr; = y,(I + grad Rpdiv) is a trace oper-
ator by the calculus; and it is of class 0, since 7y, is continuous from Hg;,(£2) to
H~Y(I), so that the composed expression is continuous from L,(Q)" to
H~Y2(I"). (One could also analyze the symbol directly, to see that the operator is
asin (2.8). For Ky and Ry, we use the convention (2.21 b), noting that other choices
give values of Ky and Ry f deviating from the chosen ones by constants, that
disappear when div and grad are applied. One has for u e J(2) that {y,u, 1>r = 0,
since this equation holds for smooth functions u in J(£2), cf. (A.30), so it follows
from the observations at the end of Example 2.3 that K acts on y,u as the exact
solution operator for the Neumann problem (2.19) with f = 0; in particular,
y1Kyy,u=7yu Now ypu=0 clearly implies (I —gradKyy,)u=u,
and on the other hand, if ue J(Q), then y,(I — grad Kyy,)u = y,u — y Kyy,u = 0.
Thus I — grad Ky, defines a projection of J(2) onto J,(£2); and since grad Ky,
maps into G() = J,(2)*, the projection is orthogonal. This shows that the
operator defined by the second line of (2.49) is indeed pr,,.

By the pseudo-differential boundary operator calculus, both of the projectors
pr; and pr;, have the form: I + (grad OP (1€)~2)div), plus a singular Green
operator, and are of order 0; here the singular Green operator terms are of class 0
since the expressions are defined on L,(€)". In particular, grad K7, pryisas.g.o.
of order 0 and class 0. The continuity properties now follow from the general
rules; cf. (2.49) for the first line in (2.50), and cf. (2.24), (2.29) for the second line
d=0,1=0).

One can also consider the intersections of the solenoidal spaces with Sobolev

(2.49)

(2.50)
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spaces; here one has e.g. that C*(Q)n J(Q) is dense in H¥ Q) J(R), and
C(R2) N Jo(Q) is dense in HE(2) N Jo(R), in the H* resp. HS norm, for s = 0.
Let us moreover introduce the time-dependent solenoidal spaces
Hy;(Q) = {ue L (Q)"|divue Ly(Q)},

J(Q) = {ueL,(Q)"|divu = 0},
(2.51) Jo(Q) = {ue Ly(Q)"|divu = 0,y,u = 0},

G(Q) = {w = grad f| fe L,(I, H'(Q))},

Go(Q) = {w = grad f | f e L,(I; Hy(Q)};

here one has that C*(Q)" n J(Q) is dense in J(Q), that CF(Q)" N Jo(Q) is dense in
Jo(Q), that Go(Q)is the L, closure of {w = grad f | f € CF(Q)} and that G(Q) s the
L, closure of {w = grad f| f € C*(Q) N Lo(Q)"}; and J(Q)* = Go(@), Jo(Q)* =

G(Q).

The orthogonal projections pr; and pr;_ of L,(Q)" onto J(Q) and Jo(Q) satisfy
again the formulas (2.49) (so the notation is consistent).

We find by Lemma 2.4 that y, extends to a continuous mapping

(2.52) Vi Hai(Q) = Lo(I; H~V3(I)),
since d,u, € L,(]0,6[; L,(I; H '(I'))) when u € Hy;,(Q). Note that for ue J(Q),

(2.53) f [<yyu, 1yr|* dt = 0,
I

since this holds for the smooth functions in J(Q) by (A.30).
Let us also deduce another useful pseudo-differential formula, describing the
G(Q) part of a function as a gradient, and linking this with a Neumann problem.

THEOREM 2.6. 1° Choose Ry and Ky according to the convention (2.21b). The
following operator (which is the sum of the ps.d.o. (OP(|/&|~2)div), and a singular
Green operator)

(2.54) G = Rpdiv — Kyy, pry,
is of order —1 and class 0; it also equals
(2.55) G = Rydiv — Kyy,,

so this operator is of class O although the two terms are separately of class 1.
2° The operator G satisfies

(2.56) pr;, = I + grad G;

hence, in the decomposition of an element ge L,(Q)" as the sum of a function
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ue Jo(R) and a function w e G(R), one has that w = —grad v, where v = Gg. For
agiven we G(0), the solution v' € H*(Q) of the equation —grad v’ = wis determined
up to a constant; the present solution v is determined by the condition (yov, 1)r = 0.

3° When geL,(Q)", the function v = Gg solves the generalized Neumann
problem

(2.57) —dv=divg, yv= —yg,

in the sense that if (gm)men is a sequence in C®(Q)" with g,, — g in Ly(Q)", then
Uy = Gg, solves (2.57) with g replaced by g,,; here v,, —» vin H (Q) and y, v, = y,v
in H™Y(I'). (The solution is uniquely determined by the condition (yov, 1)r = 0.)

4° The statements extend to the situation where L,(Q), G(Q2) and H*(Q) are
replaced by L,(Q), G(Q) resp. L,(I; H'(2)), with the condition (yov, 1) = Oreplaced
by [ 100, I dt = .

PrOOF. From (2.54) we see that G is of order — 1 and class 0, since both terms
are well-defined on L,(Q)", cf. (2.18). Now since you = 0 for u in the range of R),
Kyy: + Ry(—4) = I holds on Rp(L,(Q)), by (2.23) with (2.21b). Moreover,
— AR, =1 by (2.17). Then one has on C*(£2) (and even on Hg;,(Q)):

Rydiv — Kyy, = Ry(—4) Rpdiv — Kyy, = (I — Kyy1)Rpdiv — Kyy,
= Rpdiv — Kyy,(grad Rpdiv + I) = Rpdiv — Kyy, pr; = G,
whictx shows (2.55). This shows 1°. (2.56) follows in view of (2.49); for we have on
C*(Q):
pr,, = pr; — grad Kyy, pr;
= I + grad Rpdiv — grad Rpdiv + grad Rydiv — grad Ky,
= I + grad Rydiv — grad Kyy, = I + grad G.

For the second statement in 2° we use that the only solutions of grad v’ = 0 are
the constants, since 2 is connected; and (yoGy, 1)r = 0 is seen from (2.54), using
that {y,pr,;g,1> = 0 as in the preceding proof. 3° follows from (2.55) and the
various continuity properties of the operators. 4° is an easy consequence of the
preceding statements.

3. Green’s formulas and ellipticity properties.

3.1. Sesquilinear forms. We refer to Appendix A for notation used in the following.
The linearized Navier-Stokes operator L (the Stokes operator) can be written
in the following form
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-4 ... 0 0, Uy

u\ (—4u+gradp) . : : :

3D L(p) B < —divu Vo . =4 0, || u
-0; ... =0, 0 p

(where we have given the divergence a minus sign, to obtain a symmetric
operator). Recall that this is a Douglas-Nirenberg elliptic system with principal
symbol

|§.|2 0 i;l
(3.2) rO=\ o . e wf
—i& ... —i&, 0

where the (j, k)th entry in L is considered to be of order 2 if jandk <n+ 1, of
order 1 if j or k but not both equal n + 1, and of order 0 whenj =k =n + 1.
There are several sesquilinear forms of interest that can be associated with L:

u v . .
Sy ((p)’(q)) = Z (grad u;, grad Uj)L,(n)r- — (divy, ‘I)Lz(m — (p, div V) ),
=
(3.3) !

u\ (v ) . . ‘
53 ((p)’ <q>) = E(u,v) — (divu,div o).,y — (divu, q)r,@) — (P, divV D)L, ).

Here s, is a generalization of the usual choice for the scalar Laplace operator, and
it satisfies the Green’s formula (cf. (A.30))

09 (sLH D= (GH) #0107 52000

(Here and in the following, we assume that the functions are smooth enough for
the formulas to have a sense, e.g. ue H*(Q)",pe H'(Q),ve H*(Q)",ge L,(Q).) Ins,,
the term E(u,v) is defined by

(3.5)  E(uv) =% "x=1 (0 + Oxtaj, 006 + 00)1 ) = 3(SM), S©))Ly 0

where the matrix S(u) is the so-called strain tensor:

(3.6) S(u) = (Ojux + Oxly)jk=1,....n-

Here one has, using the inherent symmetries and (A.30),

E(u,v) = Y54 = 10 + Oxu;,0;0)q

(.8) = Z’j',n: [~ 6,? U — 00, uj, Vi)a — (n;70(0jux + Oxty), YoUi)r]
= (—4u — grad div u, v)g — (7o S(U)7, yoV)r
= (—4u,v)g + (divy,div v)g + (o(div u)i, yo0)r — (oS, yoV)r,



BOUNDARY VALUE PROBLEMS FOR THE NONSTATIONARY ... 235

s0, defining the boundary operator y, by
(3.9) X1 = yoSw),

we find the Green’s formula

00 (GG =)0

+ (14 — yo(divu) i — yopii, yo U)Lz(r)n-

For divergence free vectors it implies:

u\ (v o
(3.11) (L( ),( >> = E(u,0) + (x1% — Y0P, Yo V)L,arym
D q)/Lyon+1

when div u = divo = 0.

Boundary conditions involving x, u — yop# are of particular interest in applica-
tions (e.g. to free boundary problems, cf. [S4,5]).

Concerning E, we recall that for functions vanishing on the boundary, one has
(cf. (3.8)

(3.12)  E(u,v) = (grad u, grad v), g + (divu,dive),, o foru,veH Ly,
so that E satisfies, when Q is bounded,
(3.13) E(u,u) = |lgrad ul|?,gp + ldivull?,q) 2 cllulfiaypm for ue Ho(Q)",

with ¢ > 0. By (3.13) and general ellipticity results (as in [A-D-N]), one has
moreover the Korn inequality,

(3.19) lgrad u||® < ¢, E(u,u) + ¢, |[u]|? forue H'(Q)"

here ¢; > 0 and ¢, = 0, and one can take ¢, = 0 under extra conditions on u, see
the discussion and additional results in Solonnikov-S¢adilov [S-8¢] and
Solonnikov [S6].

Let us compare x; with the standard normal derivative y,. In the “flat” case
Q = R",, we simply have

61u,, + 6,,141
S(uyi =

an-lun‘;'anun—‘l ’
20,u,

so that (cf. Appendix A for the notation)

yau = Yo S)i = y u + yogradu,, Wwith

(3.15) ! P

(1w =714 + yograd'u,, (1 wa = 2y1th, when @ =R%.

The general picture is similar:
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(3.16) X1t = Yok =1 MOy + MeOith))j=1,...m
= 1t + Yo(0,(Lk= 1 Meth) — Yi=1 (Oim)Ue)j=1....m
= y,u + yograd u, — soyol,
where s, is the symmetric matrix
(3.17) So(x) = (0jm(x))jx=1....n = (0;0c0(X))js=1....n-
Here we note that
(3.18) 507t = Qu(@;m)Mm)j<n = 3(0;3 xnd)j<n = 0, and likewise Hiso = 0.
In particular we have, using (A.11) (or (3.18)),
(3.19) (14)y = Vo X jue=1 MM (Ojth + Oxtty) = 290 3 hsem g M0tk
= 2yof y1u = 2y1u), = 2914,
and by (A.12), (A.18) and (3.18),
(3:20) (x14). = (y1u). + (yogradu,), — (Soyou).
=y u, + gradyou, — Soyo,.
Altogether,
(3.21) L1t = (y14), + 2(y,u), A + gradjyou, — SoYott

= 91U, + 2y, u,1 + grady you, — SoYols

which in particular shows that x, is normal, i.e., y;u enters with an invertible
coefficient, namely, the morphism consisting of multiplication by 1 on F, - and by
2 on F, . We here refer to the decomposition of I' x C" into the tangential and

the normal bundles F, r resp. F, r, cf. (A.10).

For a more systematic study of boundary values and sesquilinear forms
associated with systems of differential operators of mixed order, we refer to
Grubb [G1-3]. The set {you,y,u — popii} is a set of so-called reduced Cauchy
data for L (cf. [G1,p. 182], [G2], [G3,(1.17) with p = —u,]); and {you, x,u —
yo(divu)il — yop#i} is equivalent with it (in the sense that the two sets of data

determine one another), since by (3.21) and (A.22),
X144 — o(divu)il = yyu, + 2y u,i + grady you, — SoYolu.
— (divpyou. + (divii)you, + yyu,)i

(3.22) )
_ —So grady Yol:
=nut (-div’r — (div ﬁ))(youv)
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The block decomposition here refers to the decomposition in (A.10) (not to be
confounded with the decomposition of {u, p} in an n-vector u and a scalar p, that
also enters below).

Let us introduce the notation for the trace operators (where we likewise use

(A.10)):
u u " (xlu),>
T; = you, T; =y, u— n, T, = R
0 (p) Yo 1 (p) X1 YoP 2 <p> ( Yotk
u . u (vlu),> <v1 u:)
T =7yU— n, T, = = ;
? <p> T Yol 4(1)) ( Yoty ) \potty

here T; defines the Dirichlet condition, T; and Ty define Neumann type condi-
tions, and T, and T, define intermediate conditions, for the Stokes and the
Navier-Stokes operators. Note that Ty, T, and T, involve only u, and that, in view
of (3.20),

u\ (1 grad; u — 500U,
o n(p)=(o “1)m() ()

so T, and T, have equivalent principal parts. The discussions of them will be very
similar.
We have as a simple consequence of (3.4), (3.10) and (3.11):

(3.23)

LEMMA 3.1. Let Ly, be the realization of L in L,(Q)"*" with domain

=)

1° When k = 0, 1 or 2, one has for {u,p} in D(Ly,) that

(3.25) (L (“) (")) = 52«“),(")) — (o div i, 70,1y
14 4]/ Ly@n+1 p q

and in particular:

(3.26) <L (“) (”)) = E(u,v), if divu=divy =0,
P/ \4//Lym+1

2° Whenk = 0,3 or 4, one has for {u,q} and {v,q} in D(Lz,) that

o () (GO

and in particular:

ue HQy, pe H\(Q), u(Z) = 0}.
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(3.28) <L (“) (")) = (grad u, grad v), gy, if divu = divo = 0.
D/ \4//Lyn+1

3.2. The model problems. We shall now investigate the ellipticity properties of
the boundary value problem

(3.29) L(Z) = (; ) inQ, 1;(2) =g onT,

for k = 0,...,4. Classically, this is a study of the solvability properties of the
operator obtained at each boundary point x,eI" by taking the principal part,
freezing the coefficients at x,, and introducing new coordinates y by a translation
carrying x, into 0 and an orthogonal transformation carrying n(x,) into
(0,...,0,1)(thisis also applied to the vector fields); finally one performs a Fourier
transformation in the y’ variables. This leads precisely to the model operators or
principal boundary symbol operators at x,. For the present operators, whose form
is preserved under orthogonal transformations, the model problem ateach xoe I’
has the same form as when Q = R%, so we can assume that Q = R",.

Let u = (uy,...,u,)e (R,)" and pe #(R,); then the model trace operators
t? (¢, D,) associated with the T; act as follows:

, W\ / w(0) + i¢'u,(0)
cg(:,Dn)(p)—u«)L (¢, D )() (zanu"«» p(0) )

(3.30)  1%&,D )() (6 “(0)+l§'u,,(0)),

,(0)
0nu'(0) 0,u'(0)
il D")< ) (a (0) — p(0>) HED ")< ) ( (0) )
here, as we recall, «' is the column vector (uy,...,u,-) (that is written ‘u’ when

used explicitly as a row vector). We denote by I, the n x n unit matrix.

LEMMA 3.2. LetzeC, witheitherRez > Qorz = 0,andletk = 0,1,2,30r 4. Let
I° be the principal symbol of L (cf. (3.2)), and let I° (£, D,) be the corresponding
model operator on R,

(E1 — ) n-1) 0 i’
(3.31) 1°¢,D,) = 0 &> =02 On
(—ig) —0Op 0

For each & e R"~ '\ {0}, the boundary value problem
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2
(ZO“) +1°(¢,D,) (;) =f onR,,

(3.32)
tl?(él’ Dn)(ﬁ) =¢ atx,= 0’

has a unique solution {u,p} € S(R.)"*! for any fe S(R,)"** and peC™.

