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ANALYTICITY THEOREMS FOR
PARAMETER-DEPENDENT CURRENTS

WANG XIAOQIN*

Abstract.

Plurisubharmonic functions of two groups of complex variables (x,,...,x,) and (ay,...,a,,) are
considered; their partial functions are defined by f,(x) = f(x, a). We discuss analyticity theorems for
the level sets associated to Lelong numbers of the parameter-dependent currents ddcf,.

1. Introduction.

Let D < C"be an open set and let PSH(D) denote the set of all plurisubharmonic
functions in D. Given f e PSH(D), the Lelong numbers v(f, x), xe D, are well
defined. A fundamental result of Siu states that all superlevel sets

E(f)={xeD;v(f,x)Zc}, ¢>0,

are analytic subsets of D.

Nowlet A = C"beopenand f e PSH(D x A). Fix ae A and let us consider the
partial function f,e PSH(D) defined by f,(x) = f(x,a), xeD. In this case the
superlevel sets

X.(f)={(x,a)eD x A;W(f,x)=c}, ¢>0,

can be much more complicated; it may happen that they are not analytic. The
main purpose of this paper is to study analyticity theorems for the superlevel sets
X.(N.

Section 2 is a survey of known results. We shall describe the Lelong number,
the directional (or refined) Lelong number, the generalized Lelong number, and
the analyticity theorems that hold for them.

In section 3 we present the main tool used for establishing analyticity of
superlevel sets: the Hormander-Bombieri theorem.

In section 4 we shall state sufficient conditions under which all the level sets
X.(f) are analytic subsets of D x A and also present examples that show that it
may happen that these sets are not analytic.

*) The author is partially supported by the Gustaf Sigurd Magnuson Foundation of the Royal
Swedish Academy of Sciences.
Received November 19, 1990.
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In section 5, finally, we compare various Lelong numbers. In particular the
partial Lelong numbers appear as limiting cases of the directional Lelong
numbers for functions which satisfy a condition which we call upper Holder
regularity.

This paper was written under the guidance of my advisor, Professor Christer
Kiselman. I would like to take this opportunity to express my sincere gratitude to
him. I am also very grateful to Leif Abrahamsson for helpful suggestions and
discussions.

2. A survey of known results.

In this section we shall describe the Lelong number, the directional (or refined)
Lelong number, the generalized Lelong number, and the analyticity theorems
that hold for them.

Let D = C" be open and f € PSH(D). The Lelong number of f at a point x € D,
denoted by v(f, x), is defined as the (2n — 2)-dimensional density of the mass
U = - Af at the point x:

2.1 v(f, x) = lim u(x + rB)/Az,—,(rBBA C" 1),
r=0

where x + rBis the ball of center x and radiusr, and 4,, - , is Lebesgue measure in
R2n - 2.

We shall use the following notation:
u(x,t) = f f(x + zé');
|lz|=1
U(x,t) = sup f(x + z€'),

lzl=1

where x € D, t e R, assuming that x + ze D for all z such that |z| < ¢';

vx,y) = f flx +2)

lzjl=e%
2z 2n ]
=(@m™" stl--- st..f(xl et x, 4 @i,
0 0

V(x,y) = sup f(x + 2),

|zjl=e¥s
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where xeD, y = (yy,...,y,)€ R" are such that x + ze D for all z with |z;| < €.
The barred integral sign indicates mean value.

LEMMA 2.1. Assume h is a negative harmonic function in the ball |x| < r in R™.
Then the following inequalities hold there
Iyl2/p2
1—|x| /rm <
(1 —|x|/r)

1 — |x|2/r?
(1 + |xl/m™

By this lemma we can prove the following chain of equalities for the Lelong
number.

ProrosiTION 2.2 (Kiselman [1987]). Let xe D, f e PSH(D). Then we have

22) h(0) h(x) £ h(0)

st . -U(x,t . , L . Vix,

23) w9 = lim A8 UED o dxtd) e Vit
t>— o t=—o ) t=—o

wherea =(1,...,1)eR".

