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SIMPLE C*-ALGEBRAS WITH THE PROPERTY
WEAK (FU) ®

N. CHRISTOPHER PHILLIPS

Abstract.

We prove that the Bunce-Deddens algebras, “most” of the irrational rotation algebras, and the
algebras of real rank 0 recently classified by Elliott, all have the property weak (FU): every unitary in
the identity component of the unitary group is a norm limit of unitaries with finite spectrum. The
proofs use approximation of unitaries by exponentials to derive this fact from the fact that the
algebrasinvolved have real rank 0. We also discuss the related properties (FU) (every unitary is a limit
of unitaries with finite spectrum) and (FI) (every invertible is a limit of invertibles with finite spectrum).

Introduction.

In the last few years, the property (FS) (every selfadjoint element is a limit of
selfadjoint elements with finite spectrum; now also called real rank 0) has been
shown to be equivalent to a number of other properties, and many simple
C*-algebras have been shown to have this property. (See [7] and the references
given there.) In this paper, we consider the very similar property (FU) (every
unitary element is a limit of unitaries with finite spectrum) and several variants.

Itis easily seen that (FU) implies (F'S), and also that (FU) implies that the unitary
group is connected. Since many interesting algebras with (FS) have disconnected
unitary groups, it seems appropriate to consider the property weak (FU), which is
(FU) applied only to the identity component of the unitary group. In this paper, we
show that the irrational rotation algebras A, have weak (FU) for 6 in a dense
G;s-subset of [0,1] — Q, that the Bunce-Deddens algebras have weak (FU), and
that Elliott’s C*-algebras of real rank 0, obtained as direct limits of “basic buildings
blocks” ([16]), all have weak (FU). We also give several examples of separable
simple unital C*-algebras which have (FU) but are not AF, using a modification of
a construction in [26]. One of our examples is even stably finite.

The proofs that the algebras above have weak (FU) depend on the known results
for (FS). (These results are due to Choi-Elliott [10] for “most” of the irrational
rotation algebras, due to Blackadar-Kumjian [6] for the Bunce-
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Deddens algebras, and are part of the definition for Elliott’s algebras.) Our
contribution is to show that, in these algebras, every unitary in the identity
component is a limit of exponentials. This result is obtained by approximation
from similar results for algebras of sections of locally trivial M,-bundles over
compact spaces of dimension at most two and for Elliott’s basic building blocks.
The results on approximation by exponentials are part of a joint project with John
Ringrose on the exponential rank for C*-algebras; roughly speaking, the exponen-
tial rank of A is the smallest n such that exp (i4,,)" is the whole identity component
of the unitary group. The case we use here is exponential rank at most 1 + &.

Section 1 contains the definitions of (FU), weak (FU), and exponential rank,
some connections between them, and results on exponential rank in direct limits
and continuous fields. Section 2 proves that algebras of sections of locally trivial
M,-bundles over 2-dimensional spaces, and Elliott’s basic building blocks, have
éxponential rank at most 1 + ¢. In Section 3 we then give the results and examples
discussed in the second paragraph. We are still missing a number of examples; in
particular, we do not even have an example of a simple C*-algebra whose
exponential rank is greater then 1 + &. In Section 4, we discuss the Banach algebra
analogs of our concepts, obtained by substituting arbitrary invertible elements for
unitaries. Our results are very incomplete, but we do show that the behavior is
essentially different.

We will use the following notation throughout this paper. K is the algebra of
compact operators on a separable infinite-dimensional Hilbert space. C(X, 4) =
C(X) ® A is the algebra of continuous functions from X to 4; if 4 is omitted, it is
taken to be C. For any C*-algebra A, we let A, denote the set of selfadjoint
elements of A. If A is unital then U(A) is the unitary group of 4 and Ugy(A) is the
connected component of U(A) containing 1; similarly, inv (4) and inv, (A4) are the
invertible group of 4 and its identity component. A* is the unitization of A4.

I would like to acknowledge the contributions of John Ringrose to the research
project from which the exponential rank results were taken. This project was
initiated while we were both visiting the Mittag-Leffler Institute, and its hospitality
is gratefully acknowledged. I am indebted to Shuang Zhang and Bruce Blackadar
for valuable conversations, including bringing to my attention the interest in the
property (FU). I am grateful to Terry Loring for catching an error in an earlier
version of this paper. I have also benefitted from conversations or electronic
correspondence with Ola Bratteli, Ed Effros, Anatole Katok, and Eric Klassen.

1. Definitions and elementary remarks.

In this section, we define the properties of interest, and prove a few elementary
facts about them. The property (FU) was suggested to us by Shuang Zhang; it
appears (without a name) in [8]. It implies that the unitary group is connected,
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which fails in many naturally occurring algebras with real rank 0. This fact led us
to the property weak (FU), in which only the identity component of the unitary
group is considered.

1.1 DerINITION. (1) A unital C*-algebra A is said to have the property (FU) if
the elements of U(A) with finite spectrum are dense in U(A).

(2) A has weak (FU) if the elements of Uy(A) with finite spectrum are dense in
Uo(4).

Von Neumann and AF algebras clearly have (FU). We will construct in
Section 3 a separable C*-algebra which has (FU) but is not AF. It is easy to see
that the Calkin algebra has weak (FU). Most of this paper is devoted to proving
that the Bunce-Deddens algebras, “most” of the irrational rotation algebras, and
Elliott’s algebras of real rank 0, all have weak (FU).

We will study (FU) and weak (FU) with the aid of the exponential rank, defined
next. This notion is taken from a joint research project with the John Ringrose.
A strong version of the condition exponential rank at most 1 + ¢(the condition of
most use here) has been used in [8].

1.2 DEeFINITION. Let A be a unital C*-algebra. We will define the exponential
rank of A, written cer(A), to be the largest element of the set of symbols
{1,1 +&2,2 +¢,...,o0} (with the obvious order) consistent with the following
restrictions:

(1) cer(A) < nif every ue Uy(A) is the product exp(ih,) ... exp (ih,) for some
hy,...,h,eA,,.

(2) cer(A) £ n + eif every ue Uy(A) is a norm limit of products as in (1).
For nonunital 4, set cer (4) = cer(4 ™).

1.3 REMARK. If ue U(A4) and |u — 1| < 2, then u has a logarithm by func-
tional calculus. Thus, in the definition, cer(4) < n + ¢ does indeed imply
cer(A) £ n+ 1. This shows that the possible values of cer(4) are correctly
ordered.

1.4 REMARK. It is obvious that cer(4 @ C) = cer(4) for unital 4. Thus,
cer(A™*) = cer (4) for arbitrary (not just nonunital) C*-algebras A.

In this paper, no C*-algebra A will be shown to have exponential rank greater
than 1 + ¢. However, to show the limitations of the methods used here, we
remark that cer (C(X) ® M,) can be shown to be at least 2 whenever n = 2 and
X contains a homeomorphic image of an open subset of R>. As of this writing, we
have found a C*-algebra A with cer(4) = 2 + ¢, but we have been unable to
prove that any C*-algebra has exponential rank 3 or greater.

(Note added February 1991: I have now proved that the exponential rank of
a C*-algebra can be arbitrarily large or even infinite. See [33] and [34].)
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The connection between (weak) (FU) and exponential rank is given in the
following easy proposition. Note the real rank 0 (RR(A4) = 0) is the same as (FS)
([7], Theorem 2.6).

1.5 PROPOSITION. Let A be a unital C*-algebra. Then A has weak (FU) if and
only if A has real rank 0 and cer(A) £ 1+ ¢. Also A has (FU) if and only if
RR(A) =0, cer(A4) < 1 + ¢, and U(A) is connected.

Proor. First let A have weak (FU). Then cer(4) < 1 + ¢ because every uni-
tary with finite spectrum is an exponential. To see that RR(4) = 0, let ae A,,; we
want to show that a is a limit of selfadjoint elements with finite spectrum.
Without loss of generality we may take |a| < n. Write e® = limu,, where
u, € U(A) has finite spectrum. Let log be the branch of the logarithm function with
range i(—n, n]. Then —ilog (u,) is selfadjoint, has finite spectrum, and converges
to a.

For the converse, let cer (4) < 1 + & Let ue Uy(A) and write u = lim exp (ia,)
with a, € A,. If also RR (4) = 0, choose b, € 4, with finite spectrum such that
|la, — b,|| < 1/n. Then u, = exp (ib,) is a unitary with finite spectrum and u, — u.
So A has weak (FU).