PrOOF. The symbol of the differential operator in the first line of (3.32) equals,
when z is included,

248 ... 0 i¢
(3.33) Ca=t o . 2iee |
—i& ... —ig, 0
which has determinant det I(¢,z) = —|&2(z2 + |£*)"™L; it is nonzero for all

¢eR"\ {0} since z2e C\ R_. Then the problem in the first line of (3.32) has the
solution {v,q} = #, 1, [(£2)"*§(&,)], where ge #(R)"*! is chosen such that
r*g = f. Since we can subtract this solution from {u, p}, we can now assume that
f=0in (3.32).

For each & e R" ™1\ {0}, the polynomial of degree 2n in e C

(3.34) detl(g',1,2) = — (1€ +72)(2* + €12 + 22!

hasits 2n roots in C\ R, with nrootsin each of the halfplanes C, = {reC|Imt >
Oresp. Imt < 0} (since det /(& 7, z) is real for real r and z, and the number of roots
in C, depends continuously on z). It follows that for each & eR"~ !\ {0}, the
space of solutions of the differential equation

(3.35) &, D,,z) (Z) =0 onR.,,

is the direct sum of two n-dimensional spaces Z, and Z _ of (n + 1)-vectors of
exponential polynomials, where Z, = #(R,)"*! and Z_ n #(R,)"*! = {0}
(the vectors are, respectively, exponentially decreasing and exponentially in-
creasing). So the space of solutions in (R, )"*! of the first line of (3.32) with
f = Ois precisely the n-dimensional space Z ... Since t? defines a linear mapping
of Z , into C", the lemma will be proved if we show that this mapping is injective,
ie. if the elements {u, p} € Z, with t2{u, p} = 0 are zero.

This is achieved by use of the “model” versions of the formulas (3.26), (3.28),
which give that if {u, p} solves (3.32) with f and ¢ = 0, then for k = 0, 1 or 2,
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20 u\ (u
o o=(((5 o) +en])())
(3-36) 0 ([(0 0 +HE-Dy) P/ \P//LyR n+?

=72 ||“||i2(n+)n + %Z]‘,k<n i&;u + ifk“j"lz.z(m)
+ %Ziﬂ [li;u, + an“i”iz(Ra,) +3 Ilanunlliz(R+);

and for k = 3 or 4,

2.0 u\ (u
no=(((i 9+
G379 <[<0 0 +1E.Dy) P/ \P/)/Lyrn+t

= z? "“"12,1(R+)n + Z_';=l(z:;i"i¢kuj”lz,zm+) + "an“j”f,(m))-
When (3.36) or (3.37) holds, z2e C\ R_ implies that all the terms are zero, so
since d,u, = 0 implies u, = O for u,e Y(R,), u; = ... = u, = 0. As for p, we can
now observe that

(iélp’ LR ién— 1D» anp) = 0
follows since u = Oand the first linein (3.32) holds with f = 0. Thisimplies p = 0.

The lemma shows in particular (from the case z = 0) that the trace operators T
(k=0,...,4) define elliptic boundary value problems together with L, in the
sense of Agmon, Douglis and Nirenberg [A-D-N]. On the other hand, the
z-dependent problems are not parameter-elliptic (in a sense similar to Agmon
[A], Agranovi¢ and Vishik [A-V], Grubb [G4]), because already the interior
symbol T({’, £,, z)is not so; it degenerates too much for & — 0. It is for this reason
that we make the reductions in Sections 4 and $.

REMARK 3.3. Also more general boundary conditions could be considered.
For one thing, the above arguments work for many other “intermediate” trace
operators than T, and T, namely all operators of the form

u -
& (p) = prr(you) + pre-(xat4 — yopi), or
(3.38)
u hd
Ts (p) = prp(You) + pre-(y14 — yoph),

where I' x C" is decomposed into orthogonal bundles over I':
(3.39) Ir<«<C'=F@®F

and prp- and pry.- are the corresponding orthogonal projections (morphisms). T,
and T, correspond to the choice F' = F, r, F” = F, r; one can for example instead
take F' = F, r, F” = F, r. Another generalization is to the cases where one adds
to the sesquilinear forms s, and s, a term (Soyou, yov) With a suitable first order
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differential operator S, on I', leading to “oblique” Neumann problems. More
generally, one can use the systematic study in Grubb [G3] of the boundary
conditions for Douglis-Nirenberg elliptic systems satisfying the Garding in-
equality. (The scalar function u, in [G3, Example 1] corresponds to — p here,
which is harmless for the general calculations but nonstandard in the applica-
tions.) One can also include systems that are not semibounded but do have the
needed (degenerate) parabolicity property of the principal symbol.

4. The reduction of the Neumann problems.

4.1. Reduction of a linear Neumann problem. Consider the time-dependent
Stokes problem (the linearized Navier-Stokes problem):

(i) ou— Adu+gradp=f inQ,
4.1 (ii) divu=0 inQ,
(lll) u|,=0 = Up On Q,

with one of the boundary conditions defined in Section 3 (k =0, 1, 2, 3 or 4),

4.2,) 7;(2) =@, onS

It is assumed that the data satisfy:

divuy =0, whenk=1or3;

4.
430 divug = 0, youo, =0, ¢, =0, whenk =0,20r4.

The main idea is to reduce the study of (4.1), (4.2,), (4.3,), to the study of
a parabolic pseudo-differential boundary problem

Ou + Myu = fi inQ,
(4.4) Tiu =y, onS,
Uj—o=1Uup one,

to which the results of [G4] and [G-S4] can be applied.
Because of the novelty of the case k = 1, we begin with that, i.e. the case where
(4.2,) takes the form

4.5) x4 — yoPfi = ¢@; onS.

The reduction will be done in two steps: first we eliminate p, and next we show
how to remove the equation divu = 0.

Let {u, p} be a solution of (4.1), (4.5), with (4.3;). We postpone for a moment the
exact discussion of the spaces where the function are considered; for the time
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being, they should just be “sufficiently smooth.” Application of —div to (4.11)
gives, in view of (4.1 ii):

4.6) —divgradp= —d4p = —divf inQ,

and a multiplication of (4.5) by # gives (cf. (3.19))

4.7 Yop =H'yyu—in @, =2yu,— @y, onSs

We see that p solves a Dirichlet problem for — 4, so it can be expressed by the
other entries by use of the solution operators defined in Example 2.1:

4.8) p= —Rpdivf + KpQ2y1u, — ¢1,).

Insertion of p in (4.11) then gives that u satisfies (cf. (2.49))

4.9 Ou— Au+2grad Kpy,u, = f + grad Rpdivf + grad Ky ¢, ,
=pr,;f + grad Kpo,,,,

where 2 grad K py, pry, is a singular Green operator. In this way, the problem has
been reduced to the form

(i) a‘““Au+G1u =f1 in Q,

(4.10) (ii) divu=0 inQ,
(iii) Ul;—o =Uy ongQ,
(iv) (x1w).=y1 onS;

where G, f; and ¥, are defined by
(4.11) Gyu=2gradKpysu,, fi=pr;f +gradKpes,, ¥i=9;,.

Conversely, one has that if u solves (4.10) and p is defined from u and the data
by (4.8), then in view of (4.11), (2.49),

0,u — Au + gradp = f; — Gyu + gradp = pr,;f + gradKp¢, , — 2grad Kpy, u,
—gradRpdivf+ grad Kp(2y1u, — ¢1,,) =1,

which shows (4.1i). Moreover, since p is defined such that yop = 2y,u, — @, ,,
(iw)y — vob = 2y1t4y — 2y18y + @1, = @1,
(cf. (3.19)), which together with (4.10 iv) shows that (4.5) is satisfied. The condi-

.....

Note here that, by the definition of K,
4.12) divgrad K, = 4K, =0,
s0 in particular,

@.13) . divG, = 0.
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The next step is to eliminate the equation divu = 0. Here we note that if
u solves the system of equations (4.10), then it solves a fortiori the system of
equations

) Ou—Adu+ Gu=f; ingQ,
4.14) (ii) Ul,—g =14y onQ,
@) (g w). + yo(divu)yi=1y,; onsS.

The system (4.14) can be considered for arbitrary f; and u, (not necessarily
divergence free) and arbitary i, (not necessarily tangential), and u will then also
be quite general. However, the fundamental observation that we shall now make,
is that when f; and u, in (4.14) are divergence free, and ¥, , = 0, then (4.14)
suffices to assure that divu = 0. For, if we then apply div to (4.141) and (4,14 1i),
and 7i- to (4.141ii), we find in view of (4.13),

0;divu — Adivu =0 inQ,
(4.15) divul,.o =0 onQ,
yodivu=0 onsS;

so div u solves the ordinary heat equation with Dirichlet boundary condition. It is
well known that this is uniquely solvable (in suitable function spaces), so we can
conclude that divu = 0.

Before we formulate the result in a theorem, we shall look more closely at the
spaces in which the reductions are performed.

The largest space in which we take f (in the present work)is L,(Q)" = H*°(Q)".
In that case we look for uin H?'!(Q)" (in order to have d,u and duin L,(Q)"). Since
ue H*1(Q)" implies youe H*>?34(Sy, y,ue H>Y4(Sy", and roue H'(Q)" (cf.
Proposition 2.2 and (2.43)), we assume that uoe H'(Q)" and ¢, e H'/21/4(Sy".
Finally, p should be such that grad pe L,(Q)" and y,p is well-defined, so we
assume pe H°(Q), whereby y,pe H/*°(S). With these hypotheses, (4.6) is
considered in L,(I; H™*(R)), cf. Example 2.3. (When divf = 0, p moreover gets
a little bit of t-regularity from u, and ¢,; see the systematic discussion later in
Section 7.) In these spaces, the passage between (4.1)4.5) and (4.10), and the
passage from (4.10) to (4.14), make good sense.

The passage from (4.14) to (4.15) and its consequence, under the assumption
that div f; = 0, divuy = 0, Y, , = 0, is straightforward when the functions are
sufficiently smooth (e.g. when ue H>*2(Q)"); but for ue H*!(Q)" it requires
alittle more care. The difficulty is that div u lies in H'-'/3(Q)" then, where r is not
generally defined (so that we cannot interchange ro and div), and where the heat
problem (4.15) must be interpreted in some generalized sense. We shall apply the
following lemma, that will be usefull also for a Neumann heat problem in Section
hX

LEMMA 4.1, Letue H>'(Q)" withdivrou = 0,and letv = divu. Thenit satisfies
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ve L,(I; H(Q)) and 0,ve L,(I; H™ '(Q)), and
(4.16) ve CO(I; Ly(Q)) withrev = 0.

In particular, if 6,v — Av = 0in Q, then the extension & of v by 0 for t < 0 satisfies
0,0 — A0 =0in]—o0,b[ x Q.

PrOOF. Since u € L,(I; H*()) with 6,u € L,(I; L,()), one has that ve L, (I; H' (Q))
and d,v = d,divu = divd,ue L,(I; H ! (Q)). Then Lemma 2.4 shows that ve C°
(I; L,(R)), whereby rovis well-defined as an element of L, (£2). Let u,, be a sequence
in C*(Q)" with u,, = u in H**(Q)", then v,, = div u,, converges to v in the above
spaces. Moreover, rou,, = rou in H(Q), so divrou,, — divrou in L,(Q). Then
rov = lim,_, o roUp = lim,,., 7o divuy,, = lim,,, ., divrou,, = 0. This shows (4.16),
and it follows that the extension # belongs to C°(]— o0, b]; L,(f)). Similarly,
AP e C°(]— o0, b]; H™2%(Q)). Now since Ad|,»o and 0,8),> 0 are in L,(I; H™ }(Q)),
and A}, <o and J,|, <o are in L,(R _; H™1(®)), in fact equal 0, we have for any
peCP(]— oo, b[ x Q), using that 5(0) = 0,

b

(00 — AD, @)1 oix0 = — I (K8, 0,0(-,)>q + {40, ¢(-,1)> o) dt

— 00

b
= J (0,0 — Av, @(:, 1) qdt,
(1]

and this is zero when d,» — 4v =0on Q.

This is used as follows: Since divG; =0 and div f; = 0, (4.141) implies
0,v — Av = 0 in Q. Since divuy = 0, (4.141ii) shows that divrou = 0; then the
lemma gives that 6,5 — 49 = 0in ]J— o0, b[ x Q. Since ¥, , = 0, (4.141ii) shows
that y,v = 0, this clearly extends to #. Altogether we have that 7 satisfies
0 —AF=0 in]—o0,b[ X Q,

4.17
@17 o0 =0 on]—o0,b[ x I}

as an element of L,(]— oo, b[; H ™ !(£2)). Since the usual uniqueness result for the
heatequations extends to this setting (cf. Piriou [Pi, Th. (32)ii]), we conclude that
7=0in]—o00,b[ x Q, and hence divu = 0in Q.

It is now straightforward to carry the analysis over to the case where the
functions are taken in the spaces with r = 0,

ue H* 2724 1(Qy,
pe H"°(Q) with grad pe H™"2(QY",
4.18) f and f, e H""*(Q)",
@, and Y, € HrH1/2r12+ 14 (gyn.
uoe H'*1(Q);
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by use of Proposition 2.2, (2.43) and (2.50).
Altogether, we have obtained the following result:

THEOREM 4.2. Consider functions in the spaces (4.18), for some r = 0.

1° Let f,uo and @, be given, satisfying (4.3,). Define G+, f, and y by(4.11),G, is
a singular Green operator of order and class 2. If {u,p} is a solution of (4.1) and
(4.5), then p satisfies (4.8), and u is a solution of (4.10). Conversely, if u solves (4.10)
and p is defined by (4.8), then {u, p} solves (4.1) and (4.5).

2° Let fi, uy and y, be given. When u solves (4.10), then it solves (4.14).
Conversely, when u solves (4.14), and div f; = 0,divuy = 0,y , = 0, then u solves
(4.10).

In this way, we have carried the study of (4.1), (4.2,), (4.3,), over to the study of
(4.4,) with M; = —4 + Gy, and

4.19) Tiu = (g u), + yo(divu)n.

The parabolicity will be shown in Section 6.
Note that Tj is a differential trace operator. It is of order 1 and normal; for we
have, in the block notation (recalling (A.22) and (3.20), (3.17)):

Tu= (x1u). _[ Nt + grady you, — SoVol: >
! Yodivu P11y + divpyou, + (divi)pou,

B 0 grad;\(you. (—so 0 )(yw,)
""“(div; 0 )(vouv Lo @ivi\you)

where 7, u has coefficient 1. The principal part is

0 grady
4. ,
(4.21) Y1+ (div} 0 ))’o

(4.20)

and in the case where Q is given as R", T, simply has the form
anu1 + 61 u,
0 grad u' :
Tl —_ —_ .
14 [YI + (div/ 0 )yo] (u,.) Yo anun_l + 6,,_1“,.
01ty + ++ + Opliy

The model operator (the principal boundary symbol operator) associated with
T} has the form (at each x' e R""!)

, 0 i 3,1 (0) + i&'u,(0) \.
£,% u = 0,u(0) + (,(lf,) 0 )u(O) = <6,,u,, O+ 15 u,(0)>,

we shall also write u(0) resp. 8,u(0) as you resp. y1u.
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The singular Green operator G, is of order 2 and contains normal derivatives
up to order 1, hence is of class 2 (cf. Section 2.2). It is of interest for the finer
analysis of the solutions, that one can replace (4.4,) with a variant where the s.g.o.
is of class I1: By formula (A.21),

(4.22) y1uy = —divryou, when yodivu = 0.

Then p in (4.1) can also be described by

(4.23) p= —2Kpdiviyou — Kpg,,,;

and when we insert this in (4.1), we get a formulation like (4.10) but with G,
replaced by

(4.24) G| = —2grad Kpdivyy,,

It is essential to observe here that, by (4.22),

4.25) . Gyu = Gju, when y,divu =0.

