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SELF-INTERSECTION OF FIXED MANIFOLDS AND
RELATIONS FOR THE MULTISIGNATURE

ROBERT D. LITTLE

Abstract.

Let M>" be a smooth, closed, orientable 2n-manifold and K2"~2 be an orientable submanifold of M>"
dual to a cohomology class x. If K¢ is the s-fold self-intersection of K, in M?" and d is a nonnegative
integer, then the signatures of K§) and K¢ are related by a numerical congruence. This congruence is
used to study diffeomorphisms of odd prime order which fix a codimension 2 submanifold.

1. Introduction.

Let M?" be a smooth, closed, orientable 2n-manifold. If K2*~2 = M?"is a closed,
orientable submanifold, and s is a nonnegative integer, then the s-fold self-intersec-
tion of K in M is defined inductively: K@ = M, KV = K, and if K® = M and
j: K® — M is transverse to K, then K**V = j~(K). The dimension of K* is
2n — 2s. In particular, K™ is a set of points. There is a chain of submanifolds
K" c K" Y <. . cKc M. If xe H¥(M;Z), then K is dual to x if i,[K] =
x N [M], where i: K = M is the inclusion, and we will write K, ro indicate this
duality. If d is a nonnegative integer, our first theorem expresses the signature of
K§) in terms of the signature of K®. If n is a positive integer, let f(n) be the
quotient of n! divided by a maximal power of 2.

THEOREM 1.1. If'n — s is even and d is a nonnegative integer, then
f(n)Sign K§) = f(n)d* Sign K& (mod d*(1 — d?)).

The special case of Theorem 1.1 is which nis odd and s = 1is a congruence for
the signature of the submanifold K, itself. This special case was proved in [9].
The advantage of the more general formulation of Theorem 1.1 is that we need
not consider only odd integers n in the applications. The principal application of
Theorem 1.1 is to the study of finite group actions on M which fix a codimension
2 submanifold F. Let p be an odd prime and let G, denote the cyclic group of
order p. The Atiyah-Singer g-Signature Theorem [1, 2] expresses the value of the
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multisignature Sign (G,, M) on a generator of G, in terms of the action of G, on
the normal bundle of the fixed submanifold. Theorem 1.1 together with a formula
of Berend and Katz [3] will enable us to find an expression for the contribution of
F to the multisignature.

Let g be a generator of G, and let Sign (g, M) be the value that Sign(G,, M)
takes on at g. Let v be the normal bundle of Fin M and let A = €%, 0 = 2n/p, be the
eigenvalue of the action of G, on v. The contribution of v to Sign(g, M) in the
signature formula is Ly(v)L(F)[F], where L(F) is the total Hirzebruch L-class of
F and Lg(v)is a nonstable characteristic class determined by 6 and the Chern class
of v ([5], p. 492). The formula of Berend and Katz shows that Ly(v)L(F)[F] is
determined by the signatures of the self-intersections F¥, s = 1,2,...,n, and the
algebraic number o = (1 + 1)(4 — 1)~ L.

THEOREM 1.2 (Berend and Katz [3]). If M?" admits a smooth G, action fixing
a codimension 2 submanifold F, then the contribution of v in the signature formula
for Sign(g, M) is

n—-1
(L.3) Ly(v)L(F)[F] = «SignF + (* — 1) Y, (—1)ya*" ! Sign F¢* 1.

s=1

We remark that if the eigenvalue at v is determined by 6 = 2mij/p,

1<j<p-—1, then formula (1.3) holds with a replaced by o;= (4’ + 1)
(A — 1)7L It is clear that if Theorems 1.1 and 1.2 are used together, then
L¢(v)I{F)[F] can be expressed in terms of d and signatures of K¢ if it is known
that F is dual to dx. The main theoretical result of this paper is a congruence in the
ring Z[ ] for f(n)Le(v)L{F)[F]. The congruence involves a certain polynomial
function of a complex variable z, P(z), (Definition 3.5). The coefficients of P(z) are
integers which depend on the cohomology class x.

THEOREM 1.4. Suppose that M*" admits a smooth G, action fixing a codimension
2 submanifold F. If xe HX(M; Z), d is a nonnegative integer, and F is dual to dx, then

SOLO)L(F)TF] =

Ls {—f (n)d*(@? — 1)P(da)(mod d*(1 — d?)(@® — 1)), n even,
(1.5) f(m[«Sign F + d3(® — )P(da)] (mod d3(1 — d*)(a® — @), n odd.

