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OSCILLATORY INTEGRALS WITH
POLYNOMIAL PHASE

DANIEL M. OBERLIN

§1. Introduction.
Let 2y be the space of real-valued polynomials on R of degree at most N. This
paper is concerned with uniform estimates for integrals of the form

b

fe“’"" Y(x)dx,pe Py

a
when the weight y/(x) is a power of a derivative of p. Here is an easy example: since
b
J eP®p'(x)dx

a

<2

for any continuously differentiable p such that p’ has constant sign on [a, b], it
follows that

b

fei”*’ P00 dx

a

1) <2Nifpe?yanda<b.

The form of this estimate is prototypical for our results, Theorems 1 and 2 below.

THEOREM 1. If N and n are positive integers, there is C(N, n) such that

< C(N,n)if pe?yand a <b.

b
J e'r® | p(n)(x)'lln dx

a
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THEOREM 2. If N is a positive integer and n = 1 or 2, there is C(N, n) such that

eP® | pM(x)| 1 *is gyl < C(N,n)(1 + |s|)*™ if pePy,a < b, and seR.

COMMENTS:

(a) If N = n, our results are direct consequences of van der Corput’s lemma,
which is the case Y(x) = 1 of the following result.

LeMMA Q. ([S],p.311) Fora £ x < bassume that ¢(x) and Y(x) are smooth, that
@(x) is real-valued, and that for some positive integer n we have |p™(x)| = 1. If
n = 1 assume additionally that ¢'(x) is monotonic. Then

b b
f erehy(x)dx < c<n)|rr”"[|~/z(b)| + J W) dx] for reR.

(b) These results are vaguely analogous to those of [C] concerning multi-
dimensional oscillatory integrals damped with a power of the curvature. The
proof of Theorem 1 depends on an idea present in that paper.

(c) Our interest in results like these stems from the problem of embedding
certain measures on curves in R¥ into analytic families of distributions. Here is an
example in the case k = 2: suppose pe Zy and a < b. Following [D] we define
a measure do by

b
J pdo = f o(x, p(x) Ip"(x)|*/? dx

and an analytic family of distributions do, by

_ n(z 1)/2 P(x)| —1+z
f 0= Tem) ff"’( ’”[lp"( )nm] dydx.

a —o

Here peCZ(R?), say. If z= —} + iy, then Theorem 2 in the case n =2
combines with the calculation of 4, in [D] to show that |4, < C(z, N). Thus
the proof of Theorem 1 in [D] yields the inequality

= CN) [ fillag2ll f2ll3)2

U(fl*fz)dﬂ
R2

for f1, /e **(R?).
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(d) There is no finite C such that the inequality
b

f e |p()|!12 dx < C

a
holds for, say, all twice continuously differentiable functions p with p’ and p” of
constant sign on [a, b]. (Take p(x) = loglog x.) Thus there is no proof of Theorem
1 analogous to the proof of (1) given above.
() Much work on oscillatory integrals is, like Lemma 0, concerned with the
decay as r — oo of integrals

f ey (x)dx.

Theorems 1 and 2 can be cast in this form simply by replacing p with rp and then
factoring |r|*/ from the integral. For example, Theorem 1 yields the estimate

b

J eirp(x) | p(n)(x)ll In dx

a

Sr"C(N,n) if peP(N),a <b,andr > 0.

Letting a =0, b = 1, and p(x) = x" shows that such an estimate cannot be
substantially improved.

(f) We conjecture that Theorem 2 is true for any neN.
§2. Proof of Theorem 1.

Theorem 1 is a consequence of two elementary lemmas, the first of which we give
in a little more generality than we require.

