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REMARKS ON LOCALLY COMPACT
GROUP EXTENSIONS

TERJE SUND

Introduction.

In this note we present some results concerning extensions of locally compact
groups, which has applications in the representation theory of such groups and
their lattice subgroups, see Proposition 1.15. Further applications will appear in
a subsequent article.

The paper consists of two independent but related parts. In Section 1 our
emphasis will be on central extensions of connected Lie groups G. To be more
precise, we shall focus on the correspondence between elements of the second
cohomology group H?(G, A) and bilinear cocycles on the Lie algebra g of G. Here
A denotes a connected abelian group.

Next, recall the existence of locally well behaved (usually Borel) cross sections
plays an essential role in the representation theory of second countable locally
compact groups ([Mal], [GR]). Section 2, in which the extensions are not
assumed central, deals with almost fibered extensions and we show that any
extension of locally compact groups is almost fibered. This means that all such
extensions can be described in terms of cross sections continuous at the identity
or, equivalently, by a cocycle continuous at the identity element, [Ca].

1. Central extensions.

In the present section we shall focus on the correspondence between central
extensions of connected Lie groups and their Lie algebras. In the simply connec-
ted case this correspondence is classic, even for noncentral extensions, [H].
However, keeping later applications in mind, we shall need to argue in terms of
cocycles rather than group extensions. Moreover, the explicit relation given in
eq. (1.7) of Theorem 1 (a) below, does not seem to be available in the litterature. It
is equation (1.7) that we shall find particularly helpful. Throughout this section
all cocycles considered will be central 2-cocycles, as defined below. It has become

Received November 11, 1990.



200 TERJE SUND

customary to require, particularly when G is second countable, that cocycles be
Borel maps, cf. [Ma 1,2]. We prefer here, partly in light of Theorem 2, to follow
the convention of Calabi, [Ca].

1.1 DEFINITION. (a)Let G be alocally compact group, A be a connected abelian
Lie group, 4 = R™ x T" to be written additively. By a central 2-cocycle on G with
coefficients in A, we understand a function w:G x G - A which satisfies the
cocycle identities

(1.1) da(x, y,2) = w(x, y) + w(xy,z) — w(x, yz) — o(y,z) =0
w(x,e) = w(e,x) =0 (x,,z€G)

and, in addition, w and the maps y—>o(x "1, x) 7! + o(x " !y) + w(x 'y, x) are
continuous at the identity in G(VxeG). w is said to be normalized in case
w(x,x” ') =0 (xeG). Here e and 0 denote the neutral elements of G and A4,
respectively. w is trivial if it can be written

(1.2) wlx,y) = f(xy) = f(x) = f()) (x,yeG)

in which the map f: G — A is continuous at e. We denote by C?(G, 4), B*(G, A),
H?(G, A) the groups (with pointwise addition of cocycles as group composition)
consisting of all central 2-cocycles, all trivial cocycles, respectively the quotient
group C%(G, A)/B*(G, A). These groups will also be regarded as real vector spaces,
in the natural fashion, whenever A is simply connected. Two cocycles are said to
be similar (cohomologous) if their difference falls in B*(G, A).

(b) Let g and a be Lie algebras over R, and assume a is abelian. By a central
2-cocycle of g with values in a we understand an antisymmetric bilinear map
B:g x g — a satisfying the following cocycle identity,

(1.3) B(x,[y,z]) + B(z,[x,y]) + B(y,[2,x]) =0 (x,y,z€9)

in which [+, ] denotes the Lie product on g. B is trivial if there is a linear map
f: g — asuch that

(1.9) B(x,y) = f[x,y] (x,yeq)

By H?(g,a) we shall understand the real vector space of all central 2-cocycles
which is the quotient C%(g, a) modulo the space B(g, a) of trivial cocycles.
Higher order cohomology groups/spaces are defined similarly, however, we
shall not pursue this any further.
A cocycle will be identified with its cohomology class whenever convernient.

1.2. We shall always assume the cocycles are normalized. This is justified by
the fact that any w e C%(G, A) is similar to a normalized cocycle w'. Take e.g.

