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QUASIADDITIVITY OF RIESZ CAPACITY
HIROAKI AIKAWA

Introduction.

Let0 < a < nand k,(x) = |x|*~" the Riesz kernel on R". Define the Riesz capacity
by
inf{||fl5:k,*f(x)=1onE, f 20} if1 <p < oo,

Rap(E) = {inf{”yl[:ka*u(x) 21onEu20} ifp=1

In view of [ 7] we see that R, ; (E) is equal to the usual (outer) a-capacity C,(E). It
is obvious that R, , is countably subadditive, i.e.

Raz,p (E) é ; Ra,p (Ek)

with E = U, E;. The main purpose of this paper is to investigate for what
decompositions the inequality

Ra,p(E) g N;Ra,p (Ek)

holds with some positive constant N. We refer to this inequality as “quasiadditivity”.
Quasiadditivity for decompositions into spherical shells has been considered by
.Landkof [9, Lemma 5.5 on p. 304] and Adams [1, Theorem 7.5]. In the case of
Green energy (for the definition see Section 5), quasiadditivity for the Whitney
decomposition (cf. [14, p. 16]) of a half space is discussed in Essén [5].
We shall show that the Whitney decomposition associated with a certain
closed set has quasiadditivity.

DeFINITION. Let F be a closed set having no interior points. Put
d(x) = dist (x, F) and let m; be the measure defined by

my(E) = J 8(x)"#dx.

We associate the least number d = d(F) for which

(1.1) mg(C(x,7)) < Npr"~#
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holds for all x e F and r > 0 with a positive constant Ny, whenever0 < f <n — d.

The constant d(F) is related to the dimension of F. In fact, if L is an
m-dimensional affine subspace in R", then d(L) = m. We can easily see that if F is
an m-dimensional compact Lipschitz manifold, then d(F) = m. By definition if
F, c F,, then d(F;) < d(F;). The Hausdorff dimension of F is not greater than
d(F). They are, in general, different; if F = {0} uUZ; {(j°1,0,...,0)}, then
d(F) > 0 and yet the Hausdorff dimension of F is equal to 0.

Our main result is

THEOREM 1. Let 1 < p < oo and suppose ap + d(F) <n. Let {Q,} be the
Whitney decomposition of R™\ F. Then, for any set E = R",

Ra.p(E) 2— NZRa,p(Ek)

holds with E, = E n Q, for some positive constant N.

Let us note that R, ,(F) = 0 since the Hausdorff dimension of F is not greater
than d(F) < n — ap(see[10, Theorem 21]). Since d({0}) = 0, we see that Theorem 1
is a generalization of the aforementioned results of Landkof and Adams. Our
proof is completely different; it relies on the following comparison between the
Riesz capacity R, , and the measure m,,,.

THEOREM 2. Let 1 < p < o0. Suppose ap + d(F) < n. If E is measurable, then
my,(E) = NR, ,(E)
for some positive constant N.

The plan of this paper is as follows. In Section 2 we shall prove Theorem
1 assuming Theorem 2. Theorem 2 will, in turn, be proved in Section 3 as
a corollary to a certain weighted norm inequality. Section 4 will be devoted to
applications of Theorems 1 and 2. We shall deal with sets E for which m, ,(E) and
R, ,(E) are comparable. We shall observe that a-thin sets are characterized by
Wiener type conditions associated with the Whitney decomposition. In Section
5, we shall study quasiadditivity of Green energy in connection with the notion of
minimal thinness. We shall characterize minimally thin sets in terms of ordinary
capacity (cf. [5] and [6, Section 17). Also we shall observe that [4, Theorem 1 and
2] follows from our method.

The author would like to thank Professor Essén for valuable comments and
showing the preprint of [6]. He also would like to thank the referee for several
helpful suggestions.
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2. Proof of Theorem 1.

By the symbol N we denote an absolute positive constant whose value is
unimportant and may change from line to line. We shall say that two positive
functions f and g are comparable, written f =~ g, if and only if there exists
aconstant N suchthat N~ !g < f < Ng. By C(x,r) we denote the closed ball with
center at x and radius r. For the Whitney decomposition {Q,} of R"\ F, we write
r. for the side-length of Q,.. Note that dist (Qy, F) & r;. By 0, we denote the double

of Q..