For the second part of the proposition, note that it is obvious that 4 has (FU) if
and only if it has weak (FU) and U(A4) is connected.

1.6 PROPOSITION. If ¢: A— B is a surjective map of C*-algebras, then
cer(B) < cer(A).

ProOF. Use the fact that Uy(4) — Uy(B) is surjective ([4], Proposition 3.4.5).

1.7 PROPOSITION. Let A = lg)n A, be a direct limit of C*-algebras, and suppose
that cer(A,) < n+ ¢ for all a. Then cer(A) < n + ¢

Proor. Let ¢,:A4, - A be the canonical maps. Unitizing everything (see
Remark 1.4), we may assume that all the algebras and maps are unital. Let
u € Uy(A), and write u = exp (ih,)...exp(ihy) for some N (presumably larger
than n) and selfadjoint elements hy, ..., hy € A. Since U, ¢,(A4,) is dense in A4, and
since our index set is directed, we can find a(k) and h® e (A,4,), Such that
Py (B®) > h forr = 1,...,N. Then v, = exp(ih{’)...exp (ih¥) is an element of
Uo(Auwy) such that ¢,q) (v) = u. By assumption, for each k there is uy € Up(Aqg))
which is a product of n exponentials and satisfies ||u, — v;|| < 1/k. Then @, (u)
is a product of n exponentials and converges to u.

The corresponding result with n in place of n + ¢ is false, as can be seen from
Example 1.11.

Next we will consider fibers of continuous fields. We need a lemma.

1.8 LeMMA. Let A be a unital continuous field of C*-algebras over a compact
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metrizable space X, with fibers A,. Assume that A is separable in the sense of [13],
10.2.1. That is, there is a countable subset S, of the C*-algebra I'(A) of all
continuous sections of A such that {s(x):s€ S} is dense in A, for every x € X. Then
there exists a countable subset S = U(I'(A)) such that:

(1) u(x)e Uy(A,) for all ue S and for all xe X.
(2) {u(x):ueS} is dense in Uy(A,) for all x.

Proor. First observe that for any s e I'(4), the set
{xe X :s(x)einv(4,)}

is open. Indeed, if a(x,) is invertible, then there is beIl'(4) such that
bixo) = a(x,)~* ([13], 10.1.10), and we have [Ja(x)b(x) — 1|, [b(x)a(x) — 1| < 1
for x close enough to x,. This proves openness.

Now we want to prove that

{xe X :s(x)einvo(A,)}

is open. Consider the continuous field C([0,1]) ® A with fibers C([0,1]) ® A,
and continuous sections C([0, 1]) ® I'(A4). If s(xo) €inv, (4,,), choose a continu-
ous path a r,(X,) in inv (4,,) for @€ [0, 1], with ro(xo) = s(x,) and ry(xo) = 1.
Regarding r(x,) as an element of C([0,1]) ® A, let reI'(C([0,1]) ® A) be
a section with the given value at xq ([13], 10.1.10). Then for all x sufficiently close
to xo, we have r(x) invertible in C([0,1])® A4,, and |ro(x) — s(x)],
lry(x) — 1) < 1. It follows that s(x) einvy(A,) for each such x, and openness is
proved. In fact, more can be said. Extend o r,(x) to a function on [ —1,2] by
using straight line paths from s(x) to ry(x) over [ —1,0] and from r,(x) to 1 over
[1,2], and reparameterize. This shows that if s(xo)einvy(4,,), then there is
aneighborhood U of x,and a sectionr of C([0, 1]) ® A over U such that, for each
xe U, the path a+>r,(x) is a continuous path of invertible elements connecting
5(x) to 1.

We will now construct a set S of sections in inv(I"(A)) satisfying the conclusions
(1) and (2) for inv,y(A4,) in place of Uy(A,). The set whose existence is asserted by
the lemma will then be {s(s*s)~'/2:seS}.

Fix temporarily seS,. For each x € X such that s(x) einvy(4,), choose open
sets xe UD = UY <= V9, a continuous section («, y) — r,(y) of C([0, 1]) ® 4 over
V¥ withro(y) = s(y)and r,(y) = 1, and a continuous function f: X — [0, 1] such
that f(y) = 1 for y¢ V¥ and f(y) = 0 for ye U®. Define t € I'(4) by

1 yEvo
tg ) = { ()
rro(y)  yeW:
Note that t& = son UY, that 9 is invertible, and that & (y) einvy(4,) for ye X.
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Since X, being compact metrizable, is second countable, we can write
a
{xeX:s(x)einvy(4)} = U1 U9
ne

for appropriate x,(s)e X.
Set

S={t9:5€8, n=12,...}
Clearly S < inv(I'(A)) and s(x) einvy(A4,) for xe X and x € S. It remains to prove

that {s(x):se S} is densein inv,(A4,) for x € X. But this follows because invy(4,) is
open, {s(x):s€ S} is dense in 4,, and

{s(x):5€S0} Ninvy(4,) = {s(x):s€S} < invy(4,).

1.9 PROPOSITION. Let A be a continuous field as in the previous lemma, and fix
neN. Then the set

G={xeX:cer(4,)<n+¢}
is a Gs-set in X.

PRrOOF. Let S be a set of sections as in the previous lemma. For eachue S and
&> 0, set

V.= {xeX:thereareh,,...,h,e(A,), such that | u(x) — exp(ih,)...exp(ih,)| < &}

Note that V,, is open. Indeed, given x and hy, ..., h,, choose sections k;,...,k,
through hy,. .., h,, replace k; by (k; + k¥)/2, and note that

lu(y) — exp(ik((y). . .exp(ik. (V)| < &

for all y close enough to x.
Set

V= ﬂ n V;,l/k'

ueS k=1

Then V is a Gs-set. If x¢V, then some u(x) is not a limit of products of
nexponentials, whence cer(4,) > n + & If x e V, then every u(x) for ue S is a limit
of products of n exponentials. Since the u(x) are dense in Uy(A4,), it follows that
cer(A,)<n+¢ Thus V =0G.

We will finish this section by computing the exponential ranks of a few
important C*-algebras.

1.10 PROPOSITION. (1) Every finite dimensional C*-algebra has exponential
rank 1.

(2) Every von Neumann algebra has exponential rank 1.

(3) The Calkin algebra has exponential rank 1.
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(4) Every commutative C*-algebra has exponential rank 1.
(5) An AF algebra has exponential rank 1 or 1 + &.

Proor. Part(2)is obtained by using the Borel functional calculus on unitaries
with any Borel branch of the logarithm function. Part (1) is a special case of part
(2). Part (3) follows from part (2) by Proposition 1.6. Part (4) follows from the
relation exp(a + b) = exp(a) exp(d) if a and b commute. Part (5) follows from (1)
and Proposition 1.7.

1.11 ExaMpPLE. A simple AF algebra can have exponential rank 1 + &. (This
example was obtained from discussions with Bruce Blackadar.) Let G be the
semidirect product D > Z/2Z, where D is the group of dyadic rationals mod 1,
and the generator of Z/2Z acts on d € D by inversion. Let D act on S* by rotation,
and let Z/2Z act by z+—> —z. This defines an action of G on S!. Then C*(G, §?) is
simple ([4], 10.11.5b), AF ([24]), and C(S!) is a maximal commutative subal-
gebra ([29], Proposition 4.14). (Also see [5], Remark 7.1.4b.) Let u(z) = z. If
u = exp (ih) for some selfadjoint he C*(G, S?), then h commutes with u and u*,
whence heC(S'). Since u¢Uy(C(S')), this is a contradiction. So
cer(C*(G,SY) + 1.

1.12 ExaMpLE. The algebra K is an AF algebra with exponential rank 1. To
see this, note that the spectrum of any unitary ue K* has at most one cluster
point (since u -- - 1€ K for some 1€S?), and so can’t be all of S!. So u has
a logarithm.

2. The exponential rank of some n-homogeneous C*-algebras.

The purpose of this section is to prove the following theorem, and its analog for
Elliott’s “basic building blocks.”

2.1 THEOREM. Let X be a compact metric space with dim (X) < 2 in the sense of
[22]. Let E be a locally trivial M,-bundle over X. Then the C*-algebra I'(E) of
continuous sections of E has exponential rank at most 1 + &.