'(x,y) = ox,y) — o(x,x7') + oy, y™!) — tolxy,y 'x7!) (x,y€G).
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Assume that G is a connected and simply connected Lie group with Lie algebra
g. Let C be a (central 2-)cocycle on g taking values in the abelian Lie algebra a and
denote by g(C) the central extension of g by a defined by C. Thus the underlying
vector space of g(C) is a direct sum of a and g and the Lie product is given as
follows,

(1.5) [(@, x),(b,y)] = (C(x,y),[x,y]) (x,yeg;a,bea)

Now, the connected and simply connected Lie grbup G with Lie algebra g(C) is
a central extension of G by a vectorgroup A, accordingly is determined by
a cocycle w:G x G — A, which may be assumed analytic [Pa], such that

(1.6)  (a,expx)b,expy) =(a + b + w(expx,expy),expxexpy) (a,beA;x,yeg)

We remark that the topology on G is in general not identical to the product
topology on A x G. In fact, it is derived from the product Borel structure
together with the invariant Borel measureon A x G,[Mal,2] [Pa]. Observe that
Theorem 2 below permits a different construction of this topology.

Conversely, given an analytic cocycle w on the group G we can find a corre-
sponding cocycle C of the Lie algebra g, upon forming the extended group G(w)
and its Lie algebra.

1.3. Let G be a connected Lie group with Lie algebra g, A be a connected
abelian Lie group and a its Lie algebra. We denote by G the simply connected
covering group of G. Let p: G — G be the covering homomorphism. If w: G — A
is a cocycle, we form the corresponding cocycle @ = w o p on G.

THEOREM 1. With notation as above the following assertions hold,

(@) Ifwisa central 2-cocycle on G taking values in A, there exists an antisymmet-
ric 2-cocycle C on the Lie algebra g,C: g X g — a, such that & is cohomologous to
the cocycle ¢ on G associated to C in the followng way,

(1.7 dc(exp x,exp y)
= exp(} C(x,y) + 15 (C([x, 1, ») + C([y,xL, %) + ... + Cu(x:y) + ..)

Here, each term C,(x : y) is obtained from the similar term occuring in the Camp-
bell-Hausdorff formula of exp x exp y on replacing the outermost Lie bracket by the
form C(.,.).

(b) Assume w and ' are cocycles on G, and C and C' are cocycles on g corre-
sponding to w and w' respectively, as in part (a). Then w and o’ are cohomologous on
the group G only if C and C' are cohomologous on the Lie algebra g. The converse
statement holds if G is simply connected.

(c) The correspondence w+— @ dc—C given by (a) and (b) induces
a homomorphism & : H*(G, A) » H*(g, a) between cohomology groups. Its kernel
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consists of all classes w such that w o p is cohomologous to 0, its image of all classes
in H*(g, a) in which there exists a cocycle C satisfying &c|Ker p = 0.

We remark that the arguments given below are valid even for noncentral
extensions, with some reasonably appearant modifications.

The proof of part (a) of Theorem 1 will extend over the next three sections. The
main part of it consists of verifying (1.7). Clearly, it suffices to assume G is simply
connected.

1.4. We proceed to study the connection between such cocycles w and C. It
follows from the uniqueness property of the one-parameter group ¢t +— exp (0, x),
R — G, that we can write

(1.8) exp(0, x) = (f(x),expx) (xeg)
where f:g — A is a C*-map satisfying & f(tx)|,=o = 0 and
(1.9) f((s + t)x) — f(tx) — f(sx) = w(expsx,exptx) (s,teR)

In fact, using eq. (1.8) and eq. (1.6) we derive:
exp(0, sx) exp(0, tx) = (f(sx), exp sx)(f(¢x), exp tx)
= (f(sx) + f(tx) + w(expsx,exp tx),exp(s + t)x)
= (f(sx) + f(tx) + w(expsx,exp tx),e)0,exp (s + t)x),
which yields eq. (1.9) when combined with
exp(0, (s + t)x) = (f(s + t)x,exp(s + £)x) = (f((s + t)x), e) 0, exp(s + 1)x).