LemMA 1. Let § + d(F) < n. Then
2.1 0<r<é(x)2 = my(C(x,r) = rd(x)"*,
2.2) rz8(x)/2 = my(C(x,r)) ~r"*.

In particular, (1.1) holds for all xe R" and r > O; the measure my is a doubling
measure. Let ap + d(F) < n. Then for a Whitney cube Q)

2.3) Ry (Q0) = map(Qi) = 1™

PRrROOF. By definition (2.1) is obvious. Let r = (x)/2. Then we find x, € F such
that C(x,r) = C(x,, 3r). Hence by (1.1) we have mp(C(x,7)) < Nr"~#. Let us prove
the opposite inequality. Since 6(y) < r + d(x) < 3r for all ye C(x,r), it follows
that my(C(x, r)) 2 3r) # f¢(r.ydx = Nr"~%. Thus (2.2) is proved. It is well known
that R, ,(C(x,r)) = N "~ for ap < n. Hence (2.3) follows.

Let us put

R, ,(E) = Y. R, ,(E;) with E, = EN Q.
k

We need to prove I?,,,,I,(E) =~ R, ,(E). Let us begin with comparing ﬁ,,, with
a Hausdorff type outer measure. For f > 0 define the Hausdorff type outer
measure Hj by

13

Hﬂ(E) = inf{z r‘f :Ec U C(Zi, ri), Z;€ F}.

One should note that a point x has positive H; measure unless it lies on F. In fact,
Hy({x}) = o(xY’.

LeMMa 2. Let ap + d(F) < n. Then

ﬁa,p (E) é NHn—ap (E)

PrOOF. Let us prove first
(2.9 R,,(C(z,1)) S Nr"~°F for zeF.
Observe that if @, meets C(z,r), then @, = C(z, Nr). Hence
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iia,p (C(Z, r)) é Z Ra,p(Qk) é N Z map(Qk)

QunC(z,r)+0 QxnC(z,r)$0
S Nm,(C(z, Nr)) S Nr"~ %

by (2.3) and Lemma 1. Thus (2.4) follows.
Take an arbitrary positive number ¢. By definition we can find z;e Fand r; > 0

such that
Ec U C(z;,13),
S A < Hy op(E) +
By (2.4)
Rop(B) S TR, y(Caord) S NYH™ < N(H,(E) + o).

Since ¢ is arbitrary, we have the desired inequality. The lemma is proved.

Proor oF THEOREM 1. Let us prove the inequality only for 1 < p < co. The
case p = 1is similar. It suffices to prove that R, ,(E) < NR, ,(E)for R, ,(E) < co.
Take an arbitrary positive number e&. We can find a nonnegative function f such
thatk,* f = 1 on E and | f||} < R, ,(E) + & We split k, * f(x) into

I(x) = L ka(x — y)f(y)dy, forxeQy,

J(x) = J _ kax —y)f(y)dy, forxeQ.
R™ Qs

Put E' = {x:I(x) 24} and E" = {x:J(x) 2 }}. Then E < E'U E". Since the
multiplicity of §, is bounded by a constant depending only on the dimension, it
follows that

2.5 R,,(E)= ;Ra,p(E’ N = ZP;L fPdx S N|fll} £ N(R,,(E) + ).

By an elementary calculation we see that if E” N @, + @, then J(x) = N on Q,.
Hence k, * f(x) = J(x) = N on

E"= U Qk’
OxnE”"+0

whence R, (E)<N|f I2. Since H,_,,(Qx) = ri~*, it follows (2.3) and
Theorem 2
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Hn—ap(E”) é Hn-—ap(E”) é z Hn—ap(Qk) § N Z "Z_"'
QunE”+0 QinE"+0

< Nmy,(E") S NR,,(E") S N| |} < N(R,,(E) + 2).
Hence ﬁa,p(E”) < N(R, ,(E) + ¢) by Lemma 2. This, together with (2.5), com-
pletes the proof, since ¢ is arbitrary.
3. Proof of Theorem 2.