Formula (1.5)is produced using Theorem 1.1 together with formula (1.3). Note
that in the case n odd, the congruence for f(n) Sign F guaranteed by Theorem 1.1
does not appear in formula (1.5). The reason for this is that Sign F is often known
exactly in the applications.

Let M be a cohomology CP" that is, H¥(M;Z) = Z[x]/(x"*'), where
x € H¥(M; Z). Every closed, orientable, codimension 2 submanifold of M is dual
to dx for some integer d, which we may take to be nonnegative, modula a change
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in orientation. We will refer to d as the degree of the submanifold. If G, acts on
M fixing a codimension 2 submanifold F, then the fixed point set consists of F and
an isolated point ([5], Corollary 0.1). This means that Singn (g, M) is equal to
Ly(v)L(F)[F] plus a contribution from the isolated point and so formula (1.5) can
be used to make inferences about the degree of F.

Let D, , be the set of nonnegative integers d such that there exists a cohomol-
ogy CP", M, together with a smooth action of G, on M fixing a codimension
2 submanifold of degree d. Since CP" itself admits a G, action fixing CP" ™1, it is
clear that 1€D, ,. If deD, ,, then d & 0 (modp) ([10], p. 587) and so, in
particular, d is positive. Let D,, p be the subset of D, , consisting of those positive
integers d such that there exists a homotopy CP", M, together with an action of G,
on M fixing a codimension 2 submanifold of degree d. If n < 5, then D, , = {1}
([5], Theorem A, [8] Theorem 1.2, and [9], Theorem 1.4). A result in a different
direction asserts that if M is a cohomology CP", then there is a constant which
depends only on the Pontrjagin class of M such that if p is greater than this
constant and F is a codimension 2 submanifold of M fixed by a G, action, then the
degree of Fis 1([6], Theorem A). Other results seem to depend on the parity of n.
If f,(n) is the quotient of f(n) divided by a maximal power of p and m 2 1, then
D41, , s contained in the set of divisors of f,(2m + 1) ([9], Theorem 1.3).

In this paper, we will apply formula (1.5) in the special case p = 3. The prime
p = 3is a good starting point since the contribution of the isolated fixed point to
Sign (g, M) is simple in this case and the signature formula reduces to a numerical
congruence. Our results support the conjecture that D, , = {1} and the vague
feeling that D, , is more tractable if n is odd. They improve the result that
D, ; = {1} if n < 6 which was obtained by different methods ([8], Theorem 1.1).
If n is a positive integer, let as(n) = fy(m)[3™3 + (= 1)"21~1]/4.

THEOREM 1.6. If n =3 and deD, s, then d* divides a3(n) if n is even and d°
divides a;(n) if n is odd.

THEOREM 1.7. If n é 7, then Dn,3 = {1}. Ifm _S__ 6, then D2m+1.3 = {1}. If
m=9, then Dypyy 5= {1}.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. Section
3 contains a discussion of formula (1.3) and the proof of Theorem 1.4. In Section
4, we study smooth G, actions on cohomology complex projective space which
fix a codimension 2 submanifold. Section 5 is devoted to the special case p = 3
and contains the proofs of Theorems 1.6 and 1.7 as well as upper bounds for
D, 3,n < 22. In Section 6, we discuss smooth G, actions on CP" itself which fix
a codimension 2 submanifold.
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2. The signatures of self-intersections.

If M?" is a smooth, closed, orientable 2n-manifold and K**~2 ¢ M?"is a closed,
orientable submanifold, let K® denote the s-fold self-intersection of K in M as
defined in the introduction. The notation K, means that the submanifold K is
dual to xe H*(M;Z). In our first lemma, L(M) denotes the total Hirzebruch
L-class of M. The proof of the lemma can be found in the literature ([12], p. 84,
Take N= M andd = 1.).

LEMMA 2.1. If n—s is even and xeH?*(M;Z), then SignK® =
{tanh’® x L(M)}[M].

DEeFINITION 2.2. If d is a nonnegative integer and z is a complex number, then
the function Ty(z) is defined by
23) T(2) = [(1 + 2 —=(1 =2 Y[ + 2" + (1 — 2)'].