Moreover, expx = expy implies f(x) = f(y), so that f =goexp for some
C>-function g on the group G. If (a,exp x) € G we have,

(1.10) (a,expx) = (a,e)0,exp x) = (a — f(x), e} f(x), exp x)

Further, by egs. (1.6), (1.8), (1.10) and the Campbell-Hausdorff formula, (CH), we
calculate, writing a’ = expa (a€a),

(a@’,expx)b,expy) = (@' — f(x),eXb' — f(y),e)exp(0,x)exp(0,y) (wsingeq.(1.10)

=(a + b — f(x) — f(y).e)exp((0,x + y) + 3(C(x,y),[x,y]) +...) byea.(1.6)and (CH)

=(d@ + b — f(x) — f(),e)exp((} C(x, y) + 15 C([y, x], X) + 12 C([x, 1Y)

+..,x+y+3[xy]+..) singcHy

=(@ + b — f(x) — f(y), ) exp(} C(x, y) + 15 (C([x, ], ) + C([y, %], X)) +...,0)
-exp(0,x +y+ +[x,y]1 +..)
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=(@ + b — f(x) — f0) + exp{3 C(x,y) + 12(C[x,¥1,y) + COy»x], %) + ... 1 e)

(fx+y+3[xy]+..).eXpxexpy) (usingexpa0) = (expa,e) and eq. (1.8)
In view of eq. (1.6) we have shown,
(1.11) (a,expx)(b’,expy) =

@+ — fx) = fO) + f(x +y + 3[x,y] +..) + exp{3 C(x,y) +
12(C([x, 1, ) + C([y,x], %)) + ...}, exp x exp y)

Let us introduce the

1.5. NOTATION.
(1.12) wc(exp x,exp y)

= exp(} C(x,y) + 12(C([x,¥1, ) + C([y, x1, %)) + ... + Colx:) + ...)

where the terms C,(x: y) on the right hand side are analogous to those in the
Campbell-Hausdorff formula for exp xexpy. We shall see below that wc is
always a cocycle on G.

1.6. It follows from eq. (1.11) that the above series converges. Comparing eq.
(1.11) with eq. (1.6) we see immediately that

w(exp x,exp y) = wc(expx,expy) + f(x + y + 3 [x,y] +..) — f(x) — fy)
(1.13)

Next, we choose a neighborhood U of 0 in g for which exp becomes a diffeomor-
phism onto exp U in G. Hence, for (x, y) in a suitable neighborhood V x Vof (0, 0)
in g x g such that ¥ < U, we may assume exp x exp yeexp U and therefore

fx+y+4[x,y]+..) =glexp(x + y + +[x,y] + ...)) = glexp xexp y),

in which g denotes the C®-function on exp U defined by the relation goexp = f.
It follows that

(1.14)  wfexpx,expy) =
wc(exp x,exp y) + g(exp x exp y) — glexpx) — glexpy) (Vx,yeV)

In particular, w restricted to the neighborhood exp ¥ x exp V is cohomologous
to wc, so that wc is a cocycle on this neighborhood. Invoking [Pa; Theorem 3.2]
this result holds globally. Thus we have proved statement (a) of Theorem 1.

For convenience we give some corollaries before completing the proof. We
note first the following corollary to the above argument.
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1.7. COROLLARY. Let G and A be connected Lie groups, A abelian. Assume that
Cisacentral 2-cocycle on g taking values in the abelian Lie algebra a. Let w denote
the cocycle on G corresponding to C as in Theorem 1. Then w¢ is cohomologous to
0 if and only if there exists a group homomorphism f:g — A such that

~ oc(expx,expy) = f ologlexpxexpy) — f(x) — f(7)
on every coordinate patch in G (regarding g as a vectorgroup).

1.8. COROLLARY. Assume G is a simply connected and connected Lie group,
o = ¢ an analytic cocycle of G into a connected abelian Lie group A. Let & denote
the map defined by

a(x,y) = w(x,y) — a(y,x) (x,y€G).

Then & is an analytic, antisymmetric map, and
d
Et—a‘)(epr,exptY)L:o =C(X,Y) (teR;X,Yeg).

Here C denotes the cocycle on g associated to w as in Theorem 1 (a).