We shall show Theorem 2 as a corollary to a certain weighted norm inequality.
For future reference we shall state the result in a slightly more general form. Let
K,(x,y) = |x — y|*~ " Define

T.f(x) = JH" Ko (x, y) f(y) dmy ().

Let us prove

THEOREM 3. Let o + d(F) < n.
() Let 1 <p < co. Then | T flpa < Nllfllpa» where || 1,0 = (JIf1P dm,)"".
Moreover, if w satisfies the Muckenhoupt A, condition with respect to m,, i.e.

1 . 1 - )p—l
;) s‘2}’<ma(Q) LW"’"’“)(ma(Q) LW ma) <o

then

j |T.f 1P wdm, < NJ | f1? wdm,.
R™ Rn
(i) If A > 0, then

ma({xe R"if K, (x, y)du(y) > /1}) S Nul/A.
-

First we prove that Theorem 2 follows from Theorem 3.

PROOF OF THEOREM 2. Suppose p = 1. Then the conclusion readily follows
from Theorem 3 (ii). Suppose 1 < p < co. In view of Lemma 1, we see that the
weight w(x) = 8(x)!' ~P* satisfies (4,). Hence, Theorem 3 (i) implies that

J [k * gIP dm,y(x) < N j lgIP dx,
Rr Rn

where we put g(x) = f(x)6(x)~* This immediately yields Theorem 2.
Now let us prove Theorem 3. Although the proof is carried out in a standard
way (cf. [3]), we give it for the completeness. In the rest of this section we let

o+ d(F) <n.
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First we note

LEMMA 3. Let 1<p<min{ }and let 1/p+1/g=11If Qis

d(ﬂ

a cube in R", then

I T f (X)) dmy(x) < NI f g0 ma(Q)'7.

JQ

PrOOF. Let us prove first

»

@.1) K3, )P dmy(3) € No()e00)

JR"

Since p < n/(n — a), it follows that

J K (x, y) dm,(y) < No(x)™* Ix — y|®""Pdy < No(x)@~me=D,
C(x,8(x)/2) C(x,5(x)/2)
In view of Lemma 1, we have

J K. (x,yy dm,(y) = Z Ix — yI@"P dm,(y)
R™\C(x,d(x)/2)

2= 1§(x) < |x —y| £ 295(x)

=N Z (2771 5(x)) @2 §(x))*~* < N &)@ m®=1),

i=0

since (@ — n)(p — 1) < 0. Thus (3.1) holds. Hélder’s inequality and (3.1) yield

1/p
(3.2 Inf(X)IéIIfIlq,,,(LKa(x,y)Pdm,(y)) < N\ fll0 0(x) ™,

Observe that p < (n — a)/d(F) implies that o + (n — «)/q + d(F) < n. Hence
Lemma 1 yields that

My + (n—a)lq (Q) X N my, (Q) 1/p.

This, together with (3.2), completes the proof.
Let .#, f(x) be the maximal function defined by

1
Mo f(x) = Sgpqulfldma,

where the supremum is taken over all cubes containing x. Observe

(33)  sup f IKa(x, y) — Ko(x', Y f(y) dmo(y) < N M, f(x0).
R™ C(x0,2)

x,x'eC(x0,1)

As a result we have the following
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LEMMA 4. Let Q be a cube and Q the double of Q. Then

sup J ~lK¢(x’ .V) - Ka(xla )’)| dma(y) é N.
x,x'eQ JyéQ

. 1
We observe thatif y = (p + 1), then p = 5 1 and

1<p<mind—— "2 o max{ 2% d(F) <y<i
p n—o’ d(F) 2n—a’ n—a+d(F) Y=z

n—a d(F) L
2n——oz’n—a+d(F)}<Y<7’ Let Q be a cube and

O the double of Q. If f 2 O,supp f = Q and || f || 1., < em,(Q) with0 < & < 1, then
m({xeQ: T, f(x) > 1}) < N&' "', (Q).
Proor. By the Caldéron-Zygmund lemma (e.g. [14, p. 17]) we have a family of
mutually disjoint cubes Q; such that
(@) f(x) < ¢"ae. on R*"\ Q with Q@ = U;Q};
(i) For each cube Q;

LEMMA 5. Let max{

g < fdm,(x) < N¢".