PROOF. As a consequence of the maximum principle, u(x, t), U(x, t), v(x, t), and
V(x, t) are increasing in t; by Hadamard’s three-circle theorem, they are all convex
functions of t. Therefore their slopes at — oo exist. Let xe D and r < d(x, éD).
Assume that f is sufficiently smooth; then we have, writing r = ¢/,

1 1 of 1 ou dt
ﬂ(X+FB)—E J~ Af—Et— J‘ Eds_ﬂ_’a?ﬁj‘ds
x+rB x+rS rS

Using the fact that dt/dr = 1/r and that

ds=r*""1 | ds=2m™"' | diy,_,=2mr dAzn-2,

rS2n-1 S2n-1 Bn-2 rB2n-2
we obtain the equality

u(x + rB) Ou

T2 @B D)~ 3 Y

If f is not smooth, replacing du/dt by
o u(x,t) = lm (u(x,t + &) — u(x,t))/s,

=0+

we still have

px + rB)

—_ - +
Ton_ (B 7) O )
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where again r = ¢/, te R. When t - — o0, we get

v(f,x) = lim M,x

t— — 0

eD.

This is the first equality of (2.3).
If f is subharmonic in a neighborhood of the ball &’ Bin C" we can consider its
harmonic majorant h there, which satisfies f(x) < h(x) and

h(0) = J h(e*z) = J‘ f(€°2) = u(0, s).
zeS zeS

Therefore Lemma 2.1 shows that

1 —_ -8
U(O, t) = Slg)f b Slilsph =< m_f:)—z;:—f‘u(o, S), t<s,

provided only f < Oin ¢*B. If we apply this inequality to the function f — U(0, s)
which is < 0 in e°B, we get, writing U(t) instead of U(0, t) for simplicity:

U0 — V) S 4 gragmr=r (9) — UG,
ie.,
U@) S (1 = A JU(s) + As—uls), t<s,
where A, is defined for s > 0 as

1—e™*
BT

Taking s = t + 1, we get that
U =1 —-A)Ut + 1) + Aut + 1),

whence

Ue+D) , , uet D)

uG)
— 21— Ah)— t

t<O.

Letting ¢ tend to — co we see that
. Xyt . Ulx,t
llm _u(—).. é hm _(J.
t—— oo t— — oo

The other direction follows from u < U.
Similarly we can prove
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lim 2% _ o V19

t= - t=—w t

We finally compare U and V. The maximum principle for plurisubharmonic
functions implies that, ifa = (1,...,1),

1
U(x,t) < V(x,ta) < U(x,t + Elog n).

This is because the ball of radius ¢ is contained in the polydisk of radii ¢', which in
turn is contained in the ball of radius \/;e‘. If t < 0 we have

Ulot) o, Vxta) | Ulxt+ tlogn) (1 + zilog n>,
t

t T~ t T t+3}logn
hence
lim Uy _ lim _V(xt, ta).
t— — t— -

We also note the following results.
PROPOSITION 2.3. (a) We have
{xeD;v(f,x) > 0} = {xeD; f(x) = —0}

and v(f,x) = 0 for all xeD.
(b) We have

lim sup v(f, w) = v(f, x)
for all xeD.
(c) For Le P,_,(C) = P,_, we also denote by L the corresponding line through
the originin C". If x e D, we let f|, . be the restriction of f to the affine line x + L.
Then for all x € D we have:

inf V(fle+L,x) = V(f; X).
LeP, -y
Furthermore, v(f|;+Lx) = Wf,x) for all LeP,_,, except possibly for a locally
pluripolar set of lines in P, _,. (Siu 1974)
(d) IfG:D — D’ is a biholomorphism between two open sets D and D' in C" and if
f e PSH(D"), then W(G*f, x) = W(f, G(x)) for all xe D. (Siu 1974)

PRrOOF. (a)is obvious from the definition of the Lelong number as the slope at
minus infinity, and (b) follows easily from its interpretation as a density: the mean
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density in x + rB is an increasing function of r.
We now prove (c). From the expression for v in terms of U it follows that

24 WS lx+1,%) Z W, ).

On the other hand the expression for v in terms of u gives

2.5) J V(flx+1, X)0 = v(f, x),
LePn-:

where w is the volume element of the Fubini-Study metric of P, _ ;. Property (c)
follows from (2.4) and (2.5).

Using the mean value property of f € PSH(D') and the fact that G is a holomor-
phic mapping we see that

sup f(G(x + ze')) = sup f(G(x) + G'(x)ze' + o(e"))

lzl=1 lzl=1

< sup f(G(x) + ze'*M)
lz]=1
for some constant M. So we have:

WG*,x) = lim "1— sup f(G(x + ze')) = lim %sup f(G(x) + zet+M)

t— - |zl =1 t—— lz|=1

_ 1
= sllr_nq0 M s lilu=p1 F(G(x) + z€°) = W(f, G(x)),

i.e.,, (G*, x) = v(f, G(x)). Applying this to the inverse of G, we see that
W/, G(x)) 2 G*f, x).
So we have proved (d).