LemMA 1. Suppose y is a real-valued continuously differentiable function on
a closed interval I such that y and ' are of constant sign on 1. Then

1
Irl

.Je"" Y(x)dx| < 5 sup {Uw' J is a subinterval of I with length < —}
I J

ProOF. Write I = [a,b]. Without loss of generality we may assume that
1/lrl £ b — a and that y, ' = 0 on I. An integration by parts shows that

b-1/lr| b—1/|r| b-1/|r| x

\ J e™y(x)dx| < y(b — 1/|r)) f et +| J je‘"dt Y (x)dx

a

.
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Since ¢’ is nonnegative on I and because

Jv eirtdt
this is dominated by

Z (b — i) + 2 [9(b — L) — wla@).

Irl Ir

= 2/Irl,

But y/(a) = 0 so the last sum does not exceed
4
Irl

Now the fact that y is increasing on I gives

Y(b — 1/lrl).

b—1/lr|

b
’ J e""x/t(x)dxl <4 j Y(x)dx.
a b—1/|r|

The estimate

b
I f e""l/t(x)dx> < J Y(x)dx
b—1/Ir| b—=1/lr|
thus completes the proof.
The next result is analogous to Lemma 4.2 of [C].

LEMMA 2. There is a positive constant C(N,n) such that
b
flp""(t)l””dt S C(N,n) |pllt%a.s for pePy and a < b.

Proor. Since linear operators on finite-dimensional normed spaces are
bounded, there is C(N, n) such that

||P(")||Lw(o.1) < C(N,n)[Ipll =(o,1) for p€ Py.
Thus

1
f PO "dt < CN, WpI 0 for pePy.
(1]

A linear change of variable completes the proof.
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It is enough to prove Theorem 1 when p’ is of constant sign on [a, b]. Then

there is a positive function Y(x) (= [p™(p~ *(x))/p'(p~ (x))|) and an interval I such
that

Jf @) 1™ 1" dt = J fy
a T

for all reasonable functions f on R. A computation shows that (since pe 2y)
there is some M = M(N, n) such that ' can have at most M zeroes on I. Thus it is
enough to show that

= C(N,n)

je""!p(x)dx

if ' is of constant sign on the subinterval I of I. For such an I, Lemma 1 gives

Je""z//(x)dx < Ssup {Iw(x)dx: J< I, length (J) £ 1} =
I J

J

SSUP{ JIP‘”’(t)I”"dti ase<f=blple)—pNl = 1}-

e

Now if a<e< f<b, the monotonicity of p on [a,b] shows that
P — P(f ) Loe,ry < 1. Thus Lemma 2, applied to the polynomial p(x) — p(f),
yields

s
j Ip™()'"" dt < C(N,n).

This completes the proof of Theorem 1.

§3. Proof of Theorem 2.
Theorem 2 depends on a technical lemma.

LEMMA 3. Fix N. There are positive constants K = K(N) and L = L(N) such
that if

J2

1 J2
r(x) = IJ] x—a) [] [x—a)*+bl= Hl 9,x)
j=1 j=

j=J1+1
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is a monic polynomial of degree not exceeding N with the a;'s distinct and each
b; > 0, then there exists a collection {I;}{X, of pairwise disjoint subintervals of
R with Ly < L satisfying

R~ul;

and such that for each | there are C = C(l)e(0, ), j = j(l)e{1,2,...,J,}, and
a nonnegative integer t = t(I) with

/

r

<K

C
"E|x —ajl' £ r(x)l £ KC|x — af, xe],

and
1 r'(x K
= ( ) é »XE Il’
K|x —aj r(x) Ix —ajl
ProOF. Given r we write
’ J2

r

T
where each fj(x) is either

1
X — aj

(in which case we will say that f; is of type I) or
2(x —_ J)
(x — aj)z + bj
(type IT). The proofis a consequence of the three observations, Steps I-II1, below.
In what follows K and L will denote constants, not necessarily the same at each
occurence, depending only on N.

StepI. Thereis L such that given r, R can be written as the disjoint union of at
most L subintervals I, with the property that for each I, there is a j(I) with

|f;(x)l =< |f}(l)(x)| if xel,1=5j=Js.