This theorem is a generalization of results obtained jointly with John Ringrose.
The proof consists of four steps: reduction to the case of a finite simplicial
complex, reduction from unitary sections to SU(n)-valued sections, approxi-
mation of SU(n)-valued sections by ones which have n distinct eigenvalues, and
proving that such sections have logarithms. The first and third steps are closely
related to Theorem 4 of [10]. The first step is essentially the next lemma.

2.2 LEMMA. Let X be a compact metric space of dimension at most d, in the sense
of [22], and let E be a locally trivial M,-bundle over X. Let ue Uy(I'(E)) and let
€> 0. Then there exist a finite simplicial complex L of dimensional at most d,
a continuous surjective map f: X — L, alocally trivial M,-bundle E, over L with an
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isomorphism @ : E — f*(E,), and ve Uy(I'(E,)), such that ||o(u) — f*@)| <e.
Here f*(E,) is the pullback of E,, and f* also denotes the unital homomor-
phism a > a- f from I'(E,) to I'(f*(Ey)).

PROOF OF LEMMA 2.2. Write X = h‘gl X,, where the X, are compact polyhed-
rons of dimension at most d, and with surjective maps f,: X — X,. (See [18], Satz
1, page 229; also see [25].) Let F = K ® E be the locally trivial bundle whose
fiber over xe X is K ® E,. Let & be the Dixmier-Douady class of this bundle
([13], 10.7.14), which is an element of the Cech cohomology group H3(X,Z). By
Theorem X.10.1 of [15], we have H3(X,Z) = lim H3(X,,Z). Without loss of
generality, we may therefore assume that 6 = f¥(d,) for some 6, € H3(X,, Z).

Choose ([13], Theorem 10.8.4) a locally trivial bundle F, over X, with fiber
K and Dixmier-Douady class d,. Let f,,,: X,, = X, be the maps of the inverse
system, and set F, = f,%(F,). Then l(n_n F, is a locally trivial bundle over X with
fiber K, and it is isomorphic to f*(F,). Therefore it has Dixmier-Douady class
J&¥(do) = 6. Hence l(l_l.’_r.l F, = F by [13], Theorem 10.8.4. Furthermore, I'(F) =
lix_’n I'(F,), where the direct limit is formed using the maps f* : ['(F,) — I'(F,,).

Let p e I'(F) be the tensor product of a rank one projection in K and the identity
of I'(E). Choose projections p, € I'(F,) such that f,*(p,) — p. For large enough n,
there is a unitary w,e I'(F)* such that w,f*(p,)w* = p, and we can require
w, — 1. Then U, w,f*(I'(F,))w} is dense in I'(F), so U, w, X (F,)p.)w} is
dense in pI'(F)p =~ I'(E). The theorem is then proved by taking, for n large
enough, L= X,, E, = p,F,p,, ¢(a)=w*aw,, and v = b(b*b) /> for some
bep,I'(F,)p, with ||w,f*(b)w¥ — u| sufficiently small.

For the second step, we introduce the following notation. If E is a locally trivial
M,-bundle over a space X, then Ug, SUp, E,, and Ly denote the sets of elements of
E which are unitary, unitary with determinant 1, selfadjoint, and selfadjoint with
trace 0 respectively. Since the determinant and trace are preserved by all auto-
morphisms of M,, these four sets are well defined locally trivial fiber bundles over
X, with the same group (namely Aut (M,)) and with fiber U(n), SU(n), (M,),,, and
L = {he(M,),:tr(h) = 0} respectively. Furthermore, we will denote by

2nZ/n + Lg the bundle over X whose fiber over x is 271: Z-1 + (Lg),. Note that it

is again a locally trivial fiber bundle with the same group, because 1 is a continu-
ous section of E which is invariant under the group of the bundle.

As before, we use the letter I' for spaces of continuous sections. We let ['o(Ug)
and I'o(SUg) denote the sets of sections of U and SU; which are homotopic, via
sections of the appropriate bundle, to the constant section 1. Thus I'o(Ug) =
Uo(I'(E)). For ae I'(E) we let det(a) denote the continuous function x — det (a(x));
note that it is well defined and continuous. Thus, I'(SUg) = {ue I'(Ug):det (u) = 1}.
Similarly, the usual trace is a well defined map from I'(E) to C(X).
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2.3 LEMMA. Let X be a compact space, and let E be a locally trivial M,-bundle
aver X. Thencer (I'(E)) < r(respectively, cer (I'(E)) < r + &) if and only if for every
uelo(SUg)thereareh,,. .., h,e '(2nZ/n + Lg)suchthatu = exp (ihy)...exp (ih,)
(respectively, u is a uniform limit of products of this sort).

ProOF. We first establish the following claim:
(*) IfueI'y(SUg)is a product of r elements of exp (il'(E,,)), then u is a product of
r elements of exp (il'(2nZ/n + Lg)).
To prove this, let ueI'y(SUg) and let u = exp(ihy) ... exp(ih,) with hy, ...,
h.eI'(E,,). Set

M'ﬂ

o= % tr(h;) and z = exp (ia).

j=1

Then
z" = [] det(exp (ih;) = det(u) = 1.
j=1

Therefore the range of z is contained in exp(2riZ/n), and the range of « is
contained in 2nZ/n. Define

1
k1 =h1 +l:a—"1l‘tr(h1)]'l and kj=hj"‘;tr(hj)'1

forj = 2. Then the perturbations h; — k; are all in the center of I'(E) and sum to 0,
$O

exp (iky) . .. exp (ik,) = exp(ihy) ... exp (ih,) = u.

Furthermore, k, e I'(2nZ/n + Lg) and k;e I'(Lg) for j = 2. This proves the claim
(*).

Next we prove the claim:

(**) If uely(Ug) then there is a continuous function a:X — R such that
z = exp(io) is an nth root of det(u) and z~ ! ue Iy (SUg).

To prove the claim, let ue I'o(Ug), and let t+— u, be the homotopy from u to 1.

Then t— det (4,) is a homotopy from det () to 1, so there is a homotopy ¢+ g, of

continuous functions from X to R such that exp (if;) = det (1,). Then a = o/n

(vielding z = exp (ifo/n)) is the required function. (Note that the homotopy

t—exp(—if,/n)u, shows that z~'ue I, (SUg).) This proves (**).

To prove the lemma for the case cer(I'(E)) < r, note that the definition of
cer(I'(E)) £ r is obtained by replacing SUg by Ug and 2nZ/n + L by E,, in the
condition in the lemma. That cer (I'(E)) < r implies the condition in the lemma is
now just (x). For the converse, assume the condition in the lemma, and let
uely(Ug). Let z and « be as in (**), write z~ ' u = exp(ihy). .. exp (ih,) with
hy,...,h,eI'(2nZ/n + Lg), and observe that u = exp(ih, — a-1)exp(ih,)...exp(ih,).
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We now turn to the case involving cer (I' (E)) < r + &. Since it is not clear that
I'o(SUg) = I'y(Ug) n I'(SUg) for nontrivial E, we must be a little careful.

Assume cer (I'(E)) £ r + ¢, let ue I'y (SUg), and write u = lim u,, where each u,),
is a product of r elements of exp (il'(E,,)). Since det(u) = 1, we may assume
[ldet(u,,) — 1|| < 2 for all m. Using the usual continuous branch of log, set

B = ——log(det(un) and L= exp(ifa)

Further choose «,, and z,, for u,, as in (*x*).

Since z,, is the exponential of an element of the center of I'(E), the elements
z, 'u,, are, along with u,,, products of r elements of exp (il" (E,)). It follows from
(*) that z,, ' u,, is a product of r elements of exp (il' (2nZ/n + Lg)). Furthermore,
B — o, takes values in 2nZ/n, since exp(inf,,) = exp (ina,,) = det(u,,). There-
fore also {,'u, = exp(i(Bn — am)) Zmm is a product of r elements of
exp (il (2nZ/n + Lg)). Since B, — 0, we have {,, 'u,, — u, so that u is a limit of
products of r elements of exp (i'(2nZ/n + Lg)), as desired.

For the converse, assume that every element v e I'o(SUg) is a limit of products
v, of r elements of exp (il'(2nZ/n + Lg)). Let u e I'y(Ug). Choose z = exp (ix) as in
(**),let v = z7'u, and let v = lim v,, as above. Since a is in the center, we get that
u =limzv, is the limit of products of r elements of exp(i['(E)). So
cer(F(E)) Sr+e.

The third step of the proof requires the following preliminary lemma.