ProoF. In light of Theorem 1 (a),
%w(epr,exptY)l,zo =31C(X,Y) + 5 CX,[X,Y)),
and
L fexp 1%,exp Xm0 =+ C(%X) + 45 COX, [X, YD),

for all X, Yeg, and the corollary follows, C being antisymmetric.

1.9. We note that usually &¢ - exp is not equal to exp C. In fact,

dc(exp X,exp Y) =exp ), 2Cz,4,(X:Y)
n=0
since the terms C,, are symmetric and C,,_, are antisymmetric (n = 1,2,3,...).
Now, Y2, C3,+, = 0if and only if each term Cy,+, (n = 1,2,3,...) vanishes, as
the C,,+; — s form a linear independent family of polynomials (their degrees are
increasing with n). We have proved,

COROLLARY. Let w = w¢ be a cocycle on a simply connected and connected Lie
group G. Then dc(exp X,exp Y) = exp C(X, Y)(VX, Yeg)ifandonly if C5,+, =0
(n=1,2,3,...). If G is 2-step nilpotent, this holds for all cocycles w¢.

1.10. We proceed with the proof of Theorem 1, cf. Section 1.6.
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(b) First, let G be simply connected. Assume that @ ~ w is cohomologous to 0.
We are to show that C is cohomologous to 0 on g. By assumption there exists
ameasurablefunction f: g — 4 such that on each coordinate neighborhood W in
G x G,

wclexptx,expy) = fologlexptxexpy) — f(tx) — f(y)
= fltx +y + 3[x,y] + o(t) — f(tx) — f(»), (x,y)eW),

where t € R is sufficiently small and o(t) — 0 as t — 0. Now, since w is differenti-
able on G, we may assume that f is differentiable, [Pa; Theorem 4.1, Theorem
3.2]. Thus by Corollary 1.8 and Theorem 1 (a)

d
—d;(wc(exp tx,€xp y) — wc(exp y,exp tx));-o = C(x, y)

= (D)) (x + £ [x,y]) — (D NO0)- x — (D) (0)* (x + 3 [x,y]) + (DF)0)- x
= Df(0)- [x, y],

where x - y denotes Euclidean inner product on g. Accordingly C = Df(0)- [, ] is
a trivial cocycle on g.

Conversely, assume that w is cohomologous to w¢ where C is cohomologous
to 0 on the Lie algebra. Then we can find a linear F: g — asatisfying C = Fo[-,].
Put f =expoF, g— A. Choosing local coordinates on G we derive via the
Campbell-Hausdorff formula and Theorem 1 (a),

oclexpx,expy) = f( [x,y] + ([, x1,x] + [[x,yLyD +...)
= folog(expxexpy) — f(x) — f(¥),

from which it is evident that wc, and hence w, are cohomologous to 0.
Next, if G is not simply connected, we have

O~ =D~ =>dc~bc=>C~C,

by the first part of (b).

(c) Let we H%(G, A) be arbitrary. Now, if C and C’ satisfy o ~ w¢ ~ ¢, we
have C ~ C’ by part (b), and & is well defined. That @ is a homomorphism follows
readily, v @ = wo pand exp:a — A being group homomophisms. Finally, the
last two statements in (c) are clear.

1.11. ExampLEs. We illustrate some extreme possibilities in Theorem 1. First,
if G is semisimple, we always have H%(g, a) = (0), however, H*(G, A) need not be
trivial (take e.g. G = SL,(R)). On the other hand, let G denote the 3-dimensional
Heisenberg group and fix a lattice Z ~ Z in its one-dimensional center. The
factor group G = G/Z has H*(G,R) = {0}, whereas its Lie algebra satisfies
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H%*@g,R)=Re} A e @D Re; A e Here, ¢;(i = 1,2,3) denotes the “standard”
basis for g whose nonzero Lie relations are [e;,e,] = e3 = —[e;,e;]. The
cocycle on G corresponding to C = e} A €} is obtained after some calculations as

wcl(a, b, ), (x,y,2)) = }(az — cx) + Lax(b — 2y) + 5 (a®y + x?b).
wc is seen to be cohomologous with the (somewhat simpler) cocycle
((@,b,¢),(x,y,2) >} (az — cx) — }axy, (a,bc),(x,y,2)€G.
Here we have used the following group composition on G,
(a,b,c)x,y,2) =(a + x,b + y,c + z + ay).