Proor orF Step 1. This is a consequence of the facts that there are at most
N functions f;and that each equation | f; (x)| = | f;,(x)| (j; ¥ j.) can have at most
six solutions.

Step II. There exist K and L such that the following holds: given an interval
I and an index j, such that

i)l £ i)l for xel,1 £j = Ja,
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there is a subset I of I with

e) f
7

with I ~ I the disjoint union of at most L intervals, and such that

ll/\

ﬂl‘t

1 r(x) 2N ~
3 < = if xel ~1I.
© Ak —ay = |70 | = = ay)
Proor oF STEP II. For ease of notation assume j, = 1. Define
Ifl(x)l
T = {xel for each j # 1 either | fj(x)] £ - or fi(x)" f1(x) = 0}.
Since
r(x L2 2 :
0 _ § 769 and 1) < 11691 < if xel,
rx) =5 Ix — a4
we have
Ifl(x)l rx) 2N .
< N|fi(x if xeT.
s | E Ve s
If f is of type I, define I by I ~T =T, while if f, is of type II, set
I~T=T~(a; —/by,a, + \/_ ). Reasoning similar to that used to establish

Step 1 shows that there is L (depending only on N) such that I ~ ['is the disjoint
union of at most L intervals. If f; is of type II, then

le S e S MO i xé(a - Jb1,a1 + /b1,

and so (3) holds whether f; is of type I or II. We will complete Step II by showing
that

f <k
,
I~T
With the calculation
a1 +vby
\fil =2In2

ax—\/E
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if f1 is of type II and the fact that then

TC(I'V T)U(al _\/E’a1+\/b_l)9

(2) will follow from

) S N|fix) if xel.

Now I ~ T < | ) U;, where

|f1( )

U= {xel Ifi(x)] > —-— and fj(x)- f,(x)<0}.

Define U to be
Ui~ - \/gi’ai + \/Fx)

where the union is over {ie{1,j}: f; is of type II}. Since
a‘+~/b_i

Ifii = 21n2
=V

if f; is of type II, since
12| w5 2w
on Uj, and since
i) S =0

it suffices to show that

dx
@ Ju_wng
If xe U, then v
4
) ! S A S 2N 11 S 7 N

2|x —ay —ajl’

Assume for the moment that a, < a;. Since f(x)" fl(x) < 0Oon l7,-, U, is contained
in (a;, a;). Now if x € U; (5) implies that a; — x < 8N(x — a,), s0 a; + 8N a; <
(8N + 1)x, and finally (a; — a,)/(8N + 1) £ x — a,. Since alsox —a; £ a; — a3
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ifxe ﬁj, (4)is true with K = In (8N + 1).Ifq; < a,, (4) follows similarly. Thus the
proof of Step II is complete.

Step III. There are K and L such that the following holds: suppose given an
interval I and an index j, such that

1) = 1 fie(X) for xel,1 £j < J,.

Then I can be written as the union of at most L disjoint intervals I; such that for
each [ there are C = C(I)e(0, o0) and t = t(I)e N with

C
_K_Ix —a; [ = (%) = KC|x — a; |, x€l,.

ProoF OF STEP II1. Assume j, = 1. With the g; as in the statement of Lemma
3 and since J, < N, it is enough to show the following: there exist absolute
constants P and B such that given g; we can write I as the union of at most
P subintervals I, and on each I, either

(6) there is C €(0, c0) with —g— <lg;x)| £ BC,x€el,,
or
) Eoal <000 < Bl - ailxel,,
or
(_x—_Bq;ﬁ < g,(x) < B(x — a4 xel,,

The proof of the next lemma is elementary.

LEMMA. Suppose x,a;,a;€R and |x — a,| £ 4lx — ajl.

@) If lay — ajl/2 < |x — ayl, then |x — a;//4 < |x — aj] < 3|x — a,].