Since G only involves y,, it is well-defined on H*(Q)" for s > 1/2, whereas G,
requires s > 3/2; this can be advantageous for some purposes. One finds, exactly
as before:

THEOREM 4.3. Theorem 4.2 holds with G, replaced by G'|, when the formula for
pis replaced by (4.23); here G, is a singular Green operator of order 2 and class 1.

The model operators (principal boundary symbol operators) for G; and
G, have the form, for |&'| = 1,:

03¢ Dy)u(x,) = 2(f)e-'¢"*" 6,,(0) = 2e"‘f"""<_'f¢,|> 8,1n(0)
20 n ic ! £(w(0)
o i ’ L n— . o (£, u/
(&, D)u(x,) = —2 e 18 Y Eui(0) = 2e '“""(. g >§ .
gl (é ) ( ) (a”> j;l éj J( ) llé 1(6 _ul(o))

this follows easily by using that the model operator for K ;, is the multiplication by
e~ 1¥'" (The expressions are extended smoothly for |¢'| < 1, or are used as they
stand if we want the strictly homogeneous symbols.)

4.2. Inclusion of first order linear and nonlinear terms. Before we go on to treat
the other boundary conditions, we shall show one can include lower order terms
in the first line of (4.1), in the case k = 1. Let

4.27) Bu = i Bj(x)0;u + Bo(x)u,
j=1

J

where the B forj = 0,...,n are C* n x n-matrix functions on Q (extendable, of
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course, to a neighborhood of Q); this includes cases arizing from linearization of
(1.1) around a fixed smooth vector field. If B; = b;I with the b; constant and
by = 0, this is Oseen’s equation [O].

When B is included, we get the evolution problem (the generalized Stokes
problem)

@ Ou—Au+ Bu+gradp=f inQ,

(ii) divu=0 1ingQ,
(4.28,) (i) Ulp—o = o on g,
(iv) T(:) = ¢ on;

where the data are, as usual, assumed to satisfy (4.3;).
Including also the nonlinear term, we get the (generalized) Navier-Stokes
problem:

(i) ,u — Au+ Bu+ Ku+gradp=f in Q,

(4.29,) (ii), (iii) and (iv) as in (4.28,),

where we for the nonlinear term Ku use the notation

(4.30) Ku,v)= Y u;0, ;U5 in particular K(u) = K(u, u), also written Ku.

Jj=1

The reductions with Bu and with Ku are so similar that we treat them at the
same time, considering

() d,u — Au+ Bu + 6Ku + gradp=f inQ,

(ii) divu=0 inQ,
(4-315) (iii) ulp=o =Uo oOnQ,
(iv) ' n(Z) =@ onS;

for 6 = 0, 1. We use that B and K are continuous:

BZ Hr+2.r/2+1(Q) *H'+1"/2+1/2(Q) fOI’ r g 0,

(4'32) K: Hr+2,r/2+1(Q) — H’:'/Z(Q) forr g O,r +2 _2_ n/z;

the first statement is a simple instance of (2.30), and the second statement is
proved in Appendix B, Theorem B.3.

Consider the case k = 1, with functions satisfying (4.18) for somer 2 0, where
in addition r + 2 = n/2 if 5 = 1. When {u, p} is a solution of (4.31,), an applica-
tion of —div to (i) there gives, in view of (i),

(4.33) —Ap = div(Bu + 6Ku — f),
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Multiplication of (4.31, iv) by # gives (4.7), as before. Then p is determined by
(4.34) p = Rpdiv(Bu + 6Ku — f) + KpQy u, — ¢1,,).

Note that div Bu vanishes if B has constant, scalar coefficients.
Inserting this in (4.31,), we find, using (2.49), that u solves the problem

(i) du— Au+ Gyu+ pryB+Ku=f, inQ,

(ii) divu=0 inQ,
(4.35) (iii) Ulimo =uo onQ,
(iv) (x1w. =y, ons§;

that implies

(i) ou— Au+ Gyu+pry(B+6Kju=f;, inQ,
(4.36) (ii) Ulj—g =1uy onQ,
(iii) T{iu=y,; onsS;

here we have defined G, f;, Y, and T; as in (4.11), (4.19). One goes back from
(4.35) to (4.31,) just as in the proof of Theorem 4.1.

Now let u be given as a solution of (4.36), with divf; =0, divu, = 0 and
V1., = 0. We find by application of div to (4.361i) that

4.37) 0 = 0,divu — Adivu + div G u + divpr;(B + 6 divK)u
= ¢g,divu — Adivu,

since div G, and div pr; are zero. By hypothesis, y, divu = 0. Since divrou = 0,
we can now reason in the same way as the passage from (4.14) to (4.15), using the
interpretation (4.16) if necessary, and conclude that divu = 0, so we get back
(4.31,) for {u, p}, when we define p by (4.34).

The analogous arguments hold with G, replaced by G’.

Altogether, we have obtained:

THEOREM 4.4. Consider the problem (4.31,) for functions in the spaces (4.18), for
some r = 0; assume in additionr + 2 2 n/2if 6 = 1.

1° Let f, uo and @, be given, satisfying (4.3,). Define G, f, and yr, by (4.11). If
{u, p} is a solution of (4.31,), then p satisfies (4.34), and u is a solution of (4.35).
Conversely, if u solves (4.35) and p is defined by (4.34), then {u, p} solves (4.31,).

2° Let f,, uy and Y, be given. When u solves (4.35), then it solves (4.36).
Conversely, when u solves (4.36), and div f; = 0,divuy = 0, Y, = 0, then u solves
(4.35).

3° Analogous statements hold with G, replaced by G, defined in (4.24), when
2Ky, u, in (4.34) is replaced by — 2K pdiviyou.

In this way we have reduced the problem (4.31,) to a problem of the form (4.4,)
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with M, replaced by —4 + G, + pr; B + dpr, K, or the form with G instead of
G,. It should be noted here that since B is of order 1, so is pr;, B, so it does not
contribute to the principal symbol of the linear problem (the problem with § = 0).
More precisely, pr; B is the sum of a pseudo-differential operator and a singular
Green operator:

pr;B = Pgqo+ Gpy, k=1,3, where

4.
(4.39) Pz = B + grad OP(|¢|~2)div B,
P of order 1 and G, of order and class 1.

4.3. Another Neumann problem. The treatment of the other Neumann trace
opeator T is very similar to the treatment of T; (Whereas we need some different
arguments for Ty, T, and T,), so we can explain it rapidly now.

Consider the Navier-Stokes problem (4.3;) with

(4.40) Ty <Z) =7y,u—yopi=¢; ons§;

the data satisfying (4.33). The replacement of y; u by y, uin the calculations of the
preceding sections gives the boundary condition for p (compare with (4.7))
(4.41) YoP = Y1ty — @3, ONS,

whereas the interior equation for p (4.33) is unchanged; so we now get

4.42) p = Rpdiv(Bu + 6Ku — f) + Kp(y,u, — @3,,)-

Then we define the singular Green operator G5 and the functions f; and y; by
(443)  Gyu=gradKpy,u,, f3-=pr,f +gradKp@s,, VY3 =03,
(compare with (4.11)); and (4.31;) reduces to

(i) o,u — Au + Gsu + pry;(B+ 6Kju= f; inQ,
(4.44) (ii) U0 =t onge,
(iii) Tiu=y; ons;

where (cf. also (A.13))
(4.45) Tyu = 714, + Yo(divu)i.

It is seen just as above that, conversely, (4.44) gives back (4.315) when f3, 1o a}nd
Y3 are given with div f3=0,divuy =0, y3, = 0. Note that, in block notation
using (A.22),

'O 0 Yol
446 = Y1t = ) . )( )
449 b (vodivu) ”‘“*(dw'r (div i) \you,
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Again we observe that G is of order 2 and class 2, so it is of interest in some
connections to know that it can be replaced by a singular Green operator G of
order 2 and class 1 (compare with (4.24)), with a corresponding formula for p:
G4 = —grad Kpdivy ye,

p = Rpdiv(Bu + 6Ku — f) — Kpdiviyou — Kp@s,.

This is seen just as in the case k = 1 by use of the condition y, divu = 0.

(4.47)

5. The reduction of the other problems.

S.1. Reduction of Dirichlet and intermediate problems. The boundary conditions
with Ty, T; and T, differ from those with T; and T; by acting on u only, and they
require a different analysis of p. Let us go directly to the problems containing
possibly nonzero first order terms and nonlinear terms, (4.31,), which we as usual
want to reduce to the form (4.4,), now for k = 0,2 and 4. Let us also keep account
of the smoothness properties right away. We consider, for r = 0, and in addition
r+2zn/2ifé=1,

ue Hr+ 2,r/2+1 (Q)u’

pe H'"°(Q) with grad pe H""'*(Q)",

feH QY
®o e Hr +3/2,r/2+ 3/4(S)n,
O EH’+ 3/2,r/2+3/4(s’ E:,I“) % Hr+ 1/2,r/2+ 1/4(8, Ev,r) for k = 2’ 4,
uo € H*1(Q)".

cf. Proposition 2.2, (2.43) and (4.32); cf. also (A.10).
Assume that u satisfies (4.31,), with data satisfying (4.3,),for k = 0,2 or 4. The
only information we now have on p comes from the first line:

(5.1)

(5.2) —gradp = 0,u — Au + Bu + 6Ku — f = d,u + g,
’ where we set g = —Au + Bu + 6Ku — f.

We deduce both a differential equation and a boundary condition from this by
applying div resp. y,, using that div 4u = divd,u = 0 and y,0,u = O
—A4p =divg =div(Bu + 6Ku — f) inQ,
1P =y,gradp= —y,g onS.
Then p is the solution of a Neumann problem, cf. also (2.55),
(549 p = (Rydiv — Kyy,)g = Gy,

uniquely determined when we pose the side condition

(5.3)

(5.5) J; Ivop, Drl?dt = 0.



BOUNDARY VALUE PROBLEMS FOR THE NONSTATIONARY ... 251

When r 2 1, pe H*°(Q) and ge H':°(Q), so the Neumann problem (5.3) and
the solution (5.4) have a straightforward meaning.

When re[0, 1[, so that g is possibly just in L,(Q), the Neumann problem and
(5.4) are understood in a more general sense, as in Theorem 2.6. Indeed, (5.2)
expresses that g has the orthogonal decomposition

g= —0u—gradp, 0,ueJ,(Q)and gradpe G(Q);

and from this formula, p is determined (uniquely in view of (5.5)) as p = G, cf.
Theorem 2.6. Of course, the latter considerations are valid for all r = 0.

Let us study the formula for p some more. Since div 4u = 0, we have in view of
(2.54),

(5.6) p=G(—A4u + Bu + 6Ku — f) = G(Bu + 6Ku — f) + Kyy,prydu.

By the calculus, Ky y, pr; 4 is a singular Green operator of order 1, and it is of class
2, since it is well-defined on H%(Q)" (and on H*'(Q)"), hence it involves only
normal derivatives of order < 1. This is not clear from its form, so we want to
replace it by an expression showing this, before we go on. Using that divu =0
and y,u = 0, we write

(5.7) Kny,prjdu = Kyy,du = Ky(y,4u — y divu)
= — Kydivpy u, + KyAryous,

where we used (A.27) in the passage to the last expression. Then we get the
formula for p:

(5.8) p=G(Bu+ 6Ku — f) — Kydivpy u, + Ky Aryol,.
Insertion of (5.8) in (4.31, i) gives, since I + grad G=pr Tor
(5.9) 0,u— Au+ pry (Bu+ 6Ku) + grad(—Kydivpy, u, + Ky Aryoue) = pry, f;
and we therefore now define
(5.10) Gou = G,u = Gau = — grad Ky divyy,u, + grad Ky Aryou,.

For convenience, we list some of the relevant continuity properties (derivable
from Proposition 2.2 and the examples).

LEMMA 5.1. The operators Ky divy and Ky Ay are Poisson operators of order
0 and define continuous mappings

(5‘11) KNdiV'r, KNA}I Hr+ l/2,r/2+1/4(ST)n - Hr+1,r/2+1/4(QT) for r g 0.

The operators grad K y divy. and grad Ky A- are Poisson operators of order 1 and
define continuous mappings
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(5.12) grad Ky div}, grad Ky A} H'* 12012+ 4(S g Hroi2(Qy for r 2 0.

The operators grad Ky divyy; prr, and grad Ky Aryopry, are singular Green
operators of order and class 2, resp. order and class 1, and define continuous
mappings

grad Ky divpy, pres H' 272 H(Q) — H2(Q)" for r 20,

1
O1) grad Ky Apyopree H'* 724 V2QP o H'2(QY  for 120,

In particular, Gy = G, = G4 = grad Ky(—divy; + Aryo)pry, is of order and
class 2.

We define the reduced trace operators simply as equal to the given ones (but
now written with u only):

(5.14) Tou = you, Tiu= ((xlu),) Tiu = (v;t;)
and set
(5.15) V=0 fi=pr,f, fork=0,24

then we have altogether transformed (4.31,) to the system

@) Ou— du + Gyu + pry (B+ 6Kju=f, inQ,

(i) divu=0 inQ,
(516k) (lll) u|t=0 =Ug On Q,
(iv) T,u=1y, ons§;

for k = 0,2, 4. (In the references [G-S1] and [G-S3], G, is kept on the equivalent
form G = grad Ky(y,4 — y, div), cf. (5.7) above.)

It is easy to check, conversely, that if data are given satisfying (4.3;), and f; and
¢y are defined from them by (5.15), then when u solves (5.16,) and p is defined by
(5.8), it follows that {u, p} solves (4.31;) (k = 0,2, 4).

The fully reduced system is now simply (5.16,) with the divergence equation
removed:

(@) 0,u — Au + Gyu + pry (B + 6K)u=f, inQ,
(5.17") (ii) u|,=0 = Ug in Q,

(iii) Tu=y, inS.
This can be considered for general data:

fe €H™2(Q),
(5.18) Yo HT*32ri2+314(gp
Uy €HT¥32r24314(S By Hr+U2e24U4(S F ) for k = 2,4,
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and we shall show in Section 6 that the linear system (5.17,) (with 6 = 0) is
parabolic, hence uniquely solvable in suitable spaces, as accounted for in [G4],
[G-S4].

We shall now show that when u solves (5.17,) for a set of data with f; € Jo(Q),
ug € Jo(2) and ¥, , = 0 (and the relevant parts of (5.1), (5.18)), then divu = 0. Set

(5.19) = —divpy,u, + Apyoles

and note that by (A.27) and (A.31), (n, 1) = Ofor te I, since y,u = 0,so that K
applies to n as a precise solution operator of the Neumann problem, cf. Example
2.3. Thus

div Gyu = divgrad Kyn =0,

5.20
(5-20 yyGuu = y, grad Kyn =y, Kyn = 1.

Application of div to (5.17,i) then gives

0 = 0,divu — Adivu + div Gyu + divpr, (Bu + 6Ku) — div f;

(5:21) = 0,divu — Adivu.

If r = 1, we moreover easily find, by application of div to (5.17,ii) and y, to
(5.17,i):

(@) 0 = divul-o,
(ii) 0 = 0,p,u — y,4u + 7, Geu + 7,1y, (Bu + Ku) — 3, fi
(5.22) = (—y1 divu + divpy u, — Apyou) + (—diviy u, + Apyos)
= —y,divy,

where we rewrote 7, 4u by use of (A.27). This shows that divu solves the heat
equation with Neumann boundary condition and all data equal to zero,

0,divu — Adivu=0 inQ,
(5.23) divul,-o=0 ong,
ydivu=0 onS;

so it follows that divu = 0.

When re[0, 1[, we define i as the extension of v = divu by 0 for ¢ < 0; then
Lemma 4.1 shows that §eC°(]—o0,b); Ly(Q) with (6, — A7 =0 in
]—o0,b[ x Q. Moreover, the calculation in (5.22ii) is still valid, in view of the
smoothness of 92 divu that follows from (5.21) (“partial hypoellipticity at the
boundary”), and it implies that y, 5 = 0. Thus # is a solution of the generalized
Neumann problem

§— A5 =0 in ]—oo0,b[ x £,
(5.24) 0,0 — 4 g in J—oo,b[ x

on ]—w,b[ X F,
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that has uniqueness in view of [Pi, Th. (32)ii]; thus § = 0, so finally divu = 0.
Altogether we have obtained:

THEOREM 5.2. Consider the problem (4.31,), k = 0, 2 or 4, for functions in the
spaces (5.1), (5.18) for some r = 0; assume in additionr + 2 2 n/2 if 6 = 1.