2.4 LEMMA. The set of elements in SU(n) with at least one repeated eigenvalue is
the union of finitely many submanifolds of SU(n), all of codimension at least 3.

PRrOOF. Let P be a partition of n, that is, a sequence (n,,...,n,) of positive
integerssuch thatn, + ... + m, =nandn, = n, ... = n,. Let M; be the set of
all ue SU(n) having exactly k distinct eigenvalues, with multiplicities n,...,n,.
Let G be the set of sequences (V3,. . ., V) of orthogonal subspaces of C" such that
dim (V) = n; for each j. Let W, be the set of k-tuples of distinct elements
(A1, .., A)€(SY)* such that A3'-...- A% = 1. Then W, and G, are smooth mani-
folds. Define fp: Gp x Wp — Mp by sending (V3,..., Vi, Aq,.. ., 4) to the unitary
ueSU(n) such that u¢ = ;¢ for £e V. Then fp is a smooth surjective local
homeomorphism from Gp x Wp to Mp.

To show that Mp is a smooth manifold, we must show that fp is a local
diffeomorphism, that is for each xe Gp x W, there is a smooth map g from
a neighborhood of fp(x)in SU(n) to Gp x Wp such that g fp is the identity near
x and fp o g is the identity on a neighborhood of fp(x) in Mp. To construct g, let
x=..., Vi A1,..., %), and let u = fp(x). Choose ¢ > 0 such that the e-disks
about 4,,...,4, in C are disjoint. For v close enough to u, let p; be the spectral



SIMPLE C*-ALGEBRAS WITH THE PROPERTY WEAK (FU) 137

projection corresponding to {Ae C:|4 — A;| < ¢} and let W, be the corresponding
subspace. Let p, = det (p;vp;)'/™, where pjvp; is regarded as an operator on W,
and the n;th root is the branch going through A;. Then g(v) = (W,,..., W,
K15 --»4;) Will do. (Note that it is smooth because the projections p; can be
obtained via holomorphic functional calculus.)

SU(n)is the disjoint union of the manifolds Mp as P runs through all partitions.
So the lemma is proved if we can show that codim (Mp) = 3for P # (1,...,1). Itis
easily seen that the map g above extends to a local diffeomorphism
v Wy oo s Wi Hyse oo iy 1 2P10D1, - ., e 1PiUPR) to a manifold locally dif-
feomorphic to Gp x Wp x SU(n,) x ... x SU(n), and the dimension of the last
part is at least 3 if some n; + 1.

2.5 LEMMA. Let X be a finite simplicial complex of dimension at most 2. Let E be
a locally trivial M,-bundle over X, let ue I'(SUg), and let ¢ > 0. Then there exists
ve ['(SUg) such that ||u — v|| < ¢ and v(x) has no repeated eigenvalues for all xe X.

ProoF. We make use of the smooth retraction S: U — SU(n), where U is
a neighborhood of SU(n) in M,, defined as follows:

S(a) = det(a(a*a)~ %)~ 1" g(a*a)~1/2,
Also let
D, = {ve(SUg), : v has no repeated eigenvalues},

which is a dense open subset of (SUg),. We define the perturbation v first on the
0-skeleton X, of X, then on the 1-skeleton X, and finally on the 2-skeleton X,.

For x € Xy, choose vy(x) € D, close to u(x). Define v, elsewhere by choosing
local sections w, through vy(x) for x € X,, and setting

vo=S(Z fowe+ (1=} fx)u)

xeXo xeXo

for appropriate continuous f,: X — [0, 1] supported in the domain of w,. This
can be done so that ||v, — u|| < &/3. The result satisfies vy(x) € D, for all x in some
neighborhood W, of X,.

Now we want to do the same thing for the 1-simplexesin X. On each individual
1-simplex L, we will construct an arbitrarily small perturbation v, of vy, equal to
v on a neighborhood of the boundary of L, such that v,(x)e D, for all xe L. The
resulting function can be extended over X to satisfy v,(x)e D, for xe X; and
lv; — voll < &/3 by the method used in the previous paragraph.

The 1-simplex L is homeomorphic to [0, 1], which is contractible. Thus, it
suffices to consider a function v,y:[0, 1] = SU(n), where vo(x) has no repeated
eigenvalues for x e [0,36] and [1 — 36, 1], for some & > 0. Choose a function a:
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[6,1 — 6] = M, which is close to v, on this interval, agrees withvgatdand 1 — 6
and is smooth on [24,1 — 26]. Then S(a) is close to v,, agrees with v, at 6 and
1 — §,is smooth on [26,1 — 2], and has values in SU(n). If a is close enough to
vo, then S(a) will have no repeated eigenvalues on [4,26] U [1 — 26,1 — 4].
Using the proof of the Homotopy Transversality Theorem ([19], page 70),
choose w: [28,1 — 28] - SU(n) close to S(a) such that w is transverse to the
finitely many submanifolds of Lemma 2.4, and agrees with S(a) at 26 and 1 — 26.
Since these manifolds have codimension greater than 1, it follows that they do not
intersect the range of w. The desired v, is now equal to vy on [0,6] U[1 — §,1],
equal to S(a) on [6,26] U[1 — 26,1 — 4], and equal to w on [25,1 — 24].

We now have v, € I'(SUg) such that v (x) e D, for all x in a neighborhood of X .
For each 2-simplex L of X, note that L is homeomorphic to the contractible
smooth manifold with boundary {x e R?: || x|| < 1}. Repeat the argument used to
produce v; on the 1-simplexes, where now v,(x)e D, for 1 — 36 < |x|| £ 1, and
with {x:|lx||e[1 —26,1 -]} in place of [§,20]uU[1— 25,1 —6] and
{x:|lx|le[1 — 8,17} in place of [0,6] U [1 — J,1]. The transversality argument
still yields the same result, because the manifolds in Lemma 2.4 have codimen-
sion greater than 2. The result is veI'(SUg) with v(x)eD, for all x and
llv — vy || < &/3. Using the triangle inequality gives ||v — u| < &.

2.6 LEMMA. Let E be a locally trivial M ,-bundle over a path-connected space X.
Using the notation Lemma 2.3, let ue I'(SUg) be a section such that u(x) has no
repeated eigenvalues for all xe X. Then there is he '(2nZ/n + Lg) such that
exp(ih) = u.

Note that this lemma implies u € Uy(I'(E)). Roughly speaking, K, (I'(E)) should
be thought of as the odd twisted cohomology of X. The restriction det (u) = 1
prevents u from representing a nonzero 1-dimensional class, and the eigenvalue
restriction (obtained in Lemma 2.5 from dim (X) < 2) prevents u from represen-
ting a class of dimension 3 or larger.

ProoF OF LEMMA 2.6. Let y: [0,1] - X be any continuous path, and fix
koe(2nZ/n + Lg), ) such that exp (iko) = u(y(0)). Since the eigenvalues of u(y(t))
are all distinct for all ¢, there is a continuous decomposition of the identity
1 =p,(t) + ... + p,(?) into rank one projections onto the eigenspaces of u(y(t)).
(Note that E is locally trivial, and construct this decomposition in a neighbor-
hood of any given x € X by using functional calculus as in the construction of the
map ¢ in the proof of Lemma 2.4.) We then have continuous functions z,,...,z,
(the eigenvalues of u) such that p(t)u(y(t))p,(t) = z;(t)p;(t). Now choose continu-
ous logarithms ir,,...,ir, of z,,...,z, such that pj(0)kop;(0) = r;(0)p;(0). (This
can be done because [0, 1] is contractible.) Set k(t) = r(t)p(t) + ... + r(t)pa()-
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Then k(t)e(2nZ/n + Lg), and exp (ik(t)) = u(y(t)). Note that the function k is
uniquely determined by u, 7, and k.

We want to define h as follows. Fix xo € X, fix hoe(2nZ/n + Lg),, such that
exp (ihg) = u(x,), and define h(x) by choosing any path y from x, to x and letting
h(x) be the corresponding k(1) as in the previous paragraph. For this to yield
a well defined he I'(2nZ/n + L) it suffices to prove that if x = x, then k(1) = h,,.
For convenience, we will take h, to have all eigenvalues in [0, 27).

