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CONSTANT SOLUTIONS OF YANG-BAXTER
EQUATION FOR si(2) and si(3)

A. STOLIN

Abstract.

All constant solutions of the classical Yang-Baxter equation (CYBE) are listed for the function with
valuesin sl(2) and sI(3) and an algorithm which allows one to obtain all constant solutions for a simple
complex Lie algebra g is given.

Introduction.

In what follows let g be a simple finite-dimensional Lie algebra over the field C of
complex numbers, X: C2 - g ® g a function. Solutions of the classical Yang-
Baxter equation

CYBE [ X'%(uy,uz), X *(uy,u3)] + [X"2(uy, u5), X23(uz,u3)] +
+ [ X3 (uy, u3), X2 (uz,u3)] =0

wherefor X =Y g, @ beg@gweset X'?=X®1, X3 =Y a,®1® b, etc.
are considered modulo equivalence relations

1) X ~ cX, for ce C\{0};

2) X(u,v) ~ (p(w) ® $(v)X(u, v), where ¢(u)e Aut(g[u]).
In 1984 Drinfeld found all solutions for sI(2) and made the following.

CoNJECTURE (Drinfeld, 1984). If X(u,v) is a rational solution of CYBE, i.e.
X(u,v) = C,/(u — v) + r(u,v), where r is a polynomial in u, v then
deg,r = deg,r < 1.

It seemed that there was some hope after all.

In [S1]-[S5] I proved this conjecture and reduced the problem of listing
solutions of CYBE to classification of the so-called Lagrangian orders in g. They,
in turn, are related with quasi-Frobenius subalgebras in g.

In [S5] it was shown that listing of all constant solutions of CYBE for a Lie
algebra g reduces to listing of quasi-Frobenius subalgebras L of g, their nor-
malizers and H?(L). I will illustrate this algorithm with g = sl(2) and sI(3).
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Looking at nonconstant solutions we see how steeply their number increases
for sl(n) as n grows. Similar is the case of constant solutions.

ACKNOWLEDGEMENTS. I am thankful to V. Drinfeld who posed this problem
and to D. Leites who helped me very much.

1. Statements.

1.1. PROPOSITION. In sl(2) there is only one up to conjugation 2-dimensional
subalgebra: the Borel one, B. It is Frobenius and H*(B) = 0, hence there is only one
constant solution in sl(2).

1.2 To describe constant solutions in sl(3) we have to consider its
quasi-Frobenius subalgebras; their dimension must be even.

1.2.1. ProPOSITION. Up to an automorphism, there is only one 6-dimensional
subalgebra in sl(3), the parabolic one, Py, in notations of [S5]. Since H*(P,) = 0,
there is only a constant solution of CYBE corresponding to L = P;.

1.2.2. In the description on 4-dimensional subalgebras the following state-
ment is useful.

LEMMA. Let n* be the algebra of uppertriangular matrices in sl(3), Then n* has
no subalgebras isomorphic to the Borel subalgebra of sl(2). n* contains only the
following 2-dimensional commutative subalgebras.

0 va b
Q=10 0 Ja
0 0 O

1.2.3. ProposITION. Up to an automorphism a solvable 4-dimensional subal-
gebra of sI(3) is of one of the following types:

g b ¢
1) R = 0 q» 0 :Zqi=0,b,c,qiec
q3 '

Clearly, R = B @ B, where B is the Borel subalgebra of sl(2) and R is
a Frobenius one.

sa;, b ¢
2) Rayaray=1| 0 sa; d |} a,=0;sb,c,deC
Saj

Clearly, R, 4,,q, is Aut(sl(3))-isomorphic to R, .. 4, if and only if either

(al.’ as, a3) = t(a’l’ a’2’ a’3) or
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(al’ a21 a3) = (03, aIZa all)
R, ,a,.a, 1s @ Frobenius algebra for all values of parameters except a, = a3,

1.2.4. Denote R(J) the normalizer of a Lie subalgebra J in PGL(3) and by
®(3) the group generated by exp(ad x) for x€ J.

PROPOSITION.

1) H*R) = C and WR)/ew) = Z/2Z

2) H*(R,,,q,.q;) = 0 except for the following cases:
dim HZ(RL -1,0) = dim HZ(RL 1,-2)=1
NR(R,,5,0)/®(R, 5,) = C* for any a,b,ceC.

REMARK. Since H%(R,, _,, ;) = 0, there is no solution corresponding to this
algebra.

1.2.5. PROPOSITION. The commutative 2-dimensional algebra L can be embed-
ded into sl(3) in the following ways (up to an automorphism of sl(3)).
1) L= 9 the diagonal Cartan subalgebras; D)/ = {1}

a b 0
0 a O
0 0 —2a

3) L= Q%' or Q' NQM) gt = (C*).
In either case H*(L) = C.

) L=C, = ;s RCy)/eic, = C*.

1.2.6. PROPOSITION. The Borel subalgebra B < sl(2) can be embedded into s1(3)
in the following ways up to an automorphism:

Aa b 0
0 A—1a 0 ;
0 0 (1-2Aa

2a/3 0 b l
2) 82C1/3= 0 —-a/3 a 5
0 0 —af3 ]

) BxC, =
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THEOREM. All the quasi-Frobenius subalgebras of sI(2) (resp. s1(3)) up to automor-
phisms of sl(2) (resp. sl(3)) are listed in Tables 1 and 2.