1° Let f, uy and @, be given, satisfying (4.3;). Define G, fi, Ty and Y, by (5.10),
(5.14) and (5.15). If {u, p} is a solution of (4.31,), then p satisfies (5.8) (under the
condition (5.5)), and u is a solution of (5.16,). Conversely, if u solves (5.16,) and p is
defined by (5.8), then {u, p} solves (4.31;).

2° Let fi, uo and . be given. When u solves (5.16), then it solves (5.17).
Conversely, when u solves (5.17,), and fi € Jo(Q), uo€ Jo(Q) and ., = 0, then
u solves (5.16,).

§.2. Additional observations and summary. 1t is of interest for the application
of the systematic theory to see whether one can find another formulation in this
set-up with a singular Green operator of lower class, as in the cases k = 1 and 3.
With this in mind, we observe that the boundary data enter in the formulas for
p and G, in all three cases, in different ways. In fact, when {u, p} is a solution of
(4.31,) we can write (recalling that ¢, = ¢, . here),

fork =0, p= —Kydiv;-y,u, + KyAr@o + G(Bu + 6Ku — f),
fork =2, p= —Kydiviy,u, + KyAryou, + G(Bu + 6Ku — f),
(5.25) = — Kydivp((x14); + SoYou:) + KyAryou, + G(Bu + 6Ku — f)
= —Kydivy @, + KyAryou, + G(Bu + 6Ku — f),
fork =4, p= —Kydiv; ¢4, + KyAryou, + G(Bu + 6Ku — f),

where we have used (3.20), and introduced the notation
(5.26) A"v = A'v — div(sev),

defining yet another tangential first order operator that vanishes when # is
constant. Accordingly, the first line in (5.16,) can, by use of the boundary
condition, be replaced by

(5.27) ou — Au + Gyu + pry (B+ 6Kju=f; fork=0,2,4,
where

ou = —grad Kydivry,u,, fo=f — grad KyAroo;
(5.28) Su = grad Ky Aryou,, f2 = f + grad Kydivy ¢,;
G,u = grad Ky Aryou,, Ja=f+grad Kydivp @q.

Here Gj, is again of order and class 2 (and we do not expect that the class can be
reduced further in the present treatment of the Dirichlet problem), whereas both
, and G, are of order 1 and class 1. As we shall see later (cf. Theorems 7.6 and
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7.7), p has in these last cases more smoothness than in general, when ¢, = 0 (and
div f = 0).

In particular, G, and G, vanish altogether, when Q = R",, since 4’ and A" are
zero then.

We remark that when the formulas (5.27), (5.28) are used, Ky may have to be
applied to functions ¥ that do not satisfy <y, 1> = 0, so one needs the slightly
more general definition explained in Example 2.1; but this is of no importance in
smoothness questions.

Concerning the contribution from B, we note that pr,_ B s, like pr, B, the sum
of a ps.d.o. and a s.g.0.:

(5.30) pr;,B=Ppq+ Gpy, k=0,2,4,

where Py is as in (4.39) and G, is of order and class 1.
Let us collect the results of this and the preceding section in a theorem. For the
systematic formulation, we define

Jh=J, pry =pr; fork=13,

(5.31) Jo=Jo, pry, = pty,, fork = 0,2, 4.

Moreover, we formulate the boundary conditions in a unified way by introducing
the bundle notation (using that bundles can have fiber dimension zero):

fork=0, Foo=I xC" Foy =TI x {0},
fork=1, Fio=I x{0}, F;; =T xC",

(5.32) fork=2 Fy,o=F, F,,=F,,
fork=3, Fio=T x{0}, F3,=T xC",
for k = 4, F4o = Fv_r, F41 =Ier;

cf. (A.10) ff. In all cases, Fyo @ F,; = I’ x C" = E|. The liftings to bundles over
S =T x I are as usual called F,, and F;,. Of course, the bundle notation is only
really necessary in the intermediate cases k = 2 and 4; but it is practical for the
systematic formulation of the results involving trace operators of different
orders. In accordance with (5.32), we write trace operators in two components

(5.33) n(“) = {Tko (“) T (“)} Tyu = {Tjou, T} u}
14 14 14

(they should be regarded as column vectors), where Ty, is of order 0 and maps into
sections in Fyo, and T, is of order 1, mapping into sections in Fy,. In details,
(5.34)

u " 7
7:)o(p) =7Yolk, Tox(';) =0, Toott = you, Tou=0,



256 GERD GRUBB AND VSEVOLOD A. SOLONNIKOV

u . , N
p)=0, Tu(p)=x1u—pn, Tiou=0, T iu=/(x u) + yo(divun,

u
(P) = (Xlu)n ’Tz’ou = YolUy, T2,1u = (Xl u)ﬁ

u =2 7 i’ : =2
0, Tsl<p)=)’1u_l’"a Tou=0, T3 u=7yu. +y(divu,

u '’ i’
P) =7Y1lUy, T:to“ =Y, T:Hu = V1l

The boundary data ¢, and y, are decomposed accordingly:
(5.35) O = {00> Pi1)> ¥k = {¥xo» Vi), sections in Fyo @ Fy.
The singular Green operators G, and G} are defined by

Gou = grad Ky(—divyy,u, + Aryou,) Gou = —grad Kydivyy,u,

G,u =2grad Kpy,u,, ju= —2grad Kpdivryeu,
(5.36)  G,u= Gou, yu = grad Ky A}yous,

Gyu = grad Kpy, u,, Su = —grad Kpdivyyou,

Gau = Gou, au = grad Ky Aryou,;

here G, is of order 2 and class 2 for k = 0, 1, 2, 3, 4 and so is G}, whereas G} and
G} are of order 2 and class 1, and G, and G, are of order 1 and class 1. The
relations between the old data f, ¢, and the new data f, f, ¥, are

fo=p1;,f, fo=0pr;,f— grad Ky Ar¢o, Vo = o,

fi=fi=prsf + gradKpo,,,, Vi= @1
(537 fa=pr,f, f=pr5,f +gradKydivre,., VY2 =@,
f3 = f3l = prJf + grad KD(p3.vs '//3 = Q3,0

fa=vpr5f, fa=pr,f+gradKydivi@s. Ya4= @4
Note that f; € J; in all cases (but not necessarily f; € J;), when f; is defined from f
and ¢ in this way. The formulas for p are
p= —Kydivry,u, + KyAryou, + pu(u, f)
= —Kyndivpy,u, + KyAr@o + pily, f), for k = 0,
p=2Kpyiu, — Kpoy,, + pulw, f)

= —2Kpdivryou — Kpo,,, + p(w, f), fork =1,
p= —Kydivpyu, + KyAryou. + pi(u, f)
(538) = —Kydiv; 02, + KnAfyos. + pulw, f),  fork =2,
p=Kpyiu, — Kpops, + p(u, f)
= —Kpdivyyou — Kp@s,, + pults, f), for k =3,

p= _KN divll"ylut + KNA'r}’o“r + Pk(“,f),
= —Kndivy @4, + KyAryou, + pul, f),  fork = 4
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where

pe(u, f) = G(Bu + 6Ku — f), fork =0,2,4

5.39 .
(5:39) pi(u, /) = Rpdiv(Bu + 6Ku — f), fork=1,3;
here div Bu vanishes if B has constant, scalar coefficients. We write moreover

pry B = Pggo+ G, with P, = B + grad OP(¢|?)div;

(5.40,) Q= prrK.

THEOREM 5.3. Consider the general Stokes and Navier-Stokes problems (with
0=0resp.d=1):

(i) O,u— Au+ Bu+ SKu+gradp=f inQ,

(ii) divu=0 inQ,
G4L) (i) Wlymo = o 0 Q
(iv) Tk<;> =@, on S,

for k =0, 1, 2, 3, 4. The functions are taken in the spaces

ue Hr+2.r/2 +1 (Q)n,
pe H'"°(Q) with grad pe H""*(Q)",
(5.42)  ffo i eH(Q),
§0k, l//k € Hr+ 3/2,r/2+ 3/4(S, Ek()) % Hr+ 1/2,r/2 + 1/4(S’ Ekl)9
upe H 1 (Q)

for somer 2 0, withr + 2 2 n/2 in case 6 = 1.
1° Let {u,p} be a solution of (5.41;) with data satisfying (5.37,) and

(5.43,) uo € Jy(Q) in all cases, ¢, =0ifk =0,20r4.

Then p (assumed to satisfy [1|(vop, Diyrl?dt = 0 if k = 0,2 or 4) is determined
from the other entries by the formulas (5.38), (5.39).
2° If {u, p} solves (5.41,) with (5.43,), then u solves the problem

(l) 5,u + M,,u + 50,‘“ =ﬁ‘ in Q,

(5.44,) (ii) Tiu=y, onS,
(iii) Ul=o= up ong,

with f, and y, defined by (5.37) and (cf. (5.36) and (5.40))

(5.45,) My = —4 + G, + pty, B;

and it also solves the corresponding problem with Gy and f, replaced by G, and f;.
3° Conversely, let u be given as a solution of (5.44,) with M, as indicated under 2°
and the data satisfying
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f€dlQ), uo€i(R), for all k,
Uiy =0if k=0,20r4.

Then if fand ¢, are chosen according to (5.37) and (5.43,), and p is defined by (5.38),
then {u, p} solves (5.41,).

(5.46)

Note that when the problems for k = 0, 2, 4, are considered with zero boundary
data, then f, = f;, and G, and G}, can be used interchangeably, as for k = 1 and 3.

For later reference we observe that the reduced trace operators are all of the
form

(5.47,) T = yo P,

where the P, are differential operators with respect to x defined in the neighbor-
hood X of I', namely

Pou=u, Pyu=(Swi), + divwn, P,u= (SWin), + u,,

5.48
(5.48) Pyu = 0,u, + (divuyni, P,u, = 0,u,+ u,n.

We can also write this with P, decomposed into its zero order and first order part,
P, = {Pyo, Py }, where

Pyou=u, Pyu=0,

Piou=0, Pyyu=(Swi), + (divu)n,
(5.49) Pyou = u,, Py u= (S,

Pyou=0, Py u=0d,u, + (divu)n,

Pyou=u,, Pyyu=20d,u,;

mapping into the bundles over X whose restrictions to I' equal F;; we call them
F, again. (Each F is one of the bundles £ x {0}, £ x C" F, or F,, cf. (A.10).)
Then T = yo Py

6. Parabolicity.

We shall now show that all the linear problems of the form (5.44,) (with 6 = 0)
introduced in Sections 4 and 5 are parabolic (with positive regularity) in the sense
of Grubb [G4], so that the solvability theory developed there and in [G-S4] is
directly applicable. For this we consider the system

M, + p2e
6.1) Sy = Tio

K1
and its principal interior symbol (the principal symbol of the pseudo-differential

part) and principal boundary symbol operator, taking their dependence on uinto
account. M, is the sum of a ps.d.o and a s.g.o. of order 2. Since B, and hence
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pr;, B, are of order 1, they do not contribute to the principal symbols, so M; has
the same principal part as the operator —4 + G, resp. —4 + G, for each k.
(Note moreover that since G, and G, are of order 1, they do not contribute
either.) So in all cases, the principal interior y-dependent symbol is

(6.2) PO, & 1) = (17 + u?e®) L,
The principal boundary symbol operator is the “model operator” acting on R ,:

(6.3)

(&P + ue® + D}y + gp(x', &, D,) Ly(R.)"
X
ad(x', &, u,D,) = tho°(x', &, D,,) CH)R,)'— CMo
X
t;cl 0(xl7 é” Dn) CN“l

where N, is the fiber dimension of Fy, (cf. (5.32)); we denote by a;O the correspond-
ing expression where g is replaced by g;O. Here we find, by calculations accord-
ing to the formulas in (5.36) for the simple one-dimensional case where Q is
replaced by R, (using that K, resp. Ky have symbol-kernels e !¢'*" resp.
—|&~ le-lﬁ'lxn):

90°(&, Du(x,) = g,°(&, Dy)u(xy) = 9a°(&', D)u(x,) = 4" (€, Dy)u(x,)

<
(’f) 1T igr .3 (0) = e (18] | & 0,000,
2] ,-

95" (&, Dpyu(x,) = g4 (&, D) u(x,) = 0,

9,2, D,)u(x,) = 2 (f) ~18183,1,(0) = 2e"'“x"( fﬂ)aunw)
(6.4) "

n—1
g.°(&, Dyulx,) = — (’5> Ty iﬁjuj(0)=2e*'¢"*"( é I)é ' (0),
i=1

9" (&, Dulx,) = (?)e"""""@nun(o) = e""""‘( Té I) Ontta(0),

s gt n—1 ]
6"(€. Du(xy) = — ('g )e“'é""" Y. iguf0) = et (,.fé,l) &)

n ji=1
We here recall that &' = {u,,...,u,_}. These formulas describe the symbols for
I&] = 1, and for |&| < 1 we use them with |&'| replaced by a smooth, positive
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extension. The formulas with |¢'| used unchanged for all ¢ % 0 define the
so-called strictly homogeneous boundary symbol operators g" resp. g,". All the
symbols are independent of x'.

The “model operators” t;,o for the trace operators T, are as follows (cf. (5.34)):

too (&, Dp)u(xy) = u(0), £o,°(&', Dy)u(x,) =0,

0ntt'(0) + i u,(0) )
0uun(0) + i~ u'(0))°

(6~5) t,200(5’: Dn)u(xn) = u,,(O), tlzlo(é’9 Dn)u(xn) = 0,,u’(0) + i un(O)’

0,u'(0) )
Dntta(0) + i€ - ' (0)
tao (&, Dp)t(Xy) = tn(0),  £4,°(&, Dy)us(x) = 0,4/ (0).

All the entries in (6.5) are strictly homogeneous and smooth (so t;‘,o = tL,").
With the concepts of parameter-ellipticity and parabolicity defined in [G4]
(Definitions 1.5.5 and 3.1.3 etc.), we now show:

tro (&, Du(x,) =0,  11,°(&, Dyulx,) = (

tyo (&, DJu(x) =0,  t3,°(&, D,)ulx,) = (

THEOREM 6.1. Let k = 0, 1, 2, 3, or 4. Consider one of the systems =4 , (6.1) with
M, and T, defined in Section 5.2. For each 8 € ] —n, n[ it is parameter-elliptic, i.e.
satisfies:

(I) The principal interior symbol p°(x, &, p) is bijective for all x, all (¢, yye R%*!
with |&* + Ju)* 2 1.

(I) The principal boundary symbol operator a(x', &, u, D,) is a bijection for all
X, all (&, u)eR", with |&| = 1, u= 0. .

(III) For each u > 0, each X', the strictly homogeneous principal boundary
symbol operator al(x', &', u, D,) (coinciding with af for |&'| = 1) converges in the
operator norm for £ — 0 to a limit operator

(6.6) al(x',0,u,D,): H*(R,)" = Ly(R )" x CNke x CMNit,

which is bijective.
Similar statements hold with a, replaced by d.
In particular, the systems {0, + M, T, } are parabolic.

Proor. (I)is seen immediately from (6.2). Concerning (IT) and (III), we can say
very briefly, that the invertibility required in Condition (II) follows essentially
from the solvability property shown in Lemma 3.2, when we apply the reductions
explained in Sections 4-5 to the model operators; that Condition (III) is satisfied
follows then from the normality of the boundary condition, in the same way as in
[G4, Proposition 1.5.9].

The parabolicity means that (I}«(I1I) hold for 8 € [ — n/2, /2].



BOUNDARY VALUE PROBLEMS FOR THE NONSTATIONARY ... 261

Let us also give a more self-contained and detailed explanation of the proof of
(I1) and (III). Consider a defined in (6.3), and the analogous expressions for a{,o,
a"and a".