By using the Legendre transform of the convex function ¢+ u(x, t), Kiselman
[1979] gave a very simple proof of the following fundamental analyticity theorem
due to Siu [1974]. This proof is also in Hormander [1990: Theorem 4.4.12].

THEOREM 2.4 (Siu [1974]). For every constant ¢ > 0, the set
E(f) = {xeD;W(f,x) = ¢}
is an analytic subvariety of D of codimension = 1.

Even though the Lelong number v(f, x) gives information on the local structure
of a plurisubharmonic function f] it is not enough to determine the Lelong
number of a composition f o h of f and a holomorphic mapping h. This was one



ANALYTICITY THEOREMS FOR PARAMETER-DEPENDENT CURRENTS 185

of the reasons behind the introduction of the “refined Lelong number” in
Kiselman [1987]. We shall use the following terminology, where the adjective
“directional” refers to the vector y which determines the shape of the polydisks:

DEFINITION 2.5. Assume f € PSH(D), x € D and y € R", . We define the directional
Lelong number of a function f at the point x in the direction y, denoted by v(f, x, ),
as

.1 Vit
V(f, x,y) = lim T sup f(x + Z) = lim (xt .V) ]
t— — o |zj|=ey,t (= — oo
Using the proof of Proposition 2.2 we can deduce:
PROPOSITION 2.6. We have the following equalities
1 ) ot
v(f,x,y) = lim T f fx+2)= lim v(xt ,V);
t— — o0 t>—o

|zjl=e¥:t
and
W[, x, by) = bv(f, x, ).

where b is any positive number. Furthermore for a = (1,1,...,1)eR",, the direc-
tional Lelong number is the usual Lelong number:

w(f, x, a) = v(f, x).

For the directional Lelong number we have the following analogue of Siu’s
theorem.

TueoreM 2.7 (Kiselman [MS]). Assume f € PSH(D) and fix y e R".. Then for
every ¢ > 0, the set

E(f,y) = {xeD;Wf,y) 2 ¢}
is an analytic subset of D.

For the directional Lelong number Proposition 2.3 (d) is not true. The
following example shows this.

ExaMmpLE 2.8. Take f(z4,2;) = log(z4|* + |z2|%), (z1,22) € C2. We can calcu-
late the directional Lelong number as

(£ (0,0), (1, y2)) = min(ay;, By2)

Let F: C% - C2,(z,, z;) > (23, 2, ). Then F is a biholomorphism of C2, but we have

WF*,(0,0), (1, y2)) = min(By,, xy,).
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Demailly generalized the definition of the Lelong number and gave a very
general and beautiful definition of the generalized Lelong number.

Let T be a positive, closed (p, p) current on D, and let ¢ be a plurisubharmonic
function which is semi-exhaustive on D, i.e., there exists R < 0 such that the set
{xeD;p(x) < R} is relatively compact in D. We also assume that e? is continu-
ous. For every real number r < R let

T o,r) = f T A (dd° max(p, s))" %,

o<r

_1
@ny~?

where s is a constant < r. Using Stokes’ formula and the fact that dT = 0 we
deduce that W(T, ¢, r) is independent of the choice of s and that ri— (T, ¢,r) is
increasing on ]— oo, R[. So lim, ., _ , W(T, ¢, r) exists.

DEFINITION 2.9. The limit described above will be called the generalized Lelong
number with respect to @. We shall denote it by W(T, ). If T is of the special form
T = dd‘f, we shall write v(f, @) for v(dd<f, ¢).

PROPOSITION 2.10. With the notation and assumptions above we have the follow-
ing equalities:

Wf(2),loglz — x|) = W(f(2), x)

. 1 Lo 1 2 "—1.
= t_l,n—nm ey J‘ o ddf(z) A (4 dd’|z — x| ) ;
|z—x|<et
and
1 1
W(f(2), max—log|z; — x;|) = v(f(2), X, (155 Vn)
i Yi Yi---Yn i

Jor every y = (yy,...,y.)€R%.

We need the following definitions in order to describe the analogue of Siu’s
theorem for the generalized Lelong number proved by Demailly.

LetD =« C",A =« C™"betwoopensetsand ¢:D x A — [ — o0, + o[ a plurisub-
harmonic function.