Note that T;(z) is an odd function of z and so its power series expansion has
only odd powers. We will see that the coefficients of the series are rational
numbers. Let N be the set of nonnegative integers.

DEFINITION 2.4. If ke N, then the function r,: N — Q is defined by requiring
that

e o)

Tiz) = Y r(d)z** ! for deN.
k=0

DEFINITION 2.5. If k, se N, the function R, ;: N — Q is defined by
(2.6) Rk_,(d) = Z r,"(d )riz(d) es ri.(d ).
iy +ia+ ... +is=k

The notation in formula (2.6) is meant to suggest that every possible choice of
nonnegative integers iy, i,,...,i; such that iy + i, + ... + i; = k occurs in the
summation. For example, R, ;(d) = r,(d) and

(27)  Ri2(d) = 2ro(@)ri(d) + 2r(@)ri-1(d) + ... + aryy2) (@) —x21(d),
where a, = 1, keven, and g, = 2, k odd.

PROPOSITION 2.8. Ifn — s is even and de N, then

(n—s)/2
29) SignK§) = &*SignK¥ + Y R, ,(d)Sign KZ¥**,
i k=1
(2.10) f(n)SignK$) = f(n)d* Sign K& (mod d*(1 — d?)).

Note that Proposition 2.8 contains Theorem 1.1 and thatifnisoddand s = 1
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in (2.10), then we retrieve formula (1.1) of [9], a congruence for the signature of
K, itself. Before proceeding with the proof of Proposition 2.8, we single out an
important special case. Let M be a homotopy CP" with splitting invariants
(65,03,...,0,-1). Recall that the splitting invariants determine the PL homeo-
morphism type of M [11] and the splitting invariants with even subscript, o5,
G4s- -5 021m—1)2) are integers which determine the Pontrjagin class of M ([8],
Theorem 3.1). If xe H?(M; Z) is a generator of the cohomology algebra and n — s
is even, then Sign K& = 1 + 8a,_, ([9], p. 593). We agree that g, = 0 because
K™ is a single point in this case and hence Sign K™ = 1.

PROPOSITION 2.11. Suppose that M*" is a homotopy CP" with integral splitting
invariants 65,64, . ., Gagu—1y23- Ifn — siseven, x € H*(M; Z) is the generator of the
cohomology algebra, and d e N, then

(n—s)/2
(212) Slgn Kzis; = ds(l + 80',,_5) + Z Rk,s(d)(l + 80n—2k—s)s
k=1

(2.13) f(n)SignK§) = f(n)d*(1 + 80,-,)(mod d*(1 — d?)).

The proof of Proposition 2.8 involves the next lemma which is exactly the same
as Proposition 2.2 in [9].

LEMMA 2.14. The functions ri(d), k € N, are polynomial functions in d such that
ro(d) = d, and, if k = 1, then r(d) = d(1 — d?) q,(d*) where q,(d*) is a rational
polynomial in d* such that f(2k + 1)q.(d?) is a polynomial in d* with integer
coefficients.

For the sake of completeness, we mention that for k = 1,

d
@1y =y ) -ne@(f)-ne(f) -

d
@ <2kd— 2) - d<2k)’

and we provide a table of the first five polynomials q(d®).

TABLE 2.16

k ax(d?)

1/3
(3 — 24%)/15

(45 — 5342 + 17d%)/315

(315 — 503d?* + 295d* — 62d°)/2835

(14175 — 277024 + 22568d* — 88484° + 1382d°)/155925

[V I NS I S
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These values follow from formula (2.15). The last two values were produced
with the aid of a computer.

PROOF OF PROPOSITION 2.8. We begin with a proof of formula (2.9). It follows
from Lemma 2.1 that Sign K§) = {tanh®dx L(M)}[M]. Formula (2.9) follows
from this observation, the identity T,(tanh x)* = tanh®dx ([4], p. 208) and the

power series expansion (Ty(2))* = d°z° + Z R, ((d)z****. Lemma 2.1 enters the

argument again at the last step in the form of the equation {tanh?***x (M)}[M] =
Slgn K(Zk +s)

The argument to establish (2.10) begins by noting thatif 1 < k < (n — s)/2 and
iy +i; + ...+ iy =k, then in Z[d], the ring of polynomials in d with integer
coefficients, we have the congruence

@.17) [1/Qi; + Dr,@ri@. .. ri.@ = 0 (mod d*(1 — d?).
j=1

Formula 2.17 follows from Lemma 2.14. It is clear that f(2k + s) is divisible by

[1/Qi; + 1) because iy + iy + ... + iy = k. It follows that f(2k + s) Ry ,(d) =
i=1

0(mod d*(1 — d?)). Since 1 £ k £ (n — s)/2, formula (2.10) follows by multiplying
both sides of formula (2.9) by the integer f(n).