If we let & — 0 in the strictly homogeneous expressions, we find that the
operator |¢'|2 + D? converges to D? for £ — 0, and moreover, for each k, that the
singular Green terms go to zero,

6.7) llg" (¢, & Dadllmaeq st = O 193" (X' & Do)llacn om0y
since they are 0(|&|'/?) (or better). For example:
lgs" (', &, Da)ullLypm = 20”1 | yn inn/21E 1,2,(0)]
= 2|Z1"2 10, un(0)] = cIE |yl 2, 5
gy 0, &, Dl m < 21l ™55 L, n /21812 [ O)
= 2112w O) < clEPP W gy e

(It is here that we use that the s.g.o.s are of class < 2.) For the trace operators we
have, when & — 0,

(6.8)

o =7 =0

1£,°€, D) = 71l m2ca  prcn = O,
(6.9 ||t§00(§', D,) — vollu2@w,).cn = 0 “tIZlO(é” D,) = yilla2m,ym-1.cn-1 2 0,

165°(€, D) = V1llmm e = O,

140", Da) = Yol pcn =0, 1241’ (€ D) = Pillmzon-1.0n-1 = 0,
since the differences are 0(|¢'|); for example,
i&' u, (0)
il u'(0)
Hence the limit operator a.(x',0, u, D,) exists in each case; it is described by the
formulas (we omit I, from now on):

D'l: + Zei0
%Wmmm=d=( e,

(6.10) |£,°(&, Dp)u — y,ul = I< )I < lE1uO)] £ cal& 1wl a1y

Yo
D2 +u2elﬂ
(6.11) %%xumua=aﬂ=ax=a¥=<" y ,
1
D2u + p*eu
ho,  h h ko
a, (X,0,u,Dyu=a,u=a,u=a, u= Yoln

71
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It is well known that each of these operators is bijective from H?(R,)" to
L,(R.,)" x C"for all e ]—mn, n[, so this proves that Condition (III) holds for all
Ne]—m.nf.

Finally, consider Condition (II). Let us fix a & (with |&') = 1) and a p2ee
C R .and let us write

B =% + u*e®, noting that BeC\ ]—oo,1[.

Then «,” has the form

2 0y Ly(R.)
(6 lel ak()(.\_,. :,,. n D") - <Dn + {30+ ng (é L} Dn)):HZ(RZ)n — X R
£2(, D) o

with analogous expressions for a;‘o. We must show that (6.12,) is bijective. The
main point in the proofis to carry this back to the unique solvability statement in
Lemma 3.2.

Actually, we shall simplify the procedure by making the observation that it
suffices to show injectiveness, which is particularly easy to carry over. This
observation hinges on a reduction to a finite dimensional problem. Let us show
the details in the case of alo. Note that the first line in (6.12,), the operator
D% + B + g,°, is surjective, for the problem

(6.13) (D2 + B+¢,)u=f onRy,
yyu=0 atx,=0,
is equivalent with the problem
(6.14) (D} + Pu=f onR,,
you=0 atx,=0,

since y; u = 0 implies g, ®u=0 (cf. (6.4)), and it is well known that the (Neumann)
problem (6.14) has a (unique) solution ue H*(R )" for any f € L,(R,)". Then for
the bijectiveness of (6.12,) it suffices to show that the mapping

(6.15) ARy A o
is bijective, where Z is the kernel of D? + § + g,°, i.e.,
Z = {ue H*(R,)|(D} + B + g,°)u = O}.

Now since g,O:Hz(R,,)" — L,(R.)" has finite rank, the index of the operator
D+ B+g,° from H?*R.,)" to L,(R,)" is the same as the index of
D? + B:H?*QR,)" - L,(R.)". The latter index is known to equal n (since D? + f8
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is surjective and has n-dimensional kernel). Then in view of the surjectiveness of
D% + B + g,°, we find that

dimZ =n.

But then the bijectiveness of t’lo in (6.15) is assured if we merely show its
injectiveness, and this is the same as showing the injectiveness of (6.12,). Note also
that if ue H?(R )" satisfies a, "u = 0, then (D? + B)u is a matrix times e "1™, so
u must lie in (R )"

It remains to show that (6.12,) has kernel zero in #(R.)", and here we use
Lemma 3.2. It is shown there (with z = pe®?) that the problem

() (W26 4 12 + D2)u(x,) + (f) p(x)=0 onR,,
616 (i (&) a)u(x)=0 onR,,
(i) t10<:> —0 ato,

has only the zero solution &(R.)"*!. Let u be a function in #(R )" satisfying
alou = 0. Define

p(x,) = 2e1¢1%n 3, u,(0),
modeled after (4.8), then clearly (cf. (6.4))

i&
glo(éla Dn)u = (6 )p’
so {u, p} satisfies (6.16i). Moreover we have (cf. (3.30)) that

of 6\ (3,(0) + iEu,0) _ anu'(0)+ic'un(o>)=
©1 & (p)‘(zanun(O)—p(0)>‘< 0 0

since the upper entry is the same as the tangential component of t’l0 u; this shows
(6.16iii). To show (6.16ii), we consider v(x,) = i& - u'(x,) + Onthn(x,). Here the
normal component of the equation t; u = 0 shows that

(6.18) 2(0) = 0.

Moreover, it is seen by application of (‘(i&') 0,) to the equation
(e + &> + D?)u + gJu = 0 that

(6.19) (12 + |&)* + D?)ov(x,) =0 onR,;

itis used here that —(|&|2 + D2)e” !¢ = 0. By (6.18)+6.19), v is in the kernel of
an elliptic Dirichlet problem, so v is zero. Altogether, {u, p} is a solution of (6.16),
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and hence u and p are zero by Lemma 3.2. This shows Condition (II) for alo.

For the other boundary operators, one proceeds in a similar way: The problem
with g,° is quite analogous. In the problems with g,° and g,°, one gets the
surjectivity of D2 + g;" + f by a comparison with the Dirichlet problem. In the
problems with goo, g’oo, gzo and g4°, one gets the surjectivity by use of (6.14). In
the remaining cases, the singular Green term is zero, so the property is classically
known.

REMARK 6.2. Let us include some remarks about the so-called regularity
number v for these systems. This concept is important in the systematic study of
parameter-dependent ps.d. boundary problems; it measures essentially how
many of the “classical” estimates the symbols satisfy, when u is included as
a cotangent variable (like &,,...,¢&,). Expressed in more detail, a y-dependent
pseudo-differential boundary operator is of regularity v when the strictly homo-
geneous principal boundary symbol operatoris O(|&'|* + 1) near & = 0in symbol
norm, and likewise the |a|th derivative of the j-th term is O(/&')*~!*~7 + 1), for all
,j. (When v > 0, this means for the principal part that it is Holder continuous of
degree v.) Since we shall only describe the regularity number in a few special cases,
we shall make do with these indications, referring the interested reader to [G4,
Sect. 1.5 and Ch. 2] for more information.

In the present systems, the pseudo-differential part, — 4 + Pgcontributes with
regularity = 2 (— 4 has a strictly homogeneous C* symbol and hence regularity
+ 00, and Py is a ps.d.o. of order 1, hence the jth term in the full symbol is
0(1&)*> ), etc.). For each k, T; is a differential trace operator, so that the strictly
homogeneous terms in the symbol are C* and contribute with regularity + oo. It
is the singular Green terms G,, Gy, Gp,, that give a lower regularity.

The s.g.0.s G, (k =0,...,4) and Gj, are all of order 2 and class 2, containing
a nontrivial term of the form Ky, with K, a Poisson operator of order 1. In the
strictly homogeneous principal symbol, this gives a term whose operator norm is
0(1&')17?), see (6.4) and the details for g," in (6.8); and the regularity is 1/2. The
operators G and G are of order 2 and class 1, they are of the form K7y, with K,
a Poisson operator of order 2. The norm of the strictly homogeneous principal
boundary symbol operator is @(/|*?), see the details for g," in (6.8); and the
regularity is 3/2. (G, also contains a term of the form K 7y,, but here the term of
the form K, y, has the lowest regularity.) The operators G5, G}, and G are of
order 1 and class 1, namely of the form Ky, with K a Poisson operator of order
1. Considered as operators of order 2, they have vanishing principal symbols.
Since they act together with the second order operator — 4, we must count them
as operators of order 2 and class 1, hence of regularity 3/2, like G.

To sum up, we have found that for k = 0, o, , has regularity 1/2;and fork = 1,
2,3, 4, o, , has regularity 1/2, when G, enters and regularity 3/2 when G, enters.
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Observe also that in the very special case where @ = R",, G, and G),vanish, then
when B = 0, one gets differential operator problems with regularity + co.

As shown in [G4, Sect. 4.2], a better regularity gives better estimate for the
kernels of the solution operators for the parabolic equations; it is also related to
some improved estimates of p in the present problems, cf. Theorems 7.6 and 7.7
below.

From the parameter-ellipticity we conclude, by application of [G4, Th. 3.3.1,
Cor. 3.3.2]:

THEOREM 6.3. Consider M, and T, as defined in Section 5.2. Let A, be the
associated L,-realization

(6.20) Ayu = My, D(4,) = {ue H*(Q)"| T,u = 0},
andlet R, ; = (A, — A) ™! be the resolvent, i.e. the solution operator for the problem

M, —ADu=f in Q,

(6.21) Tu=0 onT;

defined for the A€ C for which it exists as a bounded operator in L,(Q)".
For each 0 €10, 2x[ thereis a constant ry 2 0 such that the resolvent exists on the
ray A = re', r = ro, satisfying an estimate for each seR .:

(6.22) IRz flls+2 + <A HRez flo
S Gl flls + <A fllo)  for f € HY(Q)"

In particular, the spectrum of Ay is discrete and has a lower bound a; and for any
& > O there is a bounded set K, such that the resolvent satisfies (6.22) in the region

(6.23) U={AlRei<a—e}u{i|1¢K,e<argdi <2n —¢}.

The discreteness of the spectrum follows as usual from the compactness of R,
for a constant c in the resolvent set.

7. Solution of the initial-boundary value problems.

7.1. Compatibility conditions. We are now in a position to apply the general
parabolic solvability theory of [G4], [G-S4] to the reduced pseudo-differential
problems (5.44,), and to draw the conclusions for the original problems (5.41,). In
the linear case (the case & = 0), we can apply [G-S4, Th. 6.3] directly to (5.44y).
Here we recall that for the existence of a solution u € H™"/*(Q)" it is necessary and
sufficient that the given data { fi, Y\, 4o} satisfy a certain compatibility condition,
assuring that the initial value uo, given on the “bottom” of the cylinder
0 = Q x I, fits together with the “vertical” boundary values y,, at the “corner”
Iy (for larger r also t-derivatives of , and expressions derived from f, are
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involved). In the nonlinear case, one formulates in a similar way a compatibility
condition, that is clearly necessary for the solvability; and it is found that it is also
sufficient, when the data or I satisfy certain smallness hypotheses.

The compatibility conditions for the reduced pseudo-differential problems
carry over to compatibility conditions for the original problems in a natural way.
We make this explicit in the following.

Consider the problem (5.44;). When ue C*(Q)" solves (5.44,), then one has for
all j:

T, du = 8/ Tyu = &y, onsS,
(7.1) roa{+lu = '—roa{(Mk + (50.;,)“ + roa{f“‘
=—Mrodiu — 8ro(Quu)? + 10l fp on Q),

where

.2 (@) = pr, fn=o(,’n) K(@ru, o/,

At the corner '), one must have
(7.3) roTy0lu = T,rodlu,
for all j. From the data u, and f, we now define successively the functions on Qo,:

u(O) = Uop,

(7.4,) u*t = — My — opry, =0 (;) K™, u=™) + rod! fr,
for j =0,1,...; then in view of (7.1), we can express (7.3) in terms of these
functions as the system of conditions on the data

(7.5) rodi = Tiu?,

forj=0,1,...

When the problem (5.44,) is considered for ue H"* 22 *1(Q)" (with r = 0, and
r + 2 2 n/2incase é = 1), the expressions u are defined only for j up to a certain
value depending on r. More precisely, when (5.42,) holds, one has by Proposition
2.2,(2.43) and (4.32),

(7.6)  WQeH T Q... uPeH "2*YQ),..., forj<(r+ 1)2.

Moreover, when r + 1/2 is integer, the equation (7.5) need not make sense as it
stands (e.g. when T, uY is not well-defined), but it may still be given a sense as
acoincidence relation. This is explained in detail in [G-S4, Sect. 5],in terms of the
integral
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lp(x', £) — v(y)|?
7.7 j , U] = - d d . dt’
7 Le-v] Jlel Jl:’el],, Jyeg(o) (x' — y|2 + )t *+m2 yao

that is defined for functions ¢(x',f) on S and v(y) on Q, with ¢ € H**/*(S) and
ve HY2(Qo)) (0, is the surface measure on I'). When this integral is finite, we say
that ¢ and v coincide at I o). If ue H**-34(Q), then the coincidence holds for you
and ryu, with

(7.%) Fyou,rou] < Cyllullgsramgy

and conversely, for given ¢ € H"'/2(S)and v e H'/?(o,) with # [, v] < oo, there
exists ue H3?:34(Q) such that you = ¢ and rou = v. In particular, p € H"*/2(S)
coincides with 0 at I, precisely when ¢ € Hig/*(S).

We recall from (5.47,) ff. that T, = {T;o, T¢1} = {Y0 Pko» Yo Px1}, With differen-
tial operators P, of order /, mapping into the extended bundles F,; over .

DEeFINITION 7.2. Consider the problem (5.44,)fork =0,1,2,30r4. Letr 20
(with r + 2 2 n/2 in case § = 1), and let {f;, ¥y, uo} be given in the spaces
indicated in (5.42,). Define '’ by (7.4,) forj < (r + 1)/2. The data { f;, ¥, u,} are
said to satisfy the compatibility condition of order r for (5.44,), when

(7.10) T, uY = rodiy,, foralljeNand!=0,1
with 2j + I <r + 1/2,dim Fyy + 05

here, when r + 1/2 is integer, the equation for 2j + [ = r + 1/2 is understood in
the sense of coincidence:

(7.11) I3y, Pqu] < 0, for2j+1l=r+1/2,dmF,; +0

(when r + 1/2 is even, {j,I} = {(r + 1/2)/2,0}, and when r + 1/2is odd, {j, 1} =
{r —1/2)/2,1}).

There is a similar formulation where f; and G, are replaced by f, and G;.

In the case & = 0, this is simply the specialization of the general compatibility
condition [G-S4, Def. 6.1] to our particular problem (5.44,) (Where we use the
special form of our trace operators), and the solvability theorem proved there
applies directly. But before we go on to that, we first shall translate the compati-
bility condition back to the original problems (5.41,) by Theorem 5.3.

Let the set of data {f, ¢y, uo} be given as in Theorem 5.3, and let f; be derived
from {f, ¢,} as described there. Then we again define the functions u® by (7.4;).
Since f, €J,, we have that divu? = 0 in all cases; moreover, one shows that
7,u? = 0 in the cases k = 0, 2, 4, by calculations as in (5.22). Therefore one has
automatically that y, divu® and (in case k = 0, 2, 4) y, 4" are 0 (or div u" resp.
ii-ul coincide with 0 at I'y), so this need not be listed as explicit conditions. Alto-
gether, the compatibility condition from Definition 7.2 carries over to the form:
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DEerFINITION 7.3. Consider the problem (5.41,)fork =0,1,2,30r4. Letr 20
(withr + 2 = n/2incase d = 1), and let { f; ¢, u,} be given in the spaces indicated
in(5.42,), satisfying (5.43,). Define f, from { f; ¢, } by (5.37), and define u? by (7.4,)
forj < (r + 1)/2. The data { f, ¢, uo} are said to satisfy the compatibility condi-
tion of order r for (5.41,), when

ro0lgx = you?  fork=0,j < (r + 1/2)/2,
(7.12) rodor. = (1u?), fork=1and2,j<(r— 1/2)/2,
rodior.=vyu? fork=3and4,j < (r— 1/2)/2.
When (r + 1/2)/2 is integer, the equations are interpreted as coincidences, i.e. (cf.
(7.7),
Il ou?] <0 fork=0,j=(+1/2)/2,
(7.13) L0 pres(S@P)] < 0 fork=1and2,j=( — 1/2)/2,
S0 pp . 0,uP] < 0 fork =3and 4,j=(r — 1/2)/2.