DEFINITION 2.11. ¢(x,y) is called semi-exhaustive on D if for every compact
subset K of A there exists a real number R = R(K) < 0 such that the set
{(x,y)e D x K; ¢(x,y) < R} is relatively compact in D x A.

DEFINITION 2.12. A function g is called locally Holder continuous with respect to
A if for every compact subset K = D x A there exist constants M and r > 0 such
that
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lg(x,y1) — 9(x, y2)| < Mlyy — ya|"
holds for all (x,y,)e K, (x,y,)e K.
Now we are ready to state Demailly’s theorem.

THEOREM 2.13 (Demailly [1987]). Assume T is a positive, closed (p, p) current
and ¢:D x A—[— oo, + oo[ a plurisubharmonic function which is semi-exhaus-
tive on D and such that exp ¢(x, y) is continuous and locally Holder continuous with
respect to A. Write ¢ ,(x) = @(x, y). Then for every c > O the set

E(T o)) = {ye AT ) 2 c}
is an analytic subset of A.

By Proposition 2.10 we know that Theorem 2.13 implies Theorems 2.4 and
2.7.

3. The Héormander-Bombieri theorem.

The fundamental tool which will provide us with analytic sets is the Horman-
der-Bombieri Theorem.

THEOREM 3.1 (H6rmander 1990: Theorem 4.4.4). Let Q be a pseudoconvex
open set in C", and let ¢ € PSH(R). For every ae such that e”?e L% (a) there
exists a holomorphic function he O(Q) such that h(a) = 1 and

(3.1 J|hlze’2¢(l + |2%) " 3"dA(z) < + 0.
2

When applying this theorem it is useful to have the following sufficient
condition for integrability of e ~?.

THEOREM 3.2 (Hormander 1990: Theorem 4.4.5). If ¢ € PSH(RQ) has a finite

value at a point ac Q, then e”® e 2, (a).

We write (R, ¢) for the holomorphic functions in 2 which satisfy (3.1). Then
the intersection

ZQ.9)= () h'0
he0(2,9)
is an analytic subvariety of Q. Theorem 3.1 says that
{acQe ?¢ L (a)} = Z(Q, 9),

and Theorem 3.2 that Z(£2, ¢) is contained in the polar set ¢~ 1(—o0) of ¢.
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One can prove easily using Jensen’s inequality that v,(a) = n implies
e ?¢ 2 (a), and so ae Z(2, ¢). In the other direction it is known that vela) <1
implies e "¢ € L%, (a); see Skoda [1972: Proposition 7.1.] This gives

loc
E,(¢) = Z(Q, ¢/c) = E(p) = Z(Q,np/c),

so that the superlevel sets E(¢) can be compared with the analytic varieties
Z(8, c'p) for various choices of the constants ¢ and ¢'.

4. Analyticity theorems.

Let D = C", A = C* be two open sets. For a function f definedin D x A4 we shall
write as before f,(x) = f(x, a) for its partial functions. Let us make the following
definitions:

E(f) ={(x,a)eD x A;W(f,(x,0) 2 c};

Xc(f) = {(x’a)ED x A; v(fa’x) = C} = U Ec(j;) X {a}

aeA

From the discussion in section 2 we know that every E.(f) is an analytic subset
of D x A and that every

E(f) = {XGD; V(_ﬂ,,x) 2 C}

is an analytic subvariety of D. So it is natural to ask whether the level sets X (f)
are analytic subsets of D x A.

REMARK 4.1. The obvious inequality v(f;, x) = v(f; (x, a)) shows that

E(f) = XAf).

In this section we shall give conditions under which all level sets X (f) are
analytic subsets of D x A and also some examples that show that it may happen
that these level sets are not analytic.

ExaMPLE 4.2. Let us consider a plurisubharmonic function of two variables
(x,a)

fx,a) = ¥ log(la — ai™ + |x — x,|*) 2 Y i logla — a| = g(a),

where |x;|, |ax| < 1 and the o, and B, are positive. If ) «, is finite, the function g is
locally integrable, both as a function of a and as a function of (x, a). The function
[ gives rise to a parameter-dependent current T, = d,d. f, in the unit disk D in C,
but of course also to a current T = dd*f in the polydisk D x D in C2. For all
a except for those in a set of measure zero (in fact of capacity zero) we have
g(a) > — oo, and for these a we must have WT,,x) = 0 for all x. We see that