3. The formula of Berend and Katz.

In this section, M?" is an arbitrary smooth, closed orientable 2n-manifold.
Suppose that G, acts smoothly on M fixing a codimension 2 submanifold F. If vis
the normal bundle of the inclusion map i: F = M and seN, Berend and Katz
define a quasi-signature ¥%(v) = {tanh®c,(v) L(F)} [F] ([3], p. 945). This
quasi-signature is an integer and it measures the sth self-intersection of F in the
total space of v. The relationship between these quasi-signatures and the contri-
bution of v to Sign (g, M) is contained in

THEOREM 3.1 (Berend and Katz [3]). If M?" admits a smooth G, action fixing
a codimension 2 submanifold F, then

(3.2) Ly(v) LF)[F] = a%(v) + (@ — 1)"; (=1 et H).

We remark that Theorem 3.1 is a special case of the analysis of Berend and
Katz of the contribution of arbitrary slice types to the multisugnature ([3],
Theorem 2.2). They specifically mention that in this special case, ¥(v) =
Sign F©* 1 ([3], p. 967). This observation justifies the formulation of the theorem
in the introduction.
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Note that in formula (1.3), the signatures Sign F**1, 0 < s < n — 1, are zero
unlessn — s — 1iseven. Our next step is to make this dependence on the parity of
n precise by rephrasing Theorem 1.2 as

PRrOPOSITION 3.3 ([3], Formula (8.1)). If M?" admits a smooth G, action fixing
a codimension 2 submanifold F, then
n/2
—(@*—1) Y, a®*72Sign F®9, n even,
(3.4) Lo(v)L(F)[F] = U em
aSignF + (@ — 1) Y, a®*~!Sign F&* 1) p odd.
k=1
Now suppose that F is dual to dxe H?*(M;Z). We propose to show that
Theorem 1.1 and formula (3.4) together yield Theorem 1.4.

(/2]
DEFINITION 3.5. If xe H*(M;Z) and zeC, then P(z) = Y ¢, z** "2, where
k=1

Sign K®¥, n even,
(3.6 = {Sign K@**D 5 odd.

Note that the coefficients of the polynomial P are integers which depend only
on the class x e H3(M;Z). For example, if M is a homotopy CP" and x is the
generator of the cohomology algebra, then the coefficients of P are determined by
the integral splitting invariants of M ([9], p. 593). The polynomial P plays a role
in Theorem 1.4 which we restate as

THEOREM 3.7. Suppose that M*" admits a smooth G, action fixing a codimension
2 submanifold F. If xe H*(M;Z),de N, and F is dual to dx, then f(n) Lo(v)L(F)[F] =

—f(n)d*(?® — 1)P(da)(mod d2(1 — d*)(«* — 1)), n even,

(38) (n) [« Sign F + d3(a® — &) P(do)}(mod d3(1 — d?)(e® — a)), n odd.

PRrROOF. The proof follows by multiplying formula (3.4) on both sides by the
integer f(n), applying Theorem 1.1 to the terms f(n) Sign F®, s > 1, and making
minor adjustments to expose P(da). The moduli of the congruences are obtained
by multiplying the greatest common divisor of the moduli of the congruences for
f(n) Sign F® by the appropriate factor involving o.

4. Cohomology complex projective space.

In this section, M?" is a cohomology CP", that is, H*(M; Z) = Z[x]/(x"*'), where
x€ H*(M; Z).1f G, acts on M fixing a codimension 2 submanifold F, then the fixed
point set of the action consists of F and an isolated point ([5], Corollary 0.1). We
propose to analyze the complete signature formula in this particular case in light
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of Theorem 3.7. This means that we must enhance the notation in order to
describe the action near the isolated fixed point as well as near F.