Thus, let the notation be as in the first paragraph, with y(0) = y(1) = x, and
ko = ho. By renumbering the p; etc., we can assume 0 £ r,(0) < r,(0) <... <
ra(0) < 2. Since the r; are continuous, and the numbers exp (ir(t)) are distinct for
all t, we have r{(t) < r,(t) <... <r,(t) < ryt) + 2z for all t. Furthermore, we
have p,(1) = p;+1(0) for some j, since exp (ik(1)) = exp(ik(0)) = u(x,). Therefore
there is an integer m such that

ril) =ri+j0)+2nmm fori+j=<n
and
ri{1) =ri4j-n(0) + 2n(m + 1) fori+j>n.
Now tr(k(t)) is continuous and has values in 27Z, so is constant. Thus

n n n

2, 7i0) = tr (k(0)) = tr(k(1) = Y. ri(1) = 2n(nm + j) + _Zl r(0),

i=1 i=1
whence m = j = 0. (Note that 0 < j < n). It follows that k(1) = k(0), as desired.

ProoF oF THEOREM 2.1. If L is a connected finite simplicial complex of
dimension at most 2, and F is a locally trivial M,-bundle over L, then Lemmas
2.3, 2.5, and 2.6 combine to prove cer (I'(F)) < 1 + &. By an obvious direct sum
decomposition, the assumption that Lis connected can be dropped. Now let E be
an arbitrary locally trivial M,-bundle over a space X of dimension at most 2, and
let ue Ug(I'(E)). Given ¢ > 0, choose f: X — L, F, and ve Uy(I'(F)) as in Lemma
2.2. Choose he I'(E),, such that ||exp(ih) — v|| < &. Then |lexp (if *(h)) — u|| < 2e,
proving thatcer (I'(E)) £ 1 + &.

2.7 REMARK. Let E be alocally trivial M,-bundle over X, with n = 2. It can be
shown that cer (I'(E)) = 1 + ¢ whenever X contains a subset homeomorphic to
[0,1]. (Problem 4.6.9 of [23] shows that cer (C(S') ® M,) = 1 + &) As men-
tioned after Remark 1.4, it can also be shown that cer(I'(E)) = 2 whenever
X contains a subset homeomorphic to an open subset of R>.

We also prove an analog of Theorem 2.1 for Elliott’s “basic building blocks
with spectrum the interval” ([16], 4.1). (The other sort of basic building block is
covered by Theorem 2.1.) Recall that these are algebras of the form

A= {aeC([0,1], M, ® M,):a(0),a(1)eC-1 ® M,}

for fixed positive integers k, n.
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2.8 PROPOSITION. The algebras A, , satisfy cer(4;,) <1 + &.

Proor. Let ueU(A,,). Write u(0) = 1 ® uo and u(1) = 1 ® u,. Perturbing
u slightly, and using the function a+— a(a*a)~'/? appropriately, we may assume
that u, and u, each have n distinct eigenvalues. Now multiply u by the central
element f(¢) = det (u(t))~*/® - 1 (for a continuous choice of the root). Since f is
the exponential of a central skewadjoint element, this changes neither the connec-
ted component of U(4, ,) containing u nor whether u is a limit of exponentials.
Thus, we may assume u(t) e SU(kn) for all t. Next, choose unitaries vy, v, € M,
such that vou,vd and v, u, v} are diagonal with eigenvalues exp (i8,),. . . , exp (if,)
and exp (iyy), . - . ,exp (iy,) respectively, and

0§ﬂ1<ﬂ2<...<ﬂ,,<2n’ and Oé)’l <'))2<...<'y"<27t.

Since U(M,,) is connected, we can find ve C([0, 1], M,,) such that v(0) = 1 ® v,
and v(1) = 1 ® v;. This vis actually in 4, ,. Replacing u by vuv* does not change
.the connected component containing u or whether u is a limit of exponentials,
and we can now assume u, and u; are diagonal with eigenvalues as given.

Let f;denote the projection in M; or M, onto the jth standard basis vector, and
letejrq-1x = f; ® fie My ® M,. Then e,,.. ., e, are orthogonal rank one pro-
jections which sum to 1. We have

k nk
u(0) = exp (i[S‘l)jZ:1 ej+...+exp(B) Y e

j=(-1k+1

and a similar formula for u(1) with y, in place of §,. By perturbing u near 0 and 1,
and using the operator S from the proof of Lemma 2.5, we may assume that for
t close enough to 0 we have

§) ut) = 3, explimfo)e,

where a;(0) = p, for (I — 1)k + 1 §Jj=_;_ lk, and where for 0 < t < ¢ we have
2 oy (t) < oy(t) < ... < o) < a4 (t) + 27,

Similarly, for ¢ near 1 we can arrange to have

nk
3) u(t) = ";1 exp (ij(t)) e;

J

where a;(1) = y, for (I — 1)k + 1 <j < Ik, and where for 1 — ¢ < t < 1 we have
4) oy (1) < a5(8) < ... < oy(t) < ai(t) + 2m.

The transversality argument in the 1-simplex part of the proof of Lemma 2.5 can
now be applied to obtain one final perturbation, resulting in a u such that all of
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the eigenvalues of u(t) are distinct for ¢ €(0, 1), and the relations (1)—(4) still hold.
The proof will be completed by showing that the perturbed u is either an
exponential or not in Up(A4y,,).

Imitate the proof of Lemma 2.6 to write

nk

) u(t) = '21 exp (i (1) ps(t)

i=
for continuous «;: [0, 1] — R (given by (1) for ¢ near 0) and continuously varying
orthogonal projections p;(t) which sum to 1 (with p;(t) = e; for j near 0). Note
that, in view of (1) and (3), the argument from Lemma 2.6 need only be applied
over an appropriate interval [¢, 1 — ], on which all eigenvalues of u(t) are in fact
distinct. It follows that (2) holds for all te(0, 1).

Comparing (3) and (5) gives p;(1) = e,(; for some permutation ¢ of {1,...,nk}.
Now comparing (2) and (4) for te(l — ¢, 1), we see that ¢ must be a cyclic
permutation, o(j) = j + m(mod nk) for some fixed m in {0,1,...,nk — 1}. Fur-
thermore, there is an integer r such that:

@i(1) = o;_m(1) + 27r for j > m and aj(1) = &j_p+m(1) + 27 — 1) forj < m.

Suppose k divides m. We show u is an exponential. Set

nk
h(t) = .Zl () pj(?)-

j=
Then the coefficient of e; in h(1) is constant on the ranges (I — 1)k + 1 < j < Ik,
being equal to either y, — 2nr or y; — 2n(r — 1) depending on whether I > m/k or

I < m/k. Therefore he A, ,, and exp (ih) = u.

Now suppose m = lpk + jowith0 <l <n—1land 1 £j, £ k — 1. We show
ué Uy(Ay,,). Define ¢j(t) = 2nt for lok + 1 < j < m, and g,(t) = 0 otherwise. Set

nk
ht) = Y () + &(®)ps0).
i=1
The coefficient of e; in h(1) is o;j— (1) + €j_m(1) for j > m and ;_p+u(l) +
&j-m+n(1) for j < m. These expressions are equal to a(1) — 2nr for j > lok and to
oi(1) — 2a(r — 1) for j < lgk, and are thus constant for j in the ranges

(I'— 1)k + 1 £j < lk. Therefore he Ay ,, and exp (ih) € Uy(Ay,,). We further have
u = exp (ih) exp (ia), where

nk
a(t) = — ‘;0 &;(t) p;(2).

(Note that a is not in A, ,.) Clearly exp (ia) is homotopic to the unitary

v(t) = exp(—2mit)(e; + ... + ;).
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The proof of Lemma 2.1 of [17], applied to our case, shows that an element of this
form s trivial in K (A, ,) if and only if k divides j,. Since that is not the case here,
we conclude that v, and hence also u, is not in Uy(4, ,).

(NotE added February 1991: George Elliott has introduced in [30] another
sort of basic building block, namely C(S*) ® A4, ,. The proof just given can be
generalized to show that these algebras also have exponential rank at most 1 + &.
Also see [31].)

3. Simple C*-algebras with (FU).and weak (FU).

In this section, we combine the results of the previous two sections to conclude
that “most” of the irrational rotation algebras, the Bunce-Deddens algebras, and
Elliott’s algebras of real rank 0, have weak (FU). We also exhibit a separable
unital C*-algebra which has exponential rank at most 1 + & but does not have
real rank 0, and one which has (FU) but is not AF. Many more examples remain
to be found (or, conceivably, ruled out). We know of no separable simple
C*-algebras of the following sorts: cer (4) > 1 + &; A hasreal rank 0 but not weak
(FU)(such A also satisfies cer (4) > 1 + ¢); or A is nuclear, stably finite, has (FU),
but is not AF.