We have here inserted the explicit expressions for the relevant differential
operators Py,.

7.2. Solution of the linear problems. In the linear case, [G-S4, Th. 6.3 1°]
implies immediately:

THEOREM 7.4. Letk =0,1,2,30r4,let 6 = 0,letr = 0, and let I = ]0, b[ with
b < o0. For any system of functions { fi, Y, o}, given as in (5.42,) and satisfying
the compatibility condition of order r for (5.44;) ( Definition 7.2 ), the problem (5.44,)
has a unique solution ue H*1"2*1(Q)", satisfying estimates as follows:

(714)  Nulfes2rzsigm S Colll fillirrraam + 1Wkollfir+ 3212+ 3105,y

+ ks e+ v Y48, Frer) T ||uo”121r+1(mn + Fir):

Here S, =0 if r + 1/2 is not integer, or if r + 1/2 is even and k = 1 or 3, or if
r + 1/2is odd and k = 0. In the remaining cases, %, , is defined by (cf. (5.49))

(7.15) S, = FL0IY1s, Pyu], for the value {j,1} such that 2j + 1 =r + 1/2,

that is, {j,1} = {(r + 1/2)/2,0} for r + 1/2 even and k =0, 2 or 4, and {j,1} =
{(r — 1/2)/2,1} forr + 1/2 odd and k = 1, 2, 3 or 4.
In particular, for any system of data

Sie HE*(©Q),
(7.16,) Wi € Hig) 272 314(8, Fo) x Hig)'/*"2* 1/4(8, Fyy),

Up= 0’
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the compatibility condition of order r holds, and the solution satisfies

(7170 ulaggzrneom < Colll filluggam + Wrollagg ams e o

+ Y1 ||H;o+, 12,0124 1/4(S 1)

Similar estimates hold when f; and G, are replaced by f, and G;.
The constants C, can be taken to be nondecreasing inbeR ..

This will now be translated back to a statement on the generalized Stokes
problems (5.41;) with § = 0, by Theorem 5.3. The transition from the original
data to the new data, by (5.37), is straightforward and takes place in the spaces
indicated in (5.42,), so the theorem above gives us ue H'*2"2*1(Q)". Then p is
defined from all the other entries by (5.38) ff. Here it remains to analyze p more
closely.

The contributions from the given boundary values ¢, are described by use of
(5.11), where we can include K, and Ky A7, that have similar mapping properties;
these contributions belong to H"*1"2+14(Q) if k = 1, 2, 3 or 4, and belong to
HT*212+3140) if k = 0. By (5.12) (extended to include grad K, and grad Ky A7),
their gradients belong to H™"/?(Q)"for k = 1,2, 3 or 4, resp. to H" * 12 * 112(Qy*for
k=0

The contributions from the boundary values of u (in the final formulas for pin
(5.38)) are similarly described by use of (5.11) and (5.12); here we need moreover
the information:

KD le} . Hr+3/2.r/2+3/4(s)n - Hr+ 1,r/2+ l/Z(Q) for r g — 1,
719 grad K divy.: H' #3272 +314(Sy s H™12(Q) for r 20,
that follows from Proposition 2.2 since K, div}- is a Poisson operator of order 1.
Altogether, the contributions from the boundary values of u are in
Hr+ 1,r/2+ 1/4(Q) 1fk = 0, in Hr+ 1,r/2+ 1/2(Q) lfk =1or 3’ and il‘l Hr+ 2,r/2+ 3/4(Q) lf
k=2 or 4; and their gradients are in H™"*(Q)" if k=0, 1 or 3, and in
Hr+1,r/2+1/2(Q)n ifk =2 or 4.

The contributions from Buand f consist of Rp div Buand Ry divf, or GBuand
Gf (recall (2.54) ff.). Here we have by Proposition 2.2,

Rpdiv,G:H""?(Q)" » H"*'"2(Q), forr =0,
(7.19) R, div B,GB:H'* 272+ 1(Q)y" » H' *212*314(Q), for r > —3/2,
grad R, div B, grad GB : H " 2"2*1(Q)y" —» H'* 12+ V2(Q), forrz —1,

since the operators in the first line are of order — 1 and class 0, in the second line of
order 0 and class 1, and in the third line of order 1 and class 1, cf. (2.18) and
Theorem 2.6.
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Thus for general data we get pe H™* !"/2(Q) with grad pe H""?(Q)".
We can then formulate the main result for the linear problems:

THEOREM 7.5. Letk =0,1,2,30r4,let 0 = 0,letr = 0, and let I = 0, b[ with
b < co. For any system of functions {f, ¢y, uo}, given as in (5.42,) and satisfying
(5.43,) and the compatibility condition of order r for (5.41,) ( Definition 7.3), the
problem (5.41,) has a solution {u,p} in H** 22+ 1(Q)" x H"*1*"12(Q), unique if
k = 1 or 3, and unique under one of the side conditions: (p, 1)) = 0 for almost all
tel, or: (yop, 1)L,y = O for almost all tel, if k = 0, 2 or 4. It satisfies estimates,
with C, nondecreasing inbeR ,:

(7'20k) ”“"?{H 2,r/2+ I(Q)n + ”p”?pw l,r/Z(Q) + Hgl‘ad p”zr,r/Z(Q)n
é Cb(”f"%l"!"/z(Q)" + "(pko ”[2'r+ 3/2,r/2+3/4(s‘£k0)
+ ”(pkl “%I"‘" 1/2,7/2 + l/A(S,Ek‘) + “uo |[12,r+ 1(g)n + ,_,q‘,').

Here #,, = 0if r — 1/2 is not integer, or ifr — 1/2 isodd and k = 1,2,3 or 4, or if
r— 1/2 is even and k = 0 (recall also that ¢, =0ifk=1o0r 3, and ¢y =0 if
k=0,2or4). In the remaining cases, %, is defined by

Fir = I [0l @1 u] Jork =0,j=(r+1/2)/2;
(121) A, =IO (SWMi]  fork=1or2,j=(—1/2)2
Fir = I [0l pn, 0,uP] Jork=3or4,j=(r—1/2)2

In the cases k = 0, 2 and 4, Theorem 5.3 at first gives p uniquely under the side
condition (yop, 1); = O a.e., but if we subtract the function c(t) = vol(Q) ™! (p, 1)a -
which lies in H?(I) (and hence in H*"/?(Q) for any s), we get p,(x,t) =
p(x, t) — c(t) satisfying (py, 1), a.e., and determined uniquely as such.

Theorems 7.4 and 7.5 were presented in [G-S1] under slightly more restrictive
circumstances: the cases k = 3 and 4 were not mentioned, B was 0, and there were
some extra hypotheses on the data (e.g. that divf = 0).

It is seen from the discussion before Theorem 7.5 that the individual terms in
the formulas (5.38) for p contribute in different ways, so the estimates can be
improved in many special cases. If div f = 0 and (for k =0, 2, 4) y,f = 0, the
explicit contribution from f is 0, so since Bu is more smooth, p gets more
smoothness in the t-direction (the weakest contribution then comes from
@€ H 122+ 4G F ) for k = 1 and 3, so the t-order is improved by 1/4).

If in addition B = 0 (or, in case k = 1 or 3, if B has constant scalar coefficients,
as in the Oseen equation), then p,(u, f) = 0, so p is expressed purely by Poisson
operators. Here it is sometimes the contribution from the boundary value of u,
sometimes the contribution from ¢,, that is more smooth, and we can use the fine
representations in (5.38) to advantage. In these cases, we can moreover apply the



BOUNDARY VALUE PROBLEMS FOR THE NONSTATIONARY . .. 271
estimates (2.36) to the present operators: When ¢ € L,(I; H** Y/3(I')) (possibly
a vector, we leave out the indication), then, in local coordinates at the boundary,

Knyoe(\mzo Lo(I H™*27™(RY)),
Kpo,Kydivre, KyAre, and Ky A7
(7.22) € (\mzo Lo(Il H™17m(RY)),
grad K ¢, grad Ky divy @, grad Ky Ar ¢, grad Ky A1 and K pdivy ¢
€ (\mzo Lo (I; H™~™(R")).

This can be combined with the mapping properties, valid for r > —1/2 (as

special consequences of Proposition 2.2),
vo: HY*21341(Q) — Ly(; H'*3%(D),
(7.23) r+2,2+1 r+1/2
Y19y Pry B HT 275 H(Q) = Ly(LH ™ H2(I)),

Recall also that 47 and A} vanish when Q = R",.
We collect some of the resulting improvements of p in the following theorem:

THEOREM 7.6. Consider the situation described in Theorem 7.5.
1° If divf = 0 and, whenk = 0,2, 4, y,f = 0, then:

(7.24) peH" 1 2HY4(Q)  for all k,
and, moreover,
p+ Kpop , e H V2 H12(Q) fork = 1,3,
(7.25) p + Ky divpgy € H*272+34Q)  fork = 2,4,
grad p + grad Ky divyo, e H'* "2 12(Q)  for k = 2,4,

giving improved smoothness when @, , resp. @y . is zero.
2° Ifin addition B = O (or, in the cases k = 1 and 3, B just has constant scalar
coefficients ), then, in local coordinates at the boundary,

126 P mzoLa(H™*1-M®RY) fork=0,1,2,3,4
P + Ky divy 94 € (\mzo L2 (I, H™ *2"™(RY)) fork =2,4;

in particular, if @ = R,

(7.27) p+ Kydivi@, =0 fork=2,4.

7.3. Consequences for the nonlinear problems. The method for solving the
nonlinear problems (4.31,) with 8 = 1 is described in detail in [G-83], so we shall
just outline the strategy here, for completeness.
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Letk = 0,1,2,3 or4. (The cases 3 and 4 are not mentioned in [G-S3], but their
treatment is, as we see, analogous to that of 1 and 2.) Assume that the data are as
in (5.42,) for some r = Owithr + 2 = n/2, and satisfy (5.43;) and the compatibil-
ity condition of order r according to Definition 7.3. The first step is to reduce the
problem to the form (5.44;) concerning u alone, where the data satisfy the
compatibility condition of order r according to Definition 7.2; this is briefly
indicated in [G-S3], and is accounted for in detail in the present terminology
above. The next step is to reduce to a problem for v = u — w, where w is chosen
such that u, is replaced by 0, and the other data are replaced by data in the H,
variant of the original spaces. For this there is shown, in the course of the proof of
Theorem § in [G-S3], a nonlinear variant of the linear reduction [G-S4, Prop.
6.2]. This leads to a problem of the form

ov + Myv + Quv,w) + Qw,v) + Quv=¢g inQ,
(7.28) T,v=y¢ inS§,
V;=0=0 inQ.

Now one applies Theorem 7.4 (in particular (7.17;) successively (as in [S1]) to
construct solutions of the problems for m = 0, 1,. .., beginning with v, = 0:

alvm+l + Mkvm+1 =4g— kam - Qk(vym W) - Qk(w’ vm) in Q,
(7.29) T Ve =V on S,
Um+tle=0 =0 on &

and it is found using Theorems B.3 and B.4 (from Appendix B below) that under
suitable smallness hypotheses, where either the data are small,r + 2 = n/2, or the
interval I is replaced by a small interval I, r + 2 > n/2, v,, converges for m — co
to a (unique) solution of (7.28). Finally this is carried back to a solution of the
original problem by Theorem 5.3.

The solution operator satisfies estimates as in Theorem 7.5 (on a small ball in
the space of data or on a small interval).

The resulting estimates for p were not in [G-S3] analyzed beyond noting (as in
the treatment of the linear problems in [G-S1]) that |grad p||,,,, is bounded in
terms of the data. In view of the formulas (5.38) this gives immediately a bound on
Ipll;+1,/2, when we simply use that K is continuous from H"**"2*1(Q,) to
H™"2(Q,.). Now we observe that Theorem B.3 contains a better mapping prop-
erty of K, which allows us to extend the results of Theorem 7.6 to the nonlinear
case also, to some extent, when r + 2 > n/2.

In fact, (B.8) shows that K is continuous from H"*272*1(Q.) to
H*o0*92(Q ) withe = 1ifr + 2 —n/2 > l,and witho < 1,6 < r + 2 — n/2,
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whenr + 2 — n/2 < 1. In view of the mapping property in the first line in (7.19),
the contribution from K(u) then satisfies:

RpdivK(u) and GK(u)e H” o+ 1.0+o2(g ),
Then the considerations leading to Theorem 7.6 1° give in the nonlinear case:

THEOREM 7.7. Let r = 0 with r + 2 > n/2, and let {u,p} be a solution of the
nonlinear problem (5.41,) with & = 1, constructed as in [G-S3, Th. 5], with data
satisfying (5.42,), (5.43,) and the compatibility condition of order r ( Definition 7.3 ).
Thenpe H *'"'2(Q,.) (where I is determined by the solution method ), and one has
furthermore:

Let o=1if r+2—n/2>1, and let 6<1 with ¢ <r+2—n/2 if
r+2-n/2<1.

Ifdivf = 0and, whenk =0,2,4,y,f =0, then:

(7.30) pe H"+lri2+minte/2.U8 (9 ) for all k.
Moreover,
p+ Kpgy,€ HHr2+mine212(0 ) for k = 1,3,
(7.31) p + Kydiv} @y € H *2r2+minte/2.318(0 ) for k = 2, 4,
grad p + grad Ky divy ¢, € H'* 172t minlei2.1i2( ) for k = 2,4,
giving improved smoothness when @, resp. @y . is zero.

In the best cases, the t-smoothness of p(x, t) is lifted to r/2 + 1/2.

8. Further consequences.

There are some further considerations in [G4] and [G-S4] that have interesting
consequences for the present problems. We begin with an application of the
results of [G-S4, Section 7] in the case 6 = 0. Here [G-S4, Th. 7.1] implies
immediately that when the given functions f;, and y, in (5.44;) are C* for ¢t > 0,
then so is u; and this in turn implies that when f and ¢, in (5.41,) are C* fort > 0,
then so are u and p. Moreover, if f and ¢, are such that f; and v, are 0, then
u depends analytically on t. In fact, (5.44;) is then solved by a holomorphic
semigroup U, (t): uo — u(t), generated by — A4,, where A, is the L, () realization
of the stationary problem (this follows from the resolvent estimates in Theorem
6.3 above, where A4, and its resolvent R, ; are defined). Moreover, U(t) allows
initial values uq in H*(Q)" also for 0 £ s < 1 (cf. [G-S4, Th. 7.3]). More precisely,
the initial values can be taken in the following spaces (wWhere the compatibility
conditions are taken into account), defined for meN, 0 < s < 2:



274 GERD GRUBB AND VSEVOLOD A. SOLONNIKOV

H%’,:j,‘k ={ueH™ Q)| TMiu=0for0<j<m,
8.1)
roMiu=0ifs = 1/2, T, Myu = 0if s = 3/2}.

(The boundary condition is understood in the sense of coincidence, when s = 1/2
or s = 3/2.). The semigroup U,(t) restricts to J,(£2) as a holomorphic semigroup
U, (1) there (since U,(t) maps J,(£) into itself — this is obvious for the smooth
elements, and follows then by continuity in general). In particular, the inequali-
ties

82) 1Uu®)uollug = Croayt™ ™92 |luoll oy forallz>0,r2s20,

follow from the corresponding inequalities for U,(t) [G-S4, (7.13)] by restriction
to

(8.3) My = Hy, g, O I

In(8.2), a, is any number < a, where a is the lower bound of the spectrum of the
realization A4,. The inequalities (8.2) were presented first in [G-S1], and they are
used in [G-S3] (to which we refer the reader for further details on this applica-
tion) to show solvability of the Navier-Stokes problems with not very smooth
initial data (see also Remark B.2 below).