TABLE 1
L H(L) The formula for r
01 1 0 1 0 01
B 0 = _
r [0 0]®[0 -1] [0 —J@[o o]
TABLE 2

List of quasi Frobenius subalgebras in sl(3)

N L dim L H*L) R(L) oy Number of solutions with
given L and remarks
1 L) 2 C {1} o, $ is a Cartan subalgebra
ab O
2 ol 2 c |c*=c\{0 1.C,=4{{0 a 0
0 0 —2a
2,1 ’ 0 a b
o 2 c (C¥? L. o**=1l0 0 Ja
3 la=01
=% 00 0
la b 0
4 C, 2 0 . C,=10 A-1)b 0
0 0 (1—-2%)a
is Frobenius
2a/3 0 b
5 Cis 2 0 L Cis= 0 —a3 a
0 0 —a/3
is a Frobenius one
ab 0
6 Cy, 2 0 1. Co=13(0 0 b
0 0 —a
is a Frobenius one
2a/3 b b
7 cii 2 0 1L Ci = 0 -—a3 0
0 0 —a/3
is a Frobenius one
8 Rﬂnvﬂz’ﬂs
a; > as
a, ¥ a, 4 . 0 1. Rype = 0 bt
ay + a3

a;a; £ 0 isa Frobemus one lfa 4: c
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Table 2 (cont.)
N L dim L HXL) NR(L) sy Number of solutions with given L
and remarks
9 Ro1,-1 4 C C* 2
10 | Ryy,-2 4 C C* 2
* * *
11 R 4 C {1} o, R=3]0 * 0
0 0 *
12 P, 6 0 1. P, is a Frobenius one
2. Proofs.

2.1. PROOF OF PROPOSITION 1.1. immediately follows from discussion in [S5].

2.2 PROOF OF PROPOSITION 1.2.1. A 6-dimensional subalgebra must be reduc-
ible in standard representation of si(3). The statement follows by dimension
considerations.

2.3. PrOOF oF LEMMA 1.2.2. is done by straightforward verification.

2.4. PROOF OF PROPOSITION 1.2.3. Let L be an arbitrary 4-dimensional solv-
able subalgebra of sl(3). Using an automorphism we may assume that L < 8*
where B* is the Lie algebra of uppertriangular matrices in sl(3). Clearly,
B* =9 + n* where $ is the Cartan subalgebra and n™ is the Lie algebra of
strictly uppertriangular matrices, Consider the projection Lg of L to $.

1) dimLg = 2.

Let z,, z, € L be elements whose projections to $ generates $. We may assume
that eigenvalues of z,, z, are different and nonzero. Then without loss of
generality we may assume that z, is diagonal matrices. By dimension consider-
ations dim(L ~ n*) = 2 being ad z,-invariant. By Lemma 1.2.2. Lnn* = g*".

Now, it is clear that L=R~ B @® B since iv=0 and therefore R is
a Frobenius Lie algebra since too is B.

2) dimLg = 1.

Let the projection be generated by (a;, a,,a3) € 9. Then, clearly, L = R, 4, 4,
If a; # as, then the map f* R, — C given by the formula

1,82,43
sa; b ¢

fil 0 sa, d |—c

0 0 sa;s

determines a nondegenerate form f([.,.])- '
If a; = a, then the algebra R, ,,,, has a center generated by the matrix
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0 01
{0 0 0} and therefore R, 4,,., can not be a Frobenius algebra.
000
There remained to prove statements on equivalence up to an automorphism.
As is well-known Aut(sl(3)) = PGL(3) x Z/2Z where Z/2Z is the group of auto-
morphisms of Dynkin diagram of sl(3).
Let Xe@2(3) and X 'R, 4,4, X = Ry},q, 4. Clearly, that in this case

X " 'n*X =n" and therefore X is an uppertriangular matrix which does not
move R, 4, 4.

The other equivalence mentioned in Proposition is obviously determined by
an outer automorphism.

2.5. PrOOF OF PROPOSITION 1.2.4. Thanks to the low dimension of the algebras
involved the calculations of cohomology can be performed directly.

Statement 2) on the normalizer is also obvious.

To prove statement of 1) on normalizer notice that R' is an algebra with
precisely 2 invariant 1-dimensional subspaces generated, respectively, by

1 0
Ofand | 1|
0 0

2.6. PrROOF OF PROPOSITION 1.2.5. In sl(3), consider the subalgebra L generated
by commuting matrices T; and T5.

1) Suppose that the eigenvalues of T; are distinct. This immediately implies
that L=~ 9.

2) Suppose that the eigenvalues of T are a, a, —2a for a # 0. Clearly, that in
thiscase L~ Hor L= C;.

3) Both T, and T, have only 0 eigenvalues. We may assume that L = n*. By
Lemma 1.2.2. L~ C,.

Proposition is proved.

2.7. PROOF OF PROPOSITION 1.2.6. Let us denote T subalgebra in sl(3) gener-
ated by two matrices T; and T, such that [T}, T,] = T>.

Wemayassumethat T = B* and T, en*. Lett,,t,, t; be the eigenvalues of T;.
Then the eigenvalues of ad(T;) are of the form ¢; — ¢;. Since [T}’ T,] = T, we have
t; —t; = 1 for some i, j. There are four cases:

1) t; — t; = 1 only for i = 1; j = 2; in this case

Aa b 0

BxCi= |0 (A—1a 0
0 0 (1—2Aa
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2) t; —t; =t; — t3 = 1;in this case

a b 0
BxCy,=1{|0 0 b
0 0 —a

3) t; —t; = 1, t, = t3; this case has two subcases:
a) T, is a diagonal matrix. Then

[2a/3 0 b
Bxchil=1) 0 —a3 o0
0 0 —af3

b) T; is not diagonalizable. In this case

[ 2a/3 0 b
L0 0 —ap
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