(NotE (added February 1991). George Elliott has constructed in [ 30] a nuclear
stably finite simple C*-algebra A with (FU) such that K(A) has torsion. There-
fore A is not AF. The proof of (FU) uses the note added at the end of the last
section. Also see [31].)

3.1 THEOREM. The rotation algebras Ag satisfy cer (Ag) < 1 + € for O in a dense
Gs-subset of [0,1].

Proofr. Rieffel has shown [27] that there is a continuous field 4 over [0, 1]
whose fiber over 6e[0, 1] is the (rational or irrational) rotation algebra A,.
Furthermore, every element of 1*(Z, C(S')) defines a continuous section of this
field, via the obvious inclusion of I'(Z, C(S')) as a dense subalgebra of each
crossed product C*(Z, C(S'),0) = A,. Therefore A is separable. Consequently
{6€[0,1]:cer(4y) < 1 + &} is a G4-set by Proposition 1.9.

If 6 = p/q is rational (in lowest terms), then it is shown in [21] (see especially
Section 2) that A, is the algebra of sections of a locally trivial M,-bundle over
S! x S'. So cer(4g) £ 1 + & by Theorem 2.1. Thus {#e[0,1]:cer(4y) < 1 + ¢}
is dense.

3.2 COoROLLARY. The irrational rotation algebras Ay have weak (FU) for 0 in
a dense Gs-set of [0,1].

ProoF. By Proposition 1.5, A, has weak (FU) for  in the intersection of the
dense G;-set of the previous theorem, and the dense G4-set of numbers 6 such that
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Ag has real rank 0 ([10]). (The authors of [10] do not say that their dense set is
a G4-set, but it is clear from their proof.)

3.3 THEOREM. Any algebra which can be written as a direct limit of finite direct
sums of the “basic building blocks” of [16], 4.1, has exponential rank at most 1 + ¢.

PRrROOF. A basic building block with spectrum the circle has exponential rank
at most 1 + ¢ by Theorem 2.1, and one with spectrum the interval has exponen-
tial rank at most 1 + &by Proposition 2.8. So finite direct sums have exponential
rank at most 1 + ¢, and the result follows from Proposition 1.7.

3.4 COROLLARY. The algebras classified in [16], that is, direct limits A of finite
direct sums of the basic building blocks such that A has real rank 0, all have weak

(FU).

3.5 CoroLLARY. The Bunce-Dence algebras have weak (FU) and exponential
rank at most 1 + e.

Proor. Itis shown in [6] how to write the Bunce-Deddens algebras as direct
limits of algebras of the form C(S!) ® M,; see (2) at the beginning of Section 3 of
that paper. (This description is obtained from (1) there by writing the torsion
subgroup H as a direct limit llr_)n H, of finite groups. Then C*(H,S') =
li_rg C*(H,,S!).) It is also shown in [6] that the Bunce-Deddens algebras have
(HP), which is the same as real rank 0 ([17], Theorem 2.6). So these algebras are
covered by the previous theorem and corollary.

3.6 REMARK. Neither the irrational rotation algebras nor the Bunce-Deddens
algebras have (FU), because both contain unitaries representing nonzero
K, -classes. Similarly, the algebras 4 of Corollary 3.4 cannot have (FU) exceptin
the trivial case that they are AF. Indeed, if K,(A) % O then it is easily seen that
A contains a unitary representing a nonzero K ,-class (by examining an appropri-
ate basic building block); otherwise, A is AF by Theorem 7.1 of [16].

Since we know of no simple C*-algebras with exponential rank greater than
1 + ¢ we are not in a position to prove that real rank O does not imply
exponential rank at most 1 + . However, we can show that exponential rank at
most 1 + ¢ does not imply real rank 0.

3.7 ExaMpLE. Let A be the algebra A, of Example 1.6 in [6] with
X =S' x S! as there. This algebra is a direct limit of algebras of the form
C(X) ® M,n, and therefore has exponential rank at most 1 + ¢ by Proposition
1.7 and Theorem 2.1. It is shown in [6] that A does not have the property (HP),
which is equivalent to real rank 0 ([7], Theorem 2.6).

We will now construct an example of a separable simple C*-algebra 4 which
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has (FU) but is not AF. This example is a small modification of Proposition 16 of
[26].

3.8 ExaMPLE. Let M be a type III factor on a separable Hilbert space.
Construct separable unital C*-algebras 4, = 4; = ... € M by induction as
follows. A, is a separable C*-subalgebra of M containing a proper isometry u.
Given A, for k even, A, .. is generated by A, and, for each u in a countable dense
subset of U(A4,), the countable collection of spectral projections of u correspond-
ing to the sets exp (2ni[r, s)) for r,s € Q. Given A, for k odd, A, ., is a separable
simple C*-subalgebra of M containing 4, ([3], Proposition 2.2). Set 4 = Q:i_k
Considering the even k + 0, Lemma 4.5 of [2] implies that A is simple. Consider-
ing the odd k,and noting that U(A4) = ke(v]en U(A4,) by functional calculus, we easily
see that A has (FU). But 4 is not AF because it contains a proper isometry.

3.9 REMARK. By adding more elements to A, ., for k even, we can get some
stronger properties. Adding the matrix entries of an appropriate countable set of
spectral projections for unitaries in M, (4,), for n = 1, we can arrange that M,(A4)
has (FU) for all n. Using an analogous procedure for the normal elements, not
just the unitaries, we can have all matrix algebras M,(A) satisfy the stronger
property (FN) ([1], 2.6): every normal element is the limit of normal elements
with finite spectrum. By adding a partial isometry from p to a proper subprojec-
tion of p for one p in each of the countably many Murray-von Neumann
equivalence classes of projections in 4, we can ensure that A is purely infinite.
(Every projection in A is equivalent to one in kcLV)m A;.) Doing the same with
partial isometries from one projection to another, we can guarantee that
Ko(4) =0.

The resulting algebra A is thus unital, separable, simple, purely infinite, has
stable (FN), and satisfies K, (4) = 0.

The preceding example leaves open the question of whether a finite separable
simple non-AF algebra can have (FU). We now show how the construction can
be modified to produce such an example.

3.10 ExaMPLE. Let R be the hyperfinite type II, factor. We first prove that there
exists a separable C*-subalgebra A4, of R which is not isomorphic to a subalgebra
of any nuclear C*-algebra. The proofis similar to that of Theorem 4.1 of [3] and
Theorem 10.2 of [14].

Begin by observing that, as a C*-algebra, R is not nuclear ([ 28], Corollary 1.9).
As in the proof of Theorem 4.1 of [3], we get from Corollary 6.5(4) of [9] a finite
dimensional operator system N and a non-nuclear completely positive map
n:N — R. Let A, be the unital C*-algebra generated by n(N), which is certainly
separable. If ¢ : Ao — B were an injective homomorphism to a nuclear C*-alge-
bra, then the injectivity of R as a von Neumann algebra (not as a C*-algebra)
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would yield a completely positive map iy : B — R such s o ¢ is the inclusion of 4,
in R. Nuclearity of idz would then imply nuclearity of the composite # =
Yeidgo @ on, a contradiction.

Now repeat the construction of Example 3.8 inside R instead of M. The
resulting algebra A is separable, simple, has (FU), is stably finite (since it is
contained in R), and is not AF (because it can’t be nuclear).

3.11 REMARK. Asin Remark 3.9, we can get some stronger properties. By the
same argument as there, we may arrange that M,(4) has (FN) for all n. By
including the matrix entries of countably many partial isometries, we can arrange
that two projections in M,(A) are equivalent if and only if they are equivalent in
M,(R).

The resulting C*-algebra A is unital, separable, simple, stably finite, has stable
(FN), has Ky(A) order isomorphic to a countable subgroup of R, and is not
nuclear (hence not AF).

It should be pointed out that it is not known whether all AF algebras have
(FN).

3.12 QuestioN. Do any “naturally occurring” separable simple non-AF alge-
bras have (FU)? The Cuntz algebras (which have real rank 0 by Corollary 3.10 of
[7]) seem to be obvious possibilities.

(Note (added February 1991): It is shown in [32] that the Cuntz algebras have
(FU).)