T, %) 2 Py, for
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S a) = Bilog|x — xi| + fi(x),

where f\ denotes the sum of the terms of index # k and thus a plurisubharmonic
function. Now the B, are arbitrary positive numbers, and if they are all larger than
¢ > 0, the superlevel set of vr_in the product space,

X(D = {(x, @ T, x) 2 c}

contains all points (x;, a;). On the other hand, X (T) cannot contain any point
(x, @) with g(a) > — o0 as we have seen, so if we choose for instance {a,} to be
dense in the unit disk and x, = 0, it cannot be an analytic set. In the terminology
to be introduced below, see Definition 4.5, f is not a Siu function in this case.
With the superlevel set of T,

E(D = {(x, ) T,(x,a)) 2 c},
the situation is different, for we get only v(T; (x;, a,)) = min(a, B,) — O.
ExaMPLE 4.3. Let us now look at
fx,a) = Y log(la — a, — x™ ™ + |x|").

Now the points (0, a;) appear with weights (at least) min(m; o, $,) in the current
T,. So if lim sup moy, > 0, Siu’s theorem cannot hold. Note that in all cases we
have a minorant

g(x,a) = Y oy logla — ay — x™| € Li,((D x D)

where the choice of the exponents m; now plays no role as far as integrability is
concerned, for log|a — a; — x™| is comparable to log|a — ;| from the point of
view of functions in (x,a). At x = 0 we have

9(0,a) = ) o logla — a
which is finite for almost all a; hence v(T,)0) = 0 for these a. The superlevel set
X(T) = {(x, ap (T, x) 2 ¢}

contains all points (0,a,) if moy =c>0, but no point (0,a) with
f0,a) = g(0,a) > — oo. Therefore it cannot be an analytic set. If we take for
example o, = 1/k% m, = k, the situation is very different from o, = 1/k%,m = k.

ExaMPLE 4.4. Let F: A — D be an analytic mapping and g€ PSH(D). Let
f(x,a) = g(x — F(a)) and f,(x) = f(x,a). Then for any xeD, ac 4
Wfar X) = W(g, x — F(a)) = W9, Px.0);

where @, ,(z) = log|z — x + F(a)|. The first equality follows from Proposition
2.3 (d), the second from Proposition 2.10. Therefore we have the equality
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X(f) ={(x,a)eD x A;%(g, p(xa) Z c}.

Hence we deduce from Theorem 2.13 that all X (f) are analytic subsets of D x A.
In view of the importance of Siu’s theorem we make following definition.

DEFINITION 4.5. A function f e PSH(D x A) will be called a Siu function if all its
superlevel sets X (f) are analytic subsets of D x A.

In order to simplify the statements we will give the following definition.

DEFINITION 4.6. Let fe PSH(D x A). We shall say that f is upper Hélder
regular with respect to A if for every compact subset K = D x A there exist
constants M and r > 0 such that the inequality

sup f(xo + ze',a) < Mla — ao|" + sup f(xo + z(e' + Mla — ao|"),a0)
jzl=1 Izl =1
holds for all (x4, a),(xq,a0)€ K, t < 0.
The following are some examples of such functions.

EAMPLE4.7. Assume fe PSH(D x A)andexp f is locally Holder continuous
with respect to A. Then we can see easily that exp f is upper Holder regular with
respect to A.

Example 4.8. Let ge PSH(D) and let F: A — D be an analytic mapping. Let
f(x,a) = g(x — F(a)) as in Example 4.4. Then both f and exp f are upper Holder
regular with respect to A.

ProoOF. Take a point (xq,ap)€D x A. Since F is analytic we see that
|F(a) — F(ao)l = Mla — aql
for every a near a,. Therefore ge PSH(D) gives the following estimates

sup f(x + zé',a) = sup g(x + z¢' — F(a))
lzl=1 lzl=1

< sup g(x — Flao) + z(¢' + |F(a) — F(ao))))

lz]=1

< sup g(x — F(ae) + z(e' + Mla — ay))) = sup f(x + z(e' + Mla — a,l), ap).
lz|=1 1z]=1
This implies the same estimate for e’ (the first term M|a — ao|" in the estimate in
Definition 4.6 is not needed here).
REMARK 4.9. It is clear that if the function f is upper Holder regular with
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respect to A, then exp f is upper Holder regular with respect to 4. But the
converse does not hold.

THEOREM 4.10. Assume f € PSH(D x A).
(a) If exp f is upper Holder regular with respect to A, then f is a Siu function.
(b) If exp f is locally upper Hélder semicontinuous with respect to D, and if f is
a Siu function, then {(x,a)eD x A; f(x,a) = — o0} is an analytic set.