Let 4 = (p — 1)/2. The possible eigenvalue of the action of G, on the eigen-
bundle summands in the decomposition of the tarigent space at the isolated fixed
point are A/ = exp(2nij/p), 1 £j < u. Each eigenvalue is associated with an
algebraic number a; = (& + 1)(4/ — 1)~*. We will assume, as in the introduction,
that the eigenvalue at the normal bundle of F is A' = 1 and that it is associated
with the algebraic number a;. Note that a; was written as « in the previous
sections of this paper where the other numbers «;, j #+ 1, did not appear in any
formulas. The Atiyah-Singer g-signature Theorem ([5], formula (1.4)) asserts

m
that there are integers my, m,,. .. m,, such that Z m; = n and
j=1

4.1 Sign(g, M) = + Ly(V)L(F)[F] £ oT" o3>, .. a}*.

THEOREM 4.2. Suppose that M*" is a cohomology CP" and that M*" admits
a smooth G, action fixing a codimension 2 submanifold of degree d. If the multi-
plicities of the eigenvalues at the isolated fixed point are my, m,,...,m,, then
Sf)afra>.. .o =

3 {if (n) £ f(n)d*(af — 1) P(da;)(mod d*(1 — d*)(af — 1)), n even,
) 1 f(may £ f(m)d>(@? — o) P(do)(mod d*(1 — d*)(ef — a4)), n odd.

Proor. Formula (4.3) follows by multiplying both sides of (4.1) by f(n), using
(3.8) and the facts that Sign (g, M) = + lifniseven, and Sign (g, M) = Oifnis odd
([5], p. 504) together with the fact that if n is odd, then Sign F = +1 ([9],
Lemma 3.1).

The congruence symbol in formula (4.3) means that the left hand side of the
congruence minus the right hand side is equal to an element of Z[«,] multiplied
by the modulus. Note that congruence (4.3) is similar to a general congruence of
Katz ([7], Proposition 3.11) restricted to this special case. In our case, there are
only two representations, the one at F and the one at the isolated fixed point, and
we have multiplied by f(n). Our congruence contains the added ingredient of the
congruences involving the degree of the codimension 2 fixed submanifold but it
does not contain the sign regulator in Katz’s congruence. Note that F is represen-
ted on the right side of formula (4.3) solely by the rational integer d, the degree of
F. The other ingredients on the right side of (4.3) are f(n), algebraic numbers, and
the integer coefficients of P which depend only on M. This is an improvement
over previous efforts to deal with this problem which involved the Pontrjagin
class of F and showed no clear pattern for arbitrary n ([8], formulas (11), (12),and
(13)). Our next step is to show that formula (4.3) is a congruence of rational
integers in the case p = 3.
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5. Actions of the group G,.

In this section M?", is a cohomology CP" with x € H(M; Z) the generator of the
cohomology algebra. In order to simplify the statement of the main result of this
section, we introduce a simplification in notation. If K, is dual to x, let
5@ = Sign K®, 0 < s < n. We define a numerical function a(n) = f(n)[3™? +
(= 111374,

THEOREM 5.1. Suppose that M?" is a cohomology CP". If M*" admits a smooth
G actions fixing a codimension 2 submanifold of degree d, then + a(n) =

SOV Y (—1f1 3 H g2 S mod d2(1 — d), n = 2m,
(52) k=1

f)d® Y, (=11 3m kg2 SCK+ D mod d3(1 — dd)), n = 2m + 1.
k=1

We remark that formula (5.2) is an ordinary congruence on the ring of integers.
Before we prove Theorem 5.1, we establish two consequences. First, note that if
as(n) is a(n) with a maximal power of 3 divided out, then we have,

COROLLARY 5.3. Ifn 2 3 and de D, 3, then d* divides a5(n) if n is even and d*
divides a5(n) if n is odd.

Proor. This follows immediately from formula (5.2) and the fact that de D, 5
implies that d £ 0 (mod 3).

Note that Corollary 5.3 is the same as Theorem 1.6 in the introduction. The
second consequence of Theorem 5.1 we will establish is Theorem 1.7. We will do
this by presenting a table of upper bounds for D, 3, n < 22, guaranteed by
Corollary 5.3. The table lists only the maximal prime powers that can occur in the
prime factorization of an element in D, 3.

TABLE 5.4

S
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w

n
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We give one example to illustrate the use of the table. If de D, 3, then 5,7, and
11 are the only prime divisors of d, the exponent of S is less than or equal to 2 and
the exponents of 7 and 11 are less than or equal to 1.