4. Banach exponential rank and property (FI).

In this section we discuss the Banach algebra versions of exponential rank and
properties (FU) and weak (FU), as applied to the algebras considered in the
previous section. While our results are far from complete, we prove enough to
show that the behavior of these properties is quite different.

4.1 DEFINITION. A unital Banach algebra is said to have the property (FI) if the
elements of inv (4) with finite spectrum are dense in inv (4).

The analog of weak (FU) is obtained by replacing inv(4) by invy(A4). The
analog of (FS) (real rank 0) is that the elements of A with finite spectrum are dense
in A. In contrast to Proposition 1.5, it turns out that all three notions are
equivalent. In particular, weak (FI) implies that inv (4) is connected.

4.2 ProPOSITION. (Contrast with Proposition 1.5.) Let A be a unital Banach
algebra. Then the following three conditions are equivalent:

(1) Every element of A is a limit of elements with finite spectrum.

(2) A has (FI).
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(3) Every element of invy(A) is a limit of elements of invy(A) with finite spectrum.

Proor. (1) implies (2): Let aeinv(A), and let a,e 4 with sp(a,) finite and
a, — a. Since inv (4) is open, we have a, € inv (4) for all sufficiently large n.

(2) implies (3): Similarly, the subgroup invy(4) is open in inv(A4).

(3) implies (1): Let ae A. By scaling, we may assume |a| < n/2. Set U =
{¢eC:|{| < =}, and note that the exponential map is injective on this set. Let
log = (exply) ~!. Let b, € invy(A) be a sequence with sp (b,,) finite and b, — exp (a).
Then for n large enough, we have sp (b,) = exp (U), so that holomorphic func-
tional calculus yields elements a, = log (b,) with finite spectrum which converge
to a.

Finite dimensional algebras, and hence also AF algebras, have (FI). We know
of no other C*-algebras with (FI). Note that the irrational rotation and
Bunce-Deddens algebras do not have (FI) since their invertible groups are not
connected. Similarly, Elliott’s algebras do not have (FI) unless they are AF. (See
Remark 3.6.) L(H), the algebra of bounded operators on an infinite dimensional
separable Hilbert space, does not have (FI), since index considerations show that
the unilateral shift cannot be approximated by elements with finite spectrum. For
similar reasons, infinite simple C*-algebras cannot have (FI). (See Corollary 4.8
below.)

4.3 QUESTION. Does there exist a simple unital non-AF algebra with (FI)?

Remark 3.9 and Corollary 4.8 show that even stable (FN) for simple
C*-algebras does not imply (FI). We know nothing about possible results in the
other direction.

4.4 QUESTION. Does (FI) imply any of (FS) (= real rank 0), (FU), or (FN)?

Note that a proof that (FI) implies (FN) would show that AF algebras have
(FN), which is presently unknown.

4.5 DErFINITION. The Banach exponential rank ber (4) of a Banach algebra A is
defined by modifying Definition 1.2 as follows: replace Uy(A) by invy(A4), replace
A, by A, and replace exp (ih;) by exp (h;).

Clearly (FI) implies ber(4) <1+ ¢ The converse is false in general
(C([0,1]) ® M, is a counterexample), but we do not know whether it holds for
simple C*-algebras.

There is one obvious relation between the Banach and C* exponential ranks.
The expression cer (A) + 1 is interpreted to mean (n + 1) + ¢ if cer(4) =n + &.

4.6 PROPOSITION. Let A be a C*-algebra. Then ber(A) < cer(4) + 1.

PrOOF. We may assume A is unital. Let cer (4) < n, and let aeinvy(A4). Then
a(a*a)” 12 e Uy(A) and is therefore a product of n exponentials. Also (a*a)'/? has
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spectrum contained in (0, c0) and therefore has a logarithm. So a = [a(a*a) ™ !/?]
[(a*a)*/*] is a product of n + 1 exponentials, and ber(4) < n + 1. The case
cer(A) < n + ¢is similar.

We have no estimate in the other direction. The possibility ber(4) =
cer(A) + 1 occurs for L(H). Indeed, Theorem 4.1 of [11] implies that there are
invertible elements which are not limits of exponentials, so that ber (L(H)) = 2;
but cer (L(H)) = 1.

Actually, more can be proved.

4.7 THEOREM. If A is an infinite simple unital C*-algebra, then ber (A4) = 2.

ProOF. According to 2.2 and the following remark in [12], there are orthog-
onal projections p, ¢, po, go€A Wwith p ~ g ~ py ~ go ~1 (Murray-von
Neumann equivalence). Let x be a partial isometry implementing p ~ ¢, that is,
x*x = p, xx* = q. Let v be a partial isometry with v*v = p and vw* < p. (For
example, v could be y? where y*y = 1 and yy* = p.) Now define the following
elements in A:

w = xvx*

e=q— ww*

z=x(p — v*
u=w*+z*+v)+(1—p—9g)
a=02w*+2z*+v)+(1—p—9g).

Then one can check that w*w = g and ww* < g, so that e is a nonzero projection.
One also checks that z*z = p — vv* and zz* = e, that u is unitary, and that a is
invertible with inverse )

a‘1=<%w+z+v*)+(1—p—q)r

With respect to the decomposition 1 = p + g + (1 — p — g), we can write u and
a in matrix form as

v z¢ 0 v z¥ 0
u= 0 w* 0 and a= 0 2w* 0
0 0 1 0 0 1

The only essential properties are that v*v = p, w*w = ¢, and z # 0 is a partial
isometry with z*z = p — vv* and zz* = g — ww*.

We now modify the construction slightly so as to ensure a einv, (4). Replacing
2 with 1 + a, for a€[0,1], in the definition of a yields a path of invertibles
connecting a to u. Now let s be a partial isometry with s*s=p + q and



148 N. CHRISTOPHER PHILLIPS

ss* = po + qo. Then the element
(1 —ss* +su*s*)u=(w* + z* + v) + s(W*+ z* + 0)*s* + (1 —p—q — po — 40)

is in Uy(A), since in an obvious matrix decomposition it has the formc @ c* @ 1.
The equivalence g ~ 1 yields a partial isometry ¢t with t*t = py + qo and tt* < q.
Standard 2 x 2 matrix arguments show that 1 — ss* + su*s* is homotopic to
1 — tt* + tsu*s*t*. Therefore (1 — tt* + tsu*s*t*)ue Uy(A). But this element
differs from u only in that w has been replaced by wc, where ¢ = g — tt* +
tsu*s*t* e U(qAq). Making this change has no effect on the essential properties
given above, so we may replace w by we and assume ue€ Uy(A4) and a einvy(A).

Let 7 be a unital representation of 4 on a Hilbert space H. We will show that
n(a) is not in the closure of the range of the exponential map from L(H) to L(H).
Let fu = n(e), and let f, = n(w)" fon(u*)" for neZ. The relations upu* < p and
u*(g — e)u < q — e are easily seen to imply that u"e(u*)" is orthogonal to e for
neZ — {0}. Applying = we can now show that the f, are mutually orthogonal
projections in L(H). Let f = ) f,. Since n(u)" determines an isomorphism

n=—aw

fH = foH for any n, we have a decomposition

Hx(1- f)H® P2 ® foH,

with respect to which 7(u) becomes (1 — f) @ (s ® 1), with s being the bilateral
shift. Furthermore, n(a) becomes the operator b @ (¢ ® 1), where

b=n(1—p—q)+(n(p)— ifn>+2<"(q)‘ éf)
and c:I’@2) - ?(2) is

En—1) nx1
(&) = {2&(»: "1 nzo

We want to prove that n(a) — A is semi-Fredholm with nonzero index for
1 < |4] < 2. Since b has spectrum {1, 2}, it suffices to prove that ¢ — 1 is surjective
but not injective for 1 < |A| < 2. The vector

A" n21
&m) = {(2/1*1)" n<0

is a nonzero element of Ker (c — A). Furthermore, if £ € 1*(Z), we let

E+(n) = {égl) : i(l)

and é_ = ¢ — ¢, Let
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Ne = Zo(—l)_"ﬂs"(@) and 5. =471 2(1/2)"(3*)"(5—)-
Then n = 5, + 5 is in I*(Z), since
Il S 172 =AY IE ) + %(1 = A/~ e,

and a computation shows that (c — A)(n)-= &. So ¢ — 1 is surjective.

Theorem 4.1 of [11] now implies that n(a) is not in the closure of the range of
the exponential map. (I am grateful to Kevin Clancey for pointing out this
reference.) Therefore ais not the closure of the range of the exponential map of A4.