ProoF. (a) It suffices to consider a relatively compact open subset w of D x A
and prove that f is a Siu function in w. Then

sup f(x + zé',a)e PSH(w)

lzj=1
for every fixed t < 0. Let us consider minus the Legendre transform of this
function:

U.(x,a) = inf(sup f(x + zé',a) — tt; t < min(0,logd(x, 6D))).
t jz|=1
The minimum principle for plurisubharmonic functions (Kiselman [1978], The-
orem 2.2) tells us that U, e PSH(w) for all positive numbers 7.
Assume (xo, ao) € X (f),1.€. V(fo,, Xo) 2 c. Assume also that f(xo,a,) < 0; this is
no restriction of generality. By the chain of equalities (2.3) and the convexity of U,
we can find a real number ¢, < 0 such that

1
@.1) < sup Sf(xo + ze',a0) 2 ¢
lz|=1
holds for all ¢ < t,. Let © be any number less than ¢. From the assumption that
exp f is upper Holder regular with respect to A it follows that

sup f(xo + ze',a) < log[Mla — ao|" + exp sup f(xo + z(e' + Mla — ao|"), a0)];
lz|=1 lz]|=1

4.2
holds if a is sufficiently close to a, and t < 0. We may assume without loss of

generality that (x,, @) = (0, 0). In view of the upper Holder regularity we can then
estimate f as follows:

sup f(x + ze',a) < sup f(Z(x| + €),a) <
lzl=1 Jz]=1

< log[Mlal" + exp sup f(Z(x| + € + M|al"),0)] =

lzl=1

< log[Mlal" + (x| + ¢ + Mlal")],
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where the last inequality follows from (4.1). The inequalies hold for all ¢t < 0.
A good choice for t is
t = log(lx| + Mlal" + (Mlal")')
for then
Mla" £ ¢ and |x|+ Mla|" £ ¢,
so that
sup f(x + zé',a) < log[e™ + (2¢')] = log(l + 2°) + ¢t = C + ct.
1zl=1
Therefore the transform U, can be estimated by
U.(x,a) £ sup f(x + ze',a) — 1t £ C + (c — 1)t
lz|=1
For any constant N > 0 we have
exp[ — NU,(x, ] Z e™(lx] + M"¥la]") Ve,

This shows that we can take N = N, so big that exp[ — N, U,(x, a)] is not locally
integrable near the point (x,, ao) = (0,0). Let

Z, = {(x,a) e w; exp(— N, U,) is not locally integrable near (x, a)}.
Theorem 3.1 shows that Z_ is an analytic subset of w. We have proved that

XNHeNZz.

t<c¢

On the other hand, if v(f,,, Xo) < c, then for any 1, satisfying v(f,,,x0) <t <¢
we have U,(x¢,a0) > — 00. By Theorem 3.2 we have (xq, ao) ¢ Z.. So finally

XN=NZ.

T<c
(b) if exp f is locally upper Holder semicontinuous with respect to D we have
e/ — el xod < Mix — x|

for every (x, a) in some neighborhood of (x,, ao). So for every (xo, ao) such that
f(xg,a0) = — oo we have

e/ < Mlx — xqf",

which shows that
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V(fags Xo) Z T
Therefore
X.(f) = {(x,a)eD x A4; f(x,a) = — 0}

for all ¢, 0 < ¢ < r. This shows that {(x,a)eD x A; f(x,a) = — o} is analytic if
f is a Siu function, and completes the proof.

Letuswrite T; 2 T, if T; and T, are two currents such that T; — T; is positive.

We have the following approximation theorem.

THEOREM 4.11. Assume f7, fe PSH(D x A),j = 1,2,3,..., and that {7 are all
Siu functions withexp f7 and exp f continuous. Let f,(x) = f(x,a), f(x) = fi(x,a),
and assume that, for every fixed j, the f, — fJ are locally uniformly bounded in L} (D).
If the sequence (dd°f}); of positive currents is increasing and dd°f! tends weakly to
dd°f, for every fixed ae D, then f is a Siu function.

We will need the following lemma for the proof of Theorem 4.11.

LEMMA 4.12. Let D be a bounded set in C" and let fePSH(D) with
IfllLipy < + co. Then max(f, b) tends to f as b > — co with a certain uniformity:
for every positive ¢ there is a number by which depends only on D, || f || L1(p) and € such
that (p(max(f,b) — f)di < ¢ for all b < by.