1.12. REMARK. Let w beacocycle on G, w¢c + o, where Cis asin Theorem 1 and
a is a trivial cocycle. On the centralizer Z, of x in G we have

w(x,y) = wc(x, y) — oc(y,x) = expC(x,y) (yeZ,)

since'oc(x, y) = a(y, x)(Vye Z,). Consequently @(x, ) is an analytic character on
z,.

1.13. For any 2-cocycle w on G, we let S, = {x € Gla(x, y) = w(y, x) Vy e G}.
We say that w is symmetric in case S,, = G, totally skew provided that S, = {e}.If
Gis Lie and o = w¢, w is totally skew if and only if the alternating bilinear map
Cis nondegenerate. In fact, the Lie algebra of S,, equals the radical of C. It is well
known that if G is abelian, w is trivial if and only if it is symmetric. This is
a consequence of the fact that any abelian extension of G by 4 = R" x T* is
adirect product, [Ca, Proposition 18.5]. In the connected Lie case the only if part
is obviously wrong, simply because cocycles w¢ are trivial and nonsymmetric
whenever C is nonzero and can be written C = f o [-,'] (f a real linear functional
on g). Furthermore, trivial cocycles wc can even be totally skew (i.e., C is
nondegenerate). For an example, let w = w¢c, C =€} A €5 = €30[.,.] (¢; = the
linear functional dual to e,) in which g is the Lie algebra of the “ax + b — group”
whose defining basis relation is [e;, e;] = e,. One might expect that symmetric
cocycles are always coboundaries. We shall see next that in the analytic case this
is indeed so. However, it is crucial that A be connected, we give below a counter-
example with A4 discrete.

PROPOSITION. Let G be a connected and simply connected Lie group, w be an
analytic 2-cocycle on G, w cohomologous to w¢ where C is an alternating bilinear
map on g as in Theorem 1(a). Then

(a) wc is symmetric if and only if wc = 0.

(b) If w is symmetric then w is trivial.
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PROOF. If ¢ is symmetric we have &¢ = 0, hence C = 0 by Corollary 1.8.
Consequently, w¢ is equal to 0. The converse is obvious.

(b) We write w = w¢ + «, in which a is trivial. Consequently we can find an
analytic f : G —» A such that a(x, y) = f(xy) — f(x) — f(»)(x, y € G). Now, assum-
ing w is symmetric, the antisymmetric part (w¢), is cancelled by an antisymmetric
part o, of a, (w¢), = —a,. In view of this,

d d
E{d(exPX,exp tY)|t=0 = E&a(exp X, eXPtY)|x=o

d .
= — 7 @calexp X, exptY)|;-o = —C(X, Y)
On the other hand, arguing as in the proof of Theorem 1 (b) (Sec. 1.10) we have,
d
—; dexp X, exptY)li-o = Df(0) - [X, Y].

Accordingly, C = —Df(0) o [.,.] is trivial, and this implies w¢ and w are trivial
(Theorem 1 (b)).

1.14. ExaMPLE. Generally speaking, symmetric cocycles ned not be coboun-
daries. For an example in which the group G is connected whereas A is discrete,
we may simply take for G(w) the additive group R of real numbers which is
a central extension of the additive group [0,1) (addition modulo 1) by the
integers, given by the symmetric cocycle mapping (x, y) in [0,1) x [0, 1) to the
integral part of x + y.

1.15. Recall that x € G is w-regular if w(x, y) = w(y, x)for all yin the centralizer
of x. Welet R,, denote the set of all w-regular elements in G. Suppose G is discrete.
Then the left regular w-representation of G is primary if and only if {e} is the ony
finite w-regular conjugacy class in G, [K1]. For torsion free nilpotent lattices the
following result holds.

PROPOSITION. Let I' be a finitely generated torsion free nilpotent lattice group.
Assume @ = wc is a multiplier on I’ which corresponds to an alternating bicharacter
Conthe lattice L = log I as in Theorem 1 (a). Then the left regular w-representa-
tion of T is type 11, primary if and only if S, " Zj = {e} (Zr = center of I').