4.8 COROLLARY. An infinite simple unital C*-algebra cannot have (FI).

The basic properties of the C* exponential rank from Section 1 also hold for
ber. Finite dimensional algebras have Banach exponential rank 1, by holomor-
phic functional calculus. Therefore AF algebras have Banach exponential rank
1 or 1+ e Again, ber(K) =1 by the argument from Example 1.12. (Even
a nonnormal compact operator cannot have a nonzero cluster point in its
spectrum.) Using the Putnam-Fuglede Theorem ([20], Problem 52), one can
make the argument of Example 1.11 show that the algebra used there has Banach
exponential rank 1 + ¢. This argument now even applies to the 2° UHF algebra,
since the maximal commutative subalgebra C(X) of [5], Corollary 7.1.3 is
generated by a and a* for a single normal element a einv (C(X)) — inv, (C(X)).

The methods of Section 2, however, do not carry over. A version of Lemma 2.4
is still true, but the codimension can now be as small as 2. (The set of elements in

11 .
SL(2,C) whose Jordan canonical form is ( 1) has codimension 2.) Thus,

0
C([0, 1], M;) can be shown to have Banach exponential rank 1 + . However, the
argument in Lemma 2.6 to deal with noncontractibility fails.

4.9 EXAMPLE. Let A = C(S') ® M,, where S* = C is the unit circle. We show
ber(A4) = 2. Let a({) = (%C 0 ) for {eS!. Then a is easily seen to be in

0o ¢!
invg (A).

Choose p > 0 so that be 4 and ||b —a| < p imply sp(b) N (S* U {0}) = 0.
Fix any b satisfying this estimate; we show b is not an exponential. Set
¢ =(1—1t)a+tb for te[0,1]. Then ||a —c|| < p for all t. Regard ¢ as an
element of C([0,1] x S') ® M,, and apply holomorphic functional calculus to
¢ with the functions y and 1 — y, where

1 o<p<1
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The result is idempotents e and f withe + f = 1. The ranks of e and f are locally
constant, hence both constant equal to 1. Thus, we can write c,({) = 4,({)e(() +
w0 £(0), with A and u jointly continuousin t and {, and A¢({) = 3(, uo() = 2{ 1.
By continuity, we must have |4,({)] < 1 and |x,({)] > 1 for all ¢,{.

Suppose b = exp (x) for some x e C(S') ® M,. Since x commutes with b, and
b = ¢, has distinct eigenvalues, we must have x({) = a({)e;({) + B()f1({) for
{ eS*, with a, B continuous. Therefore 4,({) = exp («({)), so the winding number
of ; about the origin is 0. But the homotopy ¢+ 4,, from 1,({) to 4{, shows that
this winding number is 1, a contradiction. So b is not an exponential, and
cer (A) = 2 has been proved.

Because of this example, our earlier methods fail to show that any
Bunce-Deddens algebras or irrational rotation algebras have Banach exponen-
tial rank at most 1 + &. They also fail to show that direct limits of Elliott’s “basic
building blocks” [16] have Banach exponential rank at most 1 + ¢. Indeed, one
can show that even the algebra A, ,, as defined just before Proposition 2.8, has
Banach exponential rank at least 2. (The element a€ 4, , given by

) = ((2 + sin (nt)) exp (2 it) 0 >
T 0 (2 — sin(nt))exp (—2mit)

is not a limit of exponentials; the proof is a bit more complicated than in the
previous example.)

4.10 QUESTION. Is there a simple unital C*-algebra (necessarily finite) which is
not AF and whose Banach exponential rank is at most 1 + &?

We don’t even know the Banach exponential rank of a type II, factor.

REFERENCES

1. B. Blackadar, Notes on the structure of projections in simple C*-algebras, Semesterbericht
Funktional analysis, Tiibingen, Wintersemester 1982/83.

2. B. Blackadar, Infinite tensor products of C*-algebras, Pacific J. Math 72 (1977), 313-334.

3. B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27 (1978),
1021-1026.

4. B. Blackadar, K-Theory for Operator Algebras, MSRI Publications no. S, Springer-Verlag,

New York, Berlin, Heidelberg, London, Paris, Tokyo, 1986.
. B. Blackadar, Symmetries of the CAR algebra, Ann. of Math. 131 (1990), 589-623. .
B. Blackadar and A. Kumyjian, Skew products of relations and the structure of simple C*-algebras,
Math. Z. 189 (1985), 55-63.

7. L. G. Brown and G. K. Pedersen, C*-algebras of real rank 0, J. Funct. Anal., 99 (1991), 131-149.

8. M.-D. Choi, Lifting projections from quotient C*-algebras, J. Operator Theory 10 (1983), 21-30.

9. M.-D. Choi and E. G. Effros, Injectivity and operator spaces,J. Funct. Anal. 24 (1977) 156-209.

0. M.-D. Choi and G. A. Elliott, Density of the selfadjoint elements with finite spectrum in an
irrational rotation C*-algebra, Math. Scand. 67 (1990), 73-86.



11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

22.
23.

24.

25.

26.

217.

28.

SIMPLE C*-ALGEBRAS WITH THE PROPERTY WEAK (FU) 151

J. B. Conway and B. B. Morrel, Roots and logarithms of bounded operators on Hilbert space, J.
Funct. Anal. 70 (1987), 171-193.

J. Cuntz, The structure of multiplication and addition in simple C*-algebras, Math. Scand. 40
(1977), 215-233.

J. Dixmier, C*-Algebras, North-Holland, Amsterdam, Oxford, New York, 1977.

E. G. Effros, Aspects of noncommutative order, p. 1-33 in: C*-Algebras and Applications to
Physics, R. V. Kadison and H. Araki (eds.), Springer-Verlag Lecture Notes in Math. no. 650,
Springer-Verlag, Berlin, Heidelberg, New York, 1978.

S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press,
Princeton, 1952.

G. A. Elliott, On the classification of C*-algebras of real rank 0, preprint.

D. E. Evans and A. Kishimoto, Compact group actions on UHF algebras obtained by folding the
interval, J. Funct. Anal., 98 (1991), 346-360.

H. Freudenthal, Entwicklungen von Rdumen and ihren Gruppen, Compositio Math. 4 (1937),
145-234.

V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Englewood Cliffs, NJ, 1974.

P. Halmos, A Hilbert Space Problem Book, Van Nostrand, New York, Toronto, London,
Melbourne, 1967.

R. Heegh-Krohn and T. Skjelbred, Classification of C*-algebras admitting ergodic actions of the
two-dimensional torus, J. Reine Angew. Math. 328 (1981), 1-8.

W. Hurewicz and H. Wallman, Dimension Theory, Princeton U. Press, Princeton, 1948.

R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, vol. 1,
Academic Press, New York, etc., 1983.

A. Kumyjian, An involutive automorphism of the Bunce-Deddens algebra, C. R. Math. Rep. Acad.
Sci. Canada 10 (1988), 217-218.

S. Mardesic, On covering dimension and inverse limits of compact spaces, lllinois J. Math. 4 (1970),
278-291.

G. K. Pedersen, The linear span of projection in simple C*-algebras, J. Operator Theory 4 (1980),
289-296.

M. A. Rieffel, Continuous fields of C*-algebras coming from group cocycles and actions, Math.
Ann. 283 (1989), 631-643.

S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976),
239-254.

29. G. Zeller-Meier, Produits croisés d’'une C*-algébre par un groupe d’automorphismes, J. Math.
Pures Appl. (9) 47 (1968), 101-239.

30. G. A. Elliott, On the classification of C*-algebras of real rank 0, 11, preprint.

31. H. Lin, Generalized Weyl-von Neumann theorems, revised version in preparation.

32. N. C. Phillips, Approximation by unitaries with finite spectrum in purely infinite C*-algebras,
preprint.

33. N. C. Phillips, How many exponentials?, preprint.

34. N. C. Phillips and J. R. Ringrose, Exponential rank in operators algebras, p. 395413 in: Current
Topics in Operator Algebras, H. Araki et al (eds.), World Scientific, Singapore, New Jersey,
London, Hong Kong, 1991.

DEPARTMENT OF MATHEMATICS CURRENT ADDRESS:

UNIVERSITY OF GEORGIA DEPARTMENT OF MATHEMATICS

ATHENS, GA 30602 UNIVERSITY OF OREGON

USA. EUGENE, OR 97403-1222

US.A.