Another question, we shall take up, is whether the infinite interval I, = ]0, co[
can be included. The general result [G-S4, Th 6.3] gives existence of solutions to
(5.44,), when the data satisfy suitable exponential estimates depending on the
lower bound a of the spectrum of the realization 4,. (Global existence can also be
obtained when ¢, = 0and uy and f take valuesin a suitable subspace of L, (2)" of
finite codimension, by [G-S4, Cor. 7.5].) This carries over to (5.41;), but is not so
convenient for the treatment of the nonlinear problems.

Actually, one can get much more precise results here, applicable to the basic
Laplace transform argument used in [G-S4, Th. 6.3] when f € J;, and ¢, and u,
are 0, by observing that the resolvent R, ; = (4, — 4)~ ! is then only used on the
space J,(£2).

LEMMA 8.1. Denote by o((— 4)p) resp. a((— A)x) the spectra of the Dirichlet resp.
the Neumann realizations of — A in L,(Q), and denote the spectrum of A, by a(Ay).
For k = 1 or 3 and 24 6(Ay) v o((— A)p), Ry,; maps J, () = J(Q) into itself.

Fork = 0,2 0r 4 and ¢ o(A;) U (a((— 4)x)\ {0}), Ry 2 maps Ji(Q) = Jo(Q) into
itself.

In these cases, the restriction R, ; of the resolvent to the space Ji(9Q), identifies
with the solution operator for the problem

M, —Du=f inQ,
(8.4) Tu=0 onT;
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with f and uin J,(Q), and the estimates (6.22) for A satisfying (6.23) carry over to R; ;.

PRrOOF. The prooffollows an argumentation very similar to the one we used to
show divu = 0 in Sections 4 and 5 for time-dependent problems:

Letk = 1or3,letAéa(A4,),andlet f € J, () = J(Q). Then an application of div
to the first line in (6.21) shows that any solution u € H?()" of (6.21) must satisfy

(8.5) (=4 —-Adivu=0

(for div du = 4 divu; G,u = G,u since the boundary value is zero; div G u =
divG,u = 0; divpr; Bu =0). Combining (8.5) with the information that
yodivu = 0, we conclude that if A ¢ o((— 4)p), then divu = 0. Thus for these A,
J(£) is invariant under R, ;.

Ifk = 0,2 0r 4, we take f € J,(Q2) = Jo(R). Again (8.5) holds, and we here find by
a calculation similar to that of (5.22) (noting that y,u = 0 by the boundary
condition), that y, divu = 0. This allows us to conclude that divu = 0, when A is
outside o((—4)y). For 4 =0, we can at first only conclude that divu equals
a constant ¢, but since y,u = 0, ¢ vol(Q) = (divu, 1), = —(y,u, 1) = 0. Thus for
Ada((— )\ {0}, umustlie in Jo(€2); and therefore J,(£) is invariant under R, ,,
for such A.

It is now obvious that the restriction of R, ; to Ji(®), R, ,, is the solution
operator for (8.4) on Ji(Q), in each case. The estimates (6.22) imply the same
estimates for R; ; by restriction.

Observe that R ; is the resolvent of the operator 4, defined in the Hilbert
space J,(€2) by:

(8.6) Aju = pr;, Myu, D(4}) = {ueJ (@) HXQ)"| T, u = 0}.

In particular, A} is the usual operator studied in connection with the Dirichlet
problem, e.g. in the works mentioned in the introduction. The preceding analysis
shows that the spectrum of A4} outside o((— 4)p) resp. a((— 4)x)\ {0} is contained
in the spectrum of A,. Let us pursue this in the case B = 0, by some further
observations:

Let ue D(A;), and define p such that G,u = grad p, then we find from Lemma
3.1, in view of the reductions described in Sections 4 and 5,

(M — A)u,u)g = (— Au + grad p — Au, u)g

()

lgradul|2 — Allul|3 fork=0,2o0r4,
E(u,u) — Allul3 fork = 1or3.
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Denote the lowest eigenvalue of (— 4)p, by ap, it equals inf { | grad ul|3 |ue H3(Q)",
llullo = 1} and is positive. Then for k = 0 and ue D(4y),

(Ao — Aullo llullo = lIprso(Mo — Aullo llullo
2 [(Mo — Au,u)l = |llgrad u||§ — Re A||ull5 — ilm 2 ju]3]
g C, ”u”g’

with ¢; > 0 if Red < ap or Im A £ 0. Dividing by |u|lo, and using similar
considerations for k = 1, 2, 3, 4, we conclude that there are positive constants ¢,
such that

(A, — Aullo = ||Pka(Mk — Aullo = cillullo,

when A¢[ap, o] in the case k = 0, and when 4¢[0, co[ in the other cases, so
A, — Aisinjective then. Moreover, these values of 4 are in the resolvent set of A4,
since theindex of A, — 1isOat each A e C (by continuation from the resolvent set),
so we conclude that the spectrum of A; satisfies

8.8) a(4;) c[ap, o fork=0, o(4;)<[0,0[ fork=1,23,4

We also find that 4; is symmetric as an operator in J,(Q), since (4, u, u) is real;
hence A, is selfadjoint since the deficiency indices are 0.

This means in particular that the resolvents R; ; satisfy estimates (6.22) on sets
(6.23)witha > 0ifk = 0,and witha = 0if k = 1,2, 3, 4. In the latter cases, one can
restrict R; ; further to the orthogonal complement J; of the zero eigenspace of 4;,
to get estimates with a > 0 there. Finally, the Laplace transform method used in
[G-S4, Sect. 6] can be used to carry this over to global estimates over Q, for the
solution {u, p} of (5.41,):

(8.9 lull,® o+ 2@nnd0nir2+ 1R, 500 + IPNar+ 12 + llgrad pllgerz
é C ”f”Lz(R+;H"(9)"n.lk)nH"/2(R+;Jk)’

when @, and u, are 0, the compatibility conditions are satisfied, and, ifk = 1,2, 3,4,
SeL;(Rs;Jp).

This of course also has consequences for problems with nonzero boundary-
and initial data; and it implies a uniformity for the constants in the estimates of
solutions of the linear problems on Q, for b — co. It also allows the inclusion of
the case I = ]0, co[ in the treatment of the nonlinear Dirichlet problem, when
r+2>n/2.

Precisions on the zero eigenspace can be found in [S-S§] and [S6].

The ps.d.o. calculus allows us to derive very easily a spectral estimate for each
of the operators 4;, k = 1, 2, 3, 4, from a fine estimate of Kozevnikov [K] for Ay,
in the case B =0. He showed that the counting function for the Dirichlet
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operator, N(Ajp;t) = the number of eigenvalues of Ay in [0,t], satisfies the
asymptotic estimate
(8.10) N(Ap;t) = Cot"? + Ot~ V%) for t — oo,

where Co = (2m)""(n — 1) vol ({|x| < 1}) vol (2). Let ¢ be a positive constant for
which —cisin the resolvent set of all of the operators 4,. Then we have in view of
the preceding observations:

A+ o) V=pr, (A4 +" onl,
for any integer N = 1. In particular, for k = 1, 2, 3, 4,
@.11) (A + o)™V =prs, (A + )™ — (4o + ™) + pry (Ao + )7
=pr;,(do + ) Npry, + Gy on i,
where
Gy=pr; (A + )" — (Ao + 07
+ (pry, — Prs Ao + ©) ™" + pry (Ao + &) "N (pry, — prs,)

is a singular Green operator of order —2N and class 0 (since (4; + ¢)™~ and
(Ao + ¢)~N have the same ps.d.o. part, and pr 7, — Pry,isas.g.0.). The s-numbers
of Gy in L,(R)" (the eigenvalues s; of the compact operator (G%Gy)'/? satisfy

(8.12) s{(G) £ C,j~ 2N Y

(as shown in [G5]), and this implies a similar estimate for the operator on J,.
Since (8.10) is equivalent with the validity of

5{((Ay + V) = C3Nmj= 2N 4 @GN+ VM) for j— o0

([G4, Lemma A.5]), we can apply a perturbation argument ([G4, Lemma-A.6]),
which gives that

(A + cY) = C3Vmj=2MR 1 0(j~ X+, for j - oo,

where § = (1 + (n — 1)/2N) . By carrying this over to an estimate on N(A4;;t)
(again using [G4, Lemma A.5]), we get, since N can be taken arbitrarily large:

COROLLARY 8.2. For each of the operators Ay, k = 1,2,3,4 (with B=10), one
has the spectral estimate

(8.13) N(A4;t) = Cot"? + O(t"~%%)  for t — oo;
forany 9 < 1.
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Appendix A: Normal and tangential components.

Near I there is defined a normal vector field 7(x) = (n,(x),. .., n,(x)), as follows:
For x, € I', 1i(x,) is the unit vector normal to I, pointing towards the interior of Q,
and we set

ri(x) = 7i(x,) for x of the form x = x, + s(xg) = A(xo,s),

(A.S)
where xqeI',se]—9,0[.

Here 6 > 0 is taken so small that the representation of x in terms of xoeI' and
se]—4,d[ is unique and smooth, i.e., 4 is bijective and is C® with C* inverse,
from I' x ]—46, [ to the set
2=Mx]-0,0[) = R
Whenk;:U; = V,,j = 1,...,jo,is a system of local coordinates for I' (here U; = I’
and V; = R"™!, with k; bijective and C* from U; to ¥}, and I' = (¥ U)), then
the following composed mappings p;, going from V; x ]—4,0[ to X; =
AU; x 1-46,0[),
Vix]-6,0[ —— U; x]-6,0[ —

are diﬁ'eomorphlsms (in R"); they define a particularly convenient system of local
coordinates u; ':Z; —» V; x ]1—4, [ for the neighborhood & (= (})2, X)) of I'in
R".

(We note in passing that the mapping A~ *: £ — I' x ]—46, §[ defines a function
¢ from X to ]—4,d[ for which the level surfaces {x|g(x) = s} are precisely the
surfaces I, = A(I" x {s}) “parallel” to I' (in particular, I = I'y = {x|g(x) = 0});

and n = (0,0,...,0,0).)
The derivative along # is denoted 9, (the normal derivative):

(A2) O f = Yi-1n(x)8; f(x),

defined for x € Z. For the function f o u; of (y',s)e V; x ]9, [, we have by the
chain rule

of ox;
O o) = T 2 = Thes )00,

so the normal derivative is simply the s-derivative in the local coordinate system
defined by p;. Note in particular that the normal derivative of # itself is zero,
(A.3) dn=0 fori=1,...,n

since A is constant along the rays x, + si(xo).
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We call differential operators tangential when they are of the form
(Ad) Af=311a(x)0:f + ao(x)f with }7_; ai(x)n(x) = 0 for xe 2,

or are compositions of such operators. They “act along” the surfaces I', parallel to
I, since they correspond, in the local coordinates (y', s)e V; x ]—9, d[ defined by
the u;, to (compositions of) operators of the form

(A.5) %=1 010, 9)0,,(f o 1)V, 5) + bo(y', s)(f o ), 8)s

differentiating with respect to )’ € V; only. Note that when A is a first order
tangential differential operator (as in (A.4)), then

(A.6) 0,Af = A0,f + A, f,
where A, is another first order tangential operator (as is easily seen using the local
coordinates).
We set
(A7) S =0 f =@ f)lr, fork=0,1,2,...,

the k-th normal derivative of f at I'. We recall that the mapping y, is well-defined
as a continuous mapping y, : H'(Q) » H %~ Y2(I')for r > 1/2, also some general-
izations are possible. We assume in the following that the functions are smooth
enough for the formulas to make sense (more precision is given when they are
applied in Sections 2-8).

The fact that yoD, u = D, you, i = 1,...,n — 1, when u is considered in the
local coordinates (y',s)e ¥; x ]0,d[, carries over to Q as the observation that
when A is a tangential differential operator, then

(A.8) Yo(Au) = Aryou,

where A is a differential operator acting in I' (obtained from A by restricting the
coeflicients to I).

We shall also consider complex vector fields v(x) = (v4(x),. . . , v,(x)) defined for
x € R" or a subset (they can be considered as sections of R” x C”, the complexified
tangent bundle, i.e. as 1-forms). When v(x) is defined on Z, it is decomposed into
a normal component v, 7 (where v, is a scalar function) and a tangential compo-
nent v,, defined at each x by

=Y J=110),

(A.9) v.=v—(A0)i= (2?=1 @;j0i)i=1,...m

.....

o
v,=n"

<

with a;; = 5,'1' — n;h; = a;, for l,] = 1,. I (X

(Here §;; is the Kronecker delta.) Correspondingly, the vector bundle X x C"
splits into what we can call the normal bundle F, and the tangential bundle F,:
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Z x C"=F,@F,; where
F, = {(x,2)eZ x C"|#(x) z = 0},
(A.10) F, = {(x,z)e Z x C"|ze C(x)}, restricted to I' as
I'xC'=F,r®F,,.

(For precision, we sometimes denote v, = prg, v, v, = prg,v.) Of course, (i), = 1
and (#), = 0. Observe also that the vector (a;;);-1,... . is orthogonal to rifor all i,in
fact

(A.11) (Z?=1 aijnj)i=1 ..... n=H—(Mn=0= (Z'}:x ajinj)i=1 ..... n-

When Q = R", one simply has that v, = v, and v, = (v4,...,0,_4,0), where the
latter is usually identified with v = (vy,...,0,- ).

.....

Clearly,
Yovy = (Yov), and  yov, = (Yov)..
Because of (A.3), one has

avvv = av(ﬁv) = (avﬁ)v + ﬁ'avv = ﬁ'avv = (avv)v’

dv, = 71(0,), = = (Bv),,

(A.12)
avvt = av(v - Uvﬁ) = 0,0 — (avv)vﬁ = (avv)v
Fv, = 057 1(0,0), =+ = (Bh)s,

so that moreover,

Py = Y0(0%0,) = o(4v), = (i0),,
(A.13)
Pue = Yo(04v,) = yo(hv). = (), fork=0,1,2,...

On Z, each differentiation d; may be split into a normal and a tangential
differentiation (as defined in (A.2) and (A.4)), cf. (A.9), (A.11),
Oif =m0, f+ Y-1(6:;; — mnj)d;f = nid,f + A f, for each i, where
a19 Af =Y ay0,f = Y-, (8 — nn;)d; fis a tangential derivative.
In particular, one has in view of (A.7), (A.8),

(A.15) Y00if =nmy1 f + Airvof.

The divergence of a vector field v, the gradient of a function £, and the Laplace
operator applied to f, are defined as usual by:
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dive=V-v=0,0, + - + 0,0,
(A.16) grad f = Vf =(0:f)i=1,...ns
Af =03f + -+ 02 f =divgrad f = V- Vf.

Under coordinate changes, these differential operators of course change form;
observe however that a linear, orthogonal transformation of the x variable,
applied also to the vector fields v and grad f, leads to the same expressions in the
new coordinates.

It will be convenient for our calculations to decompose div and grad on Z into
their normal and tangential differential operator parts, on the basis of (A.14):

dive = Z?=1 0iv; = Z?=1 n;0,v; + Z?=1 Agv;
(A.17) =#n-0,0+div'vo = (0,v), + div'v = d,v, + div'v;
grad f = (0;f)i=1,.0n = M0, [+ Aif )i=1,..n = 10, f + grad'f;

here we have introduced the notation

(A.18) diviv = Z?:x Ao, grad'f =(A;f)i=1.....ns
and used (A.12). Note that in view of (A.2) and (A.9), grad f satisfies
(A.19) (grad f), = 0,f, (grad f), = grad’ f.

When f is replaced by a vector u = (uy, . . ., u,), the operators are applied to each
component u;.
Concerning the relation of div v to v, and v,, one finds furthermore
div'v = divv — d,v, = div (v, + v,A) — 0,0,

(A.20) ) )

=divo, + Y-, (@in)v, + Y-y mdiv, — 0,0, = divo, + (div i),
here the coefficient div#(x) (which, by the way, equals the mean curvature
Z;-; N 8} o(x) of the surface I going through x) is generally nonvanishing, so div v,
and div’ v differ by a zero order term. A further application shows

div'v, = div(v,), + (div#A)(v,), = divyv,, and hence

(A.21)
divv = div' v, + (div A)v, + 0,v,.