We give only a sketch of the proof, complete details together with more
applications will appear in a subsequent article. Observe first that
SoNnZr=R,nZ; which implies the “only if’ part. Next, assume
R,NZr = {e}. If xeR, and x # e, the main difficulty consists in proving that
I mod the centralizer of x in I is torsion free which follows by an inductive
argument.
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2. Almost fibered extensions.

Our main result in the present section is that any extension of locally compact
groups is almost fibered. This was proved by Nagao, [N, Theorem 2] for first
countable groups. Our argument is independent of the one given in [N7]. Instead
we are using a result due to A. Borel on groups having Lie quotients, [B].

2.1. DEFINITION. Let H and N be locally compact topological groups. By an
extension E(H, N) of H by N we shall understand a locally compact group G, for
which N is a closed normal subgroup and, in addition, there is an isomorphism of
the factor group G/N onto H.

2.2. DEFINITION. An extension G = E(H, N) is said to be almost fibered (resp.
fibered) if there is a section u: G/N — G that is continuous at the identity element
of G/N (resp. locally continuous).

In view of [Ca, Definition 3.2 and Proposition 3.5], the above condition
(defining an almost fibered extension) is equivalent to continuity of the map
h:N x H — G, (n, h)+— nu(h) and its inverse at the identity element of N x H and
G, respectively. Moreover, it is also equivalent to require the extension to be
associated with a cocycle that is continuous at the identity; cf. [Ca, Definition
4.1] and the arguments following it. According to this, the almost fibered group
extensions are exactly the ones associated to extension cocycles that are continu-
ous at the identity element.

2.3. LEMMA. Assume K and N are closed normal subgroups of G, K = N.
Further assume that K is compact and G/K is Lie. If the extension
G/K = E(G/N,N/K) is almost fibered then the extension G = E(G/N, N) is.

ProoF. Inview ofaresult dueto A. Borel, [ B, Théoréme] E(G/K, K)is fibered.
Let u: G/K — G and v: G/N — G/K be sections, both continuous at the identity.
We define a section w: G/N — G by composition, w = u o v. Clearly, w is continu-
ous at the identity in G/N. The situation is illustrated by the following diagram.

G/N
;/ \w=uov

(G/K)/(N/K) % G/K % G

2.4. Suppose next G = E(G/N, N) is an extension of locally compact groups
and K is a compact normal subgroup of G with Lie quotient G/K. We let
K, =KnN, G, =G/K,, N, = N/K;. Then both G, and N, are Lie, and we
have a fibered extension G, = E(G,/N,,N,) = E(G/N,N/K,). Consequently, by
the above lemma, the extension G = E(G/N, N)is almost fibered. We have shown
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LEMMA. Any extension G = E(G/N, N), in which G is a projective limit of Lie
groups, is almost fibered.

2.5. Asaconsequence we derive the following theorem which does not seem to
have appeared in the litterature before. However, for first countable locally
compact groups it has been proved by Nagao, [N, Theorem 2].

THEOREM 2. Let G be a locally compact group, N be a closed normal subgroup of
G. Then the group extension-E(G/N, N) is almost fibered.

ProOF. We fix an open subgroup H of G which is a projective limit of Lie
groups, [MZ]. Then N; = N n H is a closed normal subgroup of H. Now, by
Lemma 2.4 the extension E(H/N,,N,) is almost fibered, hence there exists
a section u: H/N,; — H, continuous at the identity in H/N;. We proceed to
construct a section G/N — G, continuous at the neutral element N of G/N.
Choose any section v:G/H — G of the discrete space of left cosets G/H. We
denote by gy:G — G/N the quotient map. The situation is indicated by the
following schemes,

G/HSGB G/N; HIN,>Hc<GHBG/N

Itis readily seen that gy o (G/H) - gy o u(H/N;) = G/N. We define w: G/N — G by
letting

w(gy o v(gH) gy o u(hN,)) = vigH)u(hN,)

Then w is a well defined section (since gy is a homomorphism) and is continuous
at the identity of G/N. As a consequence, the extension E(G/N,N) is almost
fibered.
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