Proor. If the conclusion were not true, there would exist a positive ¢ and
plurisubharmonic  functions f; of bounded L' norm such that
f(max(f;, — j) — f;) 2 & Then a subsequence f;, of (f;) must converge weakly in
the space of measures. However, since dd‘f; = 0, also the weak limit g must satisfy
dd‘g 2 0, i.e., it is a plurisubharmonic function. It follows from Hormander
[1983: Proposition 16.1.2] that f;, tendsto g alsoin L!. Then of course max(g, b) is
the limit of max(f;,, b), so {(max(g, b) — g) 2 ¢ for all b. But this contradicts the
fact that, as b tends to — o0, max(g, b) tends to g in L.

PrOOF oF THEOREM 4.11. Because analyticity is a local property, we can
assume that D and A are bounded and that all functions are defined in a fixed
neighborhood of the closure of D x A.

Fix a point (xo,a,)€ D x A. From the weak convergence dd*f} — ddf, we
deduce that for any ¢ > 0 and any integer k there exists an integer m; such that

G(xo, a0, 1)

_ 1
(neZt)n -1

1 c c£my lddc 2 "t <_c_
j 5 (@dSog(x) — L) A | 5 ddelx = ol .

|x —xo| <et

holds for some t < 0.
By using the assumptions that f, /™ PSH(D x A) and that dd*(f, — f) are
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positive currents we see that f — f™ e PSH(D x A). To be precise one should say
that the difference f = f™* is first defined only almost everywhere, but then it can
be extended by a classical result. Using now Proposition 2.10 we obtain

@.3) Wfiy — £, Xo) < %

Here m, depends on x, and a,. We shall prove that the same m, can serve in
a neighborhood of the original point. This will follow from the fact that the
function G is continuous in (x, do), and this in turn is clear when both f and f™*
are continuous real-valued functions. In fact, integration over the ball
{x;|x — x| < €')can be replaced by the action of the integrand on a positive test
function ¢(x — x,), and the action of the dd° operator moved to that test function,
showing continuity in (x,, ao):

J @x = x0)(ddFoy(x) — ddFye (X)) A (dd|x — xo|*)" ™"

B J 4d° (x — Xo) A (fuol) — f(0) A (ddlx — o[~

In the general case, when we assume only that exp f™ and exp f are continuous,
we use Lemma 4.12 to approximate the plurisubharmonic function f — f™ by
a continuous real-valued function, and then the result follows.

Therefore we can find a neighborhood of (x¢,a,) such that in this neighbor-
hood we have the inequality
c

v(fas X) < V(™ x) + P

Because we assume that all functions are defined in a fixed neighborhood of the
closure of D x A, we can find an integer j; such that the inequality

@4 Wad) S W) +

holds for all (x,a)e D x A.
We will prove the following equality

(4-5) Xc(f) = kﬂ Xc(l - I/k)(fjk)a
=2

where ji, k = 2,3,... are the numbers such that (4.4) hold. If (4.5) is true, then the
fact that f (k = 2,3,...) are Siu functions shows that also f is a Siu function. If
(x,a)e X (f), i.e., W(f2, x) = ¢, by using (4.4) we deduce
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(i x) 2 el — 1/k), k=23,....
Therefore

(x,a)e ﬂ Xoa- l/k)(fjk)-
k=2

Conversely if

(x,a)€ ka X o(1- 1/k)(f jk)

we have
Wfos X) 2 v(fi,x) Z (1 — 1/k), k=2,3,....
So finally v(f;,x) = c.
The following example is an application of Theorem 4.11.

ExaMPLE 4.13. Consider the function discussed in Example 4.3
fx,a) = Y log(la — @ — x™ ™ + |x| ).
1

If the f, are locally uniformly bounded in I}(D) and for every fixed a € D we have

Jj= o

4.6) lim f Y log(la — a, — x™|* + |x|#)dxdx = 0
k=j
D

then f(x,a) is a Siu function in D x D. In this example D is the unit disk.

PrROOF. Let

J
fca) = 3 logla — ay — x™ + %), j=12....

k=1

Then f7(x, a) are all Siu functions with exp f7 and exp f continuous. The f, — f/
are locally uniformly bounded in I (D) for fixed j. The sequence (dd’f})); of positive
currents is increasing. We also have the following equality

ddfy(x) = dd*fi(x) + dd° Y, log(la — a — x™|* + || Br).
k=j+1
Therefore the equality (4.6) implies that dd*f; tends weakly to dd°f, for every fixed
aeD. According to Theorem 4.11 the function f(x,a) is a Siu function in
D x D.
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5. Relations between partial and directional Lelong numbers.