The proof of Theorem 1.7 is contained in Table 5.4. It is clear from the table
that D, ; = {1} ifn £ 7and D,,,+, 3 = {1} if m < 6. This is because n = 8 is the
smallest integer such that a,(n) is divisible by a perfect square, namely 100, and
n = 15 is the smallest odd integer such that a,(n) is divisible by a perfect cube,
namely 125. The statement in Theorem 1.7 about homotopy complex projective
space also follows from the table because d € D, . 1,p implies that d = 1 (mod 8)
([9], Theorem 1.3). This observation and the table imply that D, 3 = {1},
m £ 9. Things go wrong at level n = 21, because the table indicates that d = 385
might be a member of D, ; and 385 = 1 (mod 8). Table 5.4 was produced using
Corollary 5.3, the formula a;(n) = f3(n)[3™? + (= 1)"2171]/4 and a calculator.

ProoOF OF THEOREM 5.1. Formula (5.2) is just congruence (4.3) in the special
case p = 3 plus some additional information. Formula (4.3) states that the left
hand side minus the right hand side is equal to an element of Z[«,] times the
modulus and we need to know something about this element to produce formula
(5.2).

Ifp=3theny=1,a, = —i/\/3,anda? — 1 = —4/3. If n = 2mand F is the
fixed submanifold, then it follows from formulas (3.4) and (4.1) that

(5.5 1=4@4/3) Y (-1 137%"DSjgn F@9 4+ (—1)m3~™

k=1
Formula (5.2) in the case n = 2m follows by multiplying both sides of (5.5) by
3"f(n) and using Theorem 1.1. If n = 2m + 1and F is the fixed submanifold, then
it follows from formulas (3.4) and (4.1) and the fact that Sign F = +1 that we
have

(5.6) 1=4@/3) Y (-1 137 %" DSign Fe*D 4 (—)m3~™m

k=1
Formula (5.2) in the case n = 2m + 1 follows by multiplying both sides of (5.6) by
3™f(n) and using Theorem 1.1.

6. Complex projective space.

We end this paper with a discussion of G, actions on CP" itself which fix
a codimension 2 submanifold. If n is odd, then the degree of the fixed manifold is
1([9], Theorem 1.2). Our next result contains this fact and some new information
about the fixed submanifold.

THEOREM 6.1. If CP?>™*! admits a smooth G, action fixing a codimension
2 submanifold F, then the degree of F is 1 and Sign F® = 1,5 =1,3,...,2m + 1.
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PrOOF. Let d be the degree of F. There exists an orientation of F such that
Sign F = Sign FY) = 1 and d > 0([9], Lemma 3.1). The integral splitting invari-
ants are zero ([8], Corollary 3.3) and so SignK® =1+ 86m+1-s =1,
s=1,3,...,2m + 1. This means that congruence (2.13) at level s = 1 reduces to
f@Cm+ 1) = f(2m + 1)d(modd(1 — d?)),and so d = 1 since f(2m + 1)is odd. If
d = 1is used with (2.13) at levels s = 3, 5, ..., 2m + 1, we obtain Sign F® = 1,
s=3,5...,2m+ 1.

If CP" admits a smooth G; action fixing a codimension 2 submanifold of degree
d, then a result of Masuda states that d> = 1 (mod 9) ([10], p. 589). There is
another congruence for the case p = 3.

THEOREM 6.2. If CP?™ admits a smooth G, action fixing a codimension 2 sub-
manifold of degree d, then

3m 4 (_1)m—1d2m

(6.4) +a(@2m) = f(2m)d* T

(mod d*(1 — d?)).

Proor. Formula (6.4) follows from (5.2) in the case n = 2m, the fact that
S®® =1 + 805,,,_ 2 = 1in this case, and the formula for the sum of a geometric
series.

It is now possible to return to Table 5.4 and, armed with Masuda’s result and
(6.4), investigate G5 actions on CP?™ fixing a codimension 2 submanifold. For
example, if CP® admits a smooth G5 action fixing a codimension 2 submanifold of
degree d, then it follows from Table 5.4 and either (6.4) or Masuda’s congruence
that d is either 1 or 10. If CP*° admits a smooth G action fixing a codimension
2 submanifold of degree d, then Table 5.4 and either (6.4) or Masuda’s congru-
ence implies that d = 1.

The author would like to thank Karl Heinz Dovermann, Gabriel Katz, and
Robert E. Strong for their help in the preparation of this paper.
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