(b) If |a1 - aj|/2 > Ix - all, then |aj - a1|/2 é |x - ajl _S_ 3|aj bt a1|/2.

Now if f;is of type L, then | f;| < |fi| on I implies [x — a;| < 2|x — a;| if xeI.
Thus the Lemma and the fact that g;(x) = x — a; give subintervals of I on which
(6) or (7) hold. If f;is of type I1, then in the interval (a; — \/bj, a; + \/b_,-) we have
by < g; < 2b,. I xel ~ (a;— \/by,a; + /b)) then

1
2lx — ay

SIS 1) =

= x —al
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and so [x — a,| < 4|x — a;|. Since then (x — a;)? < g;(x) < 2(x — a;)?, the lemma
gives

A -
(x IGax).g(x—aj)Zégj(x)gz(x_aj)zé 18(x — ay)? if|—a1—a’|-§|x—al,
while

—a) -
G- cp-apsomstx—af so@-ap it s ay

This completes the proofs of Step III and Lemma 3.

We begin the proof of Theorem 2 with some reductions: first, a scaling
argument shows that we may assume p'(x) to be monic. Then an approximation
argument shows that it is enough to prove Theorem 2 under the additional
assumption that r(x) = p’(x) meets the other hypotheses of Lemma 3. Finally, it
will suffice to show that, for such p € 2y, the conclusion of Theorem 2 holds if p’,
p”, and

| pII 1
@)’ 41 +Is)
are of constant sign on I = (a, b).
pll 1
Case L. = onl.
@) |~ 41 + s

After making the change of variable ¥ = p(x) we have to estimate an integral of
the form

fei(u+ulu|p'(p"(u))l) M s du
Pl )"
J
where the derivative
nsp"(p~ ()
1+ ——5——
p'(p~ ' (w)?

of the phase function has absolute value exceeding 4 on J. If n = 1 an appeal to
van der Corput’s lemma (see Comment (a) at the beginning of the paper) will now
suffice. If n = 2, let C(N) stand for a constant depending only on N and note that

J

J

1/2 +is

4
du

P W)

e d
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M= 1 1/2
J
P'(p” (W) [

C(N)|1/2 + is| s:g: 70 (W)

CIN)(1 + [s)*2.

Here the first inequality follows from the fact that, since p e Zy,
d | P ')
du | p'(p~ (W)

will have at most C(N) sign changes on J. (The second inequality is a consequence
of the inequality which defines Case 1.) Now Case I follows from Lemma 0.

1/2

1 l pu
<
41 +1s) = | @)

Take r = p’ in Lemma 3 and let the intervals J; be as in that lemma, so that

®) ‘[

R~ulp

Case 11. onl.

Putl'’=1~ulandI"=1nul,. Then

lew <41+ |s|)ﬂ%‘ < 4K(1 + Is)),
I I

and

f V2 <21 + |s|)mj %I < 2K(1 + |s)*2,
I I’

both by the Case II assumption and (8).

For the integrals over I” it is enough to estimate an integral of |p'| or |p over
one of the intervals I N I,. It follows from Lemma 3 that there are a€ R, C& (0, 00),
and a nonnegative integer t such that for x e I; we have

//|1/2

= x — af' < P  CKx — .
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1 _|r® K
Kix—a = [p() |~ Ix—al’
and so
" 2
P'(x) < K ,
Px)? |~ Clx —af'*!
and
IP"(x)] £ CK?|x —af' ™.
Thus
8K3(1 + |s))
| < CK —altdx <
flpl_ f be—afdx ==
Inh {1/4(1 +|s) S K2/Clx—alt* 1}
and
f Ip"|}* £ C12K J Ix — alt= D2 dx < 8K2(1 + |s])1/2
B = t+1
Inh {1/4(1 +|s) SK2(Clx —alt+ 1)

This completes the proof of Theorem 2.
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