All this gives for the boundary values (cf. (A.8)):
yodive = divpyev + Ay, v = divpyev + 940,
= divpyov, + (div n)yovy + Y10y,
(A.22) _ )
yodiv’ v = divpyov = divyyo0, + (divA)yev,, and

yograd f = gradyyo f + iy f;
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where the restriction of # and div# to I is tacitly understood. When Q = R",,
then div i = 0, and one simply identifies

) divo=0.vy + "+ 0p_1V,—1 =div'?v, divo =div' v’ + 0,0,
grad' f = (01 f,...,0,-1f) = (grad f), (gradf), = 0,f = (grad f),.

More generally, when Q = {x e R"|x -, > 0} for a fixed unit vector #y, div vand
grad f decompose as in (A.23), when the original coordinates x are replaced by
new coordinates y obtained by an orthogonal transformation carrying r, into
(0,...,0,1), and the vector fields are transformed in the same way.

We use the formulas in an analysis of the special boundary operator y,(4u),,
that is used in Section 5.

(A.23

LEMMA A.1. Letu = (uy,...,u,). The operator A’ defined on a neighborhood of
I by

A24) A'u = n-div' grad’ u — div’' grad’ (7 u) + div' d,u, — 0, div'u,
. = Z:",j= 1 [niA,? u; — Af("iui)] + Z?,j: 1 [Ai(njajut,i) — n;01(Aiu,)],

cf. (A.18),(A.14), is a tangential first order differential operator, that vanishes when
A is constant. It enters in the formula, valid for general u,
n-Au = 0,divu — 0,div' u, + #n-div’' grad' u — (9, div #)u,

(A.25)
= 0,divu — div' d,u, + div’ grad’ u, + A'u — (0, divA)u,.

In particular,

(A.26) yo(4du), = vy, divu — divyy,u, + divygradryou,
+ Aryou — (0,div ) you;

and if you, = 0, then

(A.27) yoldu), — yydivu = —divpy,u, + Aryou,.

PROOF. In the first two terms in the definition of 4’, div’ grad’ is a tangential
scalar second order operator, so the commutator between this and the multipli-
cation by n; gives a tangential first order operator for each i. That the commuta-
tor defined by the last two terms is likewise tangential, follows from (A.6). Clearly,
the commutators are zero, when # is constant.

Now consider (A.25). For each j one has by (A.19) and (A.21),

A2) div grad u; = div' (grad u;), + (div A)(grad u;), + 0,(grad u;),
' = div' grad’ u; + (div#)d,u; + 02u;.



BOUNDARY VALUE PROBLEMS FOR THE NONSTATIONARY ... 283

Then we find for the vector u, in view of (A.12) and (A.21),
ni-divgradu = 7i- div’ grad’ u + (div i) d,u, + d%u,
(A.29) = 1i-div' grad’ u + (div#) d,u, + ,(divu — div' u, — (div #?)u,)
=i-div' grad'u + 0,divu — d,div' u, — (3, div i)u,.

This shows the first equation in (A.25), and the second equation follows by
insertion of (A.24). Restriction to the boundary gives (A.26), and (A.27) is an
obvious special case.

Recall finally the Gauss formula

— J 0;fgdx = j fo:gdx + J n:y0f70gdo, implyinge.g.
(A.30) ° ? ’
(—4f, g)L,(n) = (grad f, grad D@ + oS> 709 Ly

(divw, ), = (1 yow, D,y
A special calculation, we need in Section 5, is that

for n = yo(ii- Au) — y, divu, one has

(A.31) mr= J; 70(2?,,':1 njaiaivj - Z'i',j=1 njajaivi) do

= J‘ Z}',Flajai(@,-vj - 5jv,~)dx = 0,
2

by symmetry. The formulas are valid for smooth functions, and extend by
continuity to Sobolev spaces and domains of differential operators, as accounted
fore.g. in [L-M].

Appendix B: Nonlinear estimates.

We here show the anisotropic estimates of the nonlinear term K(u, v) used above.
We also show the estimates that are used in Grubb-Solonnikov [G-S3] to deduce
the solvability properties of the Navier-Stokes problems from those of the Stokes
problems.

PROPOSITION B.1. Let A, p, @, veR. One has for fe H***() and ge H**2(Q)
(where Q is a smooth open subset of R"):

Ifgla < Clfla+ulgllisns
(i) when u + @ + A 2 n/2,
(B.1) () withuz0,w=20,2A2 —u— w; o
(iii) except that p + © + A > n/2 if equality holds somewhere in (ii).



284 GERD GRUBB AND VSEVOLOD A. SOLONNIKOV

Thus the bilinear form K(u,v) = Y, u;0,v satisfies:
(B.2) K@ o)1z = Cllullz+plloli+1+w0, when (B.1iii,iii) hold.
In particular,

1K@, 0)ll2 = Cllully [0ll1+.;

(B.3)
when2v 2n/2 + A,vZAv20; with2v>n/2+ Aif v=Aorv=0.

This type of result has been known for a long time (the estimate (B.1) with
A > n/2and u = w = 0 goes back to Schauder). For A = 0it can be shown by use
of Sobolev and Holder inequalities; and we had originally planned to present
a proof of that, and use the result to derive the anisotropic estimates in the
(x, t)-variables that we needed, namely (B.8) with ¢ close to 0, and Theorem B.4.
However, there is another proof based on the Fourier transform (cf. Rauch [R])
that allows a sharper analysis of the possible exponents, as carried out in
Hormander [H2, Th. 8.3.1]. We generalize that proof to anisotropic spaces
below, which gives a more precise information on ¢ in (B.8) (permitting ¢ = 1 for
large r), that we use to derive some useful supplementary information on p(x, t)in
Section 7.3.

It should also be mentioned that these estimates have been shown (except for
anextreme case) by Yamazaki[Y, Th. 6.1] in the more complicated framework of
L,-related spaces (the scales B, and F; ., p,q€]0,o[), as a byproduct of
a thorough analysis of quasi-homogeneous paradifferential operators. However,
we think that the short L, proof below may be of interest anyway. The extreme
case where A + u = — 1 — w is not covered by [Y].

ReMARK B.2. Using that A can take negative values of r and s, one can extend
the proof of Theorem 6 of [G-S3] such that the conditionr > Oisrelaxed for = 0
there.

Before showing the theorem, we shall include anisotropic spaces with negative
exponents s, s/d:

Denote (x,t) = %, (¢,7) = &, etc. The space H***(R" x R) can be defined for
general se R as the space of distributions f € #'(R"*!) with finite norm

®.4) 1S s = 10, 2 (€, D)l y@n+1), Where
' 8(Z,7) = (€174 + < + 1), also denoted 6(3).

When Q; = Q x I, where Qis a smooth open subset of R and I is an interval of R,
the space H**#(Q;) consists of the restrictions to Q; of elements of H**/*(R" x R),
provided with the infimum norm

(B.5) I f Il gs.ora@py = inf {[|v]| go.sraan xry | v € H**4(R" % R),vlg, = f}.
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When I =10,b[, the space H{5*(Q;) consists of the elements of
H*"%(Q x 1— o0, b[) (with the norm from that space) vanishing for t < 0; it is
a subset of H>*%(Q;) when s = 0.

THEOREM B.3. Letd 2 1,andlet Q; = Q x I, where Qis a smooth open subset of
R" and I is an interval of R. One has for f € H*****W4(Q,) and ge H**>*+ol(Q ),
with constants independent of Q,:

1/l a2a S CUSf Nzt pa+uya 9112+ w,(a+wyas
(i) whenu+w+ A2+ d)2,
(B.6) (i) withu=z0,w=20,2A2 —p — w;
(ili) except that u + w + A > (n + d)/2 if equality holds somewhere in (ii).

Thus the bilinear form K(u,v) = Z;; 1 u;0;v satisfies:

| K(u, v)|| a2z S C ||u";.+,¢,u+u)/z lollasq +o,(A+1+0)2>

when (B.6 i,1i,iii) hold with d = 2.

(B.7)

In particular,

KW@ )y + 6,60 402 = Cltdly s 2,24 1 10542072415
(B.8) whenr+2—o02n/2,r2 —-3/2,6 £ 1,
except thatr +2 — o >nf2if r= —320rc = 1.

When I =10,b[ andr + ¢ 2 0, the estimate (B.8) holds for ue H{g,>"***(Q,)",
ve H"*2"12*1(Q,)", when the norms on u resp. K(u,v) are replaced by norms in
Hig 22+ 1(Q,)" resp. Hig,™"*"3(Q,Y". This estimate also holds with K(u,v) re-
placed by K(v, u).

ProoF. In view of (B.5) it suffices to consider the case Q; = R" x R. Then the
proof also covers Proposition B.1 when we take d = 1 (with an easy modification
for n = 1 there).

Denote A + u = A; and 1 + w = 1,, and observe that the conditions in (B.6)
can be written

(@) Ay + 42— A2 (n+d)2
(B.9) (i) withd, 241, =24 A +4,20
(iii) except that 4; + A, — A > (n + d)/2if 14, 4, or — A equals (n + d)/2.

We consider a set A, 4;, 4, such that (B.9) holds.
Recall first the elementary fact that if T;(f,g) is defined by

T(£,0)@) = f _ FEMSE~ igdi
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for f and ge CP(R"*!), then

(B.10) I T (f, g)"l,,(n”“) =< B"f”Lz(R"“) ||g||L2(n"+'),
when either (a), (b) or (c) holds:

(@) f IF(E 7)) dif < B*for all §,
Rn+1

(B.11) (b) f IF(& M d€ < B* for all ,
Rnt1

(© J |F(E,& — A)|* d& < B? for all #.
Rn+1

It suffices to show (B.6) for f,ge # ! C3 (R"*1), which is dense in all spaces. We
have by (B.4) that || fgll 1,14 = 10, )* f9ll Ly@n+1); here we can write

0@ fg(&) = 2m) ! f 0@ 1 (& — M3 di
= (@2m" f FE D] € — 7)d. () di,

where
A1) = 00" F), §:1(8) = 05248, FE 7)) =006 — i~ *0)*,

so we have to show (B.10) for F, f; and g,. To do this, we write F as a sum of four
terms:

F=xF+ 02F + 13F + x4F, xi= 1y,
where
M, = {&MI0G) = 00)/2}, M, ={¢&MI6OE -7 =65/2},
M; = {(&7)16(6) < min {20(7), 20 — 7}, 0(0) < 4},
M, = {(€,7)16(5) < min {26(7), 26(¢ — 7)},6(5) > 4}.

Observe that with the change of variables +1 = &4, |, with (, £, ;) denoted ¢”,

J 08> dt = ZdJ‘ (€27 + &% + 8L 1 dEd s
Rn+1 Rn+1

é CJ‘ <éu>2:+d—1d§” iS < 00
Rn+1

if and only if s < —(n + d)/2; and, on the other hand,
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(B13) f 3 Q(E)stg < CIJ <é”>2s+d_l dé"
o) sa g sCza

< Cya®**" resp. Cyloglal, when s > —(n + d)/2 resp. s = —(n + d)/2.

Consider y,F; for this we show (a). Note that 6(f — #) ~ 6(f) when
037) < 0(8)/2. Then if A, < (n + d)/2,

j Iy FE M d ~ J 0§22~ 24 g() 242 dff < CHEPA~H—Ratdin < )
Rr+1 oG =0dy2

by (B.13) and (B.9i); and if A, = (n + d)/2, the expression is likewise bounded by
(B.13)and (B.9i)since 4, > A by (B.9iii). If 1, > (n + d)/2, the integral is bounded
because of (B.12) and (B.9ii).

For the term y, F one shows (c) in a very similar way.

Now consider y; F and x4 F; here we shall estimate (b). For y3 F we note that
since 8(€ — #)/0(#) and its inverse are uniformly bounded in #, 4, + 4, 20
implies that the integral over 8(f) < 4 is uniformly bounded. Finally consider
x4 F. Since 0(¢) = 4on M,,0(7) = 2and 6(¢ — #) = 2 there. Expressed in relation
to the coordinates £”, ", we have that 8(8) ~ |&"|, 0() =~ |n"|, 0 — ) ~ |&" — 7"
on M,; and more precisely:

|C”|2d + 1 g 42d’ |"//|2d + 1 g 22d’ Iéu _ r’l/'2d + 1 g 22d,
lél’lzd + 1 =<= 22d(|n”I2d + 1)’ léﬂ'Zd + 1 é 22d(|é” _ ””IZd + 1) on M4.
This implies that there exist positive constants Cy, C,, C5 and C, such that

" 1 ” 17 "
> :5: 2 Cprand Cy 2 S i P S Y
n

W= T
Denote &"/|n"| = {” and 1"/|n"| = g, note that |o| = 1. When |{" — ¢| = r holds
with r £ 1, then
r=10"— ol Z Call’l = Calo + {" — 0 Z Callel = 1" — el| = Ca(l —7),
hence r = C,/(1 + C,). Thus
(B.14)  C; 21" 2 Coln"|"* and C3 Z|{" — n"/In"I] 2 Ca/(1 + C4) on M,

C

The integral of x, F gives in these coordinates:

‘[IXJ(& M dé < CJ E"PHIE" — n"| = 2R | 2R g 1 g

(& MeM4nRRH L

= C]r,"|2"“‘““’12”'“’"“"J‘~ C"P4" — 7" /il ~2* (i Al

EHeM nRLHT
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From (B.14) we see that the factor with |(” — 1"/n"|| is harmless. The integral of
I£"1?2¢451 is bounded when A > —(n + d)/2, so (b) holds in view of (B.9i); it is
O(n") "% " 2*) when A < —(n + d)/2 (cf. (B.14)), so (b) holds since 4; + 4, = 0;
and when 4 = —(n + d)/2 it gives O(log|n"|), so (b) holds since 1; + 4, > 0, cf.
(B.9iii).

Altogether, we have obtained the estimate in (B.6), and (B.7) and (B.8) are
straightforward consequences.

The inequalities hold in particular for I = ]— oo, b[; here if u vanishes fort < 0,
so does K(u,v). We get the last statement in the theorem by applying (B.8) to
ue Hg>"**1(Q,y'andv' e H"*>"2*1(Q x ]— o0, b[)", where v'|;» o = v, with the
norm of v’ arbitrarily close to that of v; here K(u,v') = K(u, v).

The following simple consequence is also used in [G-S3].

THEOREM B.4. Let I = 10,b[, b < o0, and let r =2 0 and r + 2 > n/2. When
ue H' 2241 (Q ) and ve H *2"12*1(Q,)", one has for any ¢ > 0, with constants
independent of b,

| K(u, U)||H;6;/2(Q,)n + [|K(v, w)|| HZg2@p)
(BIS) =< (8 ”u"H:g)z,r/z+ Q" + Cz Ilulle(Q,)..) ”v”}irg)z,r/z-r Q)
b
=_<. (28 "u”H:-J)Z.r/Z+ l(Ql)n + C; J ”u"H:o-i;Z,r/Zd- 1(0 x]o,t[)n dt) ”U“Hr+ 2,r/2+ I(Ql)“‘
0o

PRrOOF. It is easily seen from (B.4) that whenr = 0 and 0 < ¢ < 2,

"u"r+u,(r+a')/2 é & "u”r+2,r/2+1 + C(S) “uH0,0;

then the first inequality follows from the Hyo, variant of (B.8). For the second
inequality, we observe that (recalling (2.1))

b 1/2 b 1/2
"“"L,(Q,)" = (f I “"12,(91)" dt) < sup ”"x“"},i%mn(f "rtu"Lz(Q)“ dt)
0 0

tel

(B.16) o
< dsup ||Irull,op + EJ:) I ull L, dt;

tel
for any 6 > 0. One has in general that |7, f | L, S Coll fllgr+ 272+ 1@x]- w1 fOT
any t e R, with C, independent of t (recall that r = 0). We apply this fact to u and
insert (B.16) with 6 = ¢/C,C, in the first inequality in (B.15), then we get the
second inequality.
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