Asinsection4let D = C", 4 = C*betwo opensetsand f € PSH(D x A). Weshall
write f,(x) = f(x,a), (x,a)eD x A. In this section we shall study the relation
between the directional Lelong number v(f)(x, a), (1, y)) of a function f at the point
(x,a)in the direction (1,y) = (1,...,1,y,...,»)e R% x R%, and the partial Lelong
number v(f;,x). We also study the relation between the directional Lelong
number v(f,a), (h, 1)), (h,1) = (h,...,h,1,...,1)e R} x R¥, and the partial Lelong
number v(f,, x).
We know that

W@ (L) = lim = sup  f(x+ 2¢a+ we)

to—w Y |zi|=1,|lwj|=1

Wfzx) = lim —%— sup f(x + zé',a).

t-> - v |zi=1

THEOREM 5.1. Given a point (x¢,a0)€D x A we have the following equalities

@ lim w(f, (xo, o), (1, ) = ¥fap> Xo);
(b) W, (X0, Go)s (B, 1)) = V(fog, Xo)h + o(h),

provided that exp f is upper Hélder regular with respect to A.

Proor. It is obvious that for t < 0

sup f(xo + z(¢' + la — aol"), ap) £ W(fa,» Xo)log(e' + la — ao|").
Izl =1

The fact that exp f is upper Holder regular with respect to A gives the following
estimates

Sup f(xo + Ze" a) é log ['a — aol’ + exp Sup f(x() + z(e! + la . aolr), ao)]
lzl=1 lz]=1

< log[la — aol” + (¢ + la — aol")* V=]
Therefore we get

.1
V(f; (x[)a aO)’(l’ y)) = lim — sup f(xO + Ze‘, Qo + we”‘)

t=-o bzl =1,lwil=1

(.1) > lim %log [¢7 + (¢ + &) Uarm]

t=—

= min (ry, ryV(f;o, xO)’ V(fao, xO))‘
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If ¥(fa,, Xo) = + 0, we have
V(f; (x09 aO))(la y)) g ry
which implies

hm V(f»(xo,ao),(l,}’)) = + 0.

y—++oo

If on the other hand v(f, , x,) < + oo it follows from (5.1) that
V(f; (xo, aO)’ (1’ Y)) g v(f;loa xO)a

when y is large. The opposite inequality is obvious, so we have proved
lim V(f; (xO, aO)’ (1’ ,V)) = v(,f:lo, xO)'
y— + oo

By Proposition 2.6 we get that

V(f; (Xo, aO)’ (la y)) = yv(f’ (XOs aO)’ (1/y7 1))
Let 1/y = h. Then we get

fim (7, (t0s o), (h, 1) = Wfors Xo)-

h—0 h

by using (a). Therefore we have proved (b).
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THEOREM 5.2. If v(f,(x,a),(1, y)) tends to v(f,, x) locally uniformly as y — + oo

and v(f,, x) < + oo, then f is a Siu function, i.e.,

Xc(f) = {(x,a)eD X A;v(ﬁ,,x) 2 C} = U Ec(ﬂ) X {a}

acA

is an analytic variety for every ¢ > 0.

ProOF. Because analyticity is a local property we can work within the inter-
section of X.(f) and a compact set K. By assumption, for every point
(x,a)e X .(f) » K and every number ¢ with 0 < ¢ < ¢ we can find a neighborhood

of (x, a) and a number y/ such that in this neighborhood we have
Wf(x,a)(Ly) Z2v(feX) =& Y2 e
Therefore we can find a number y, such that
v, (60, (Ly) Zv(fosx) — & ¥ Z Ve (na)eX()NK.
By this inequality and the following inequality:
W, (x,a), (1,y)) = o, %)
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we obtain

Xc(j)= m Ec—e(f’ye)

0<eg<c
which proves the theorem in view of Theorem 2.7.

REMARK 5.3. Generally Theorem 4.10 and Theorem 5.2 do not imply each
other. But in the case that exp f is upper Holder regular with respect to 4 and
v(f,, x) is locally uniformly bounded we can deduce that f is a Siu function from
Theorem 5.1 and Theorem 5.2.
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