1
m,(Q;) Q;
Let

f(x) on R\ @,

g)=_ 1 .
mmme°Wf

. 1
andb = f — g. Obviously, ligll1« < Ifll1.and bl < 2[|fll1.e- Letp = 5 1

and 1/p + 1/g = 1. Since 0 £ g £ N &, it follows that
Iglie £ Ne@ V| fll1. < Ne'@™ V¥ 1m,(Q).

9, =

We have from Lemma 3
B4 m({xeQ:T,g(x) 2 1/2}) £ Nligllgama(Q)''? < N&' "7 m,(Q).

Let y; be the center of Q; and §; the double of Q;. We put @ = U;{;. It follows
from Lemma 4 and the symmetry of K, that

J T bldm, <3’ ~J IKo(x,y) — Kq(x, )l [b(y)| dm(y) dm, (x)
RM\Q J Jx4Q;JyeQ;
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SNY | 1bONdm») S NSl

yeQ;
Therefore
my({xeR":|Tb(x)| > 1/2}) £ N(Ifll1.« + &' "7 m,(Q)) < Ne&' ""m,(Q),

since
~ N N 1-
m,(Q2) = sza(Qj) = -872 . fdm,(x) < o Ifll1,« = Ne* " "m,(Q).

This, together with (3.4), implies
m,({x€Q: T, f(x) > 1}) £ N&' " m,(Q).

The proof is complete.

n—o d(F)

2n—ao’ n—a+d(F)

constant B such that if A>0,0<e< 1, f =0, and a cube Q has a point x’
satisfying T, f(x') < A, then

my({x€Q: T, f(x) > BA, M, f(x) < e1}) £ N&' ""m,(Q).

ProoF. We may assume that there is a point x, in Q such that ., f(x,) < &l.
Let 0 be the double of Q. In view of (3.3), we have for xe Q

LEMMA 6. Let max{ } <y < 3. Then there is a positive

L"\éKa(x, NSy dm.(y) = J _Kq(x,y) = Ko (X, 9 f(y) dma(y) + T, f(x)

R™Q

< Ned+ A< Ny

Let h=f/4 on Q and h = 0 elsewhere. Since ||k, , < em .(Q), it follows from
Lemma S that

m,({xeQ: T,h(x) > 1}) < N&' " m,(Q).
Let B= N, + 1. Then
m,({xeQ: T, f(x) > BA}) < N&' ""m,(Q).
The lemma follows.

ProOF oF THEOREM 3. Suppose that w satisfies (A,,) In the same way as in
[3, Theorem I], we see that

(.5) J (Ao fY wim, = N _[ |f1P wdm,.
-

Hence it is sufficient to show that
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(3-6) J I, fIPwdm, < NJ (M SY wdm,.
R™ R'l

In the proof of (3.6) we may assume that f is nonnegative, bounded and has
compact support. Since0 < T, f(x) < N|x|*™" < N4, f(x) as|x| — oo, it follows
from (3.5) that

f (T, )P wdm, < 0.

Let 2 > 0 and let {Q;} be the Whitney decomposition of the set {T, f > A}.
Observe that there is a constant N, > 1 such that the cube QF with the same
center as Q; but expanded N, times meets the sets { T,/ < A}. Hence it follows
from Lemma 6 that if y is as in Lemma 6, then

m,({xeQ;: T, f(x) > BA, M, f(x) S eA}) S N&' " m,(QF) < N&' ""m,(Q))

for 0 < ¢ < 1. It is well known ([3, Lemma 3]) that w satisfies (4 ,), that is, there
exists & > 0 such that for given any cube Q and any measurable set E < Q

0 (Y
w@) = \m(Q))’

where w(E) = [y wdm,. Hence

w({x€Q;: T, f(x) > BA, M, f(x) < e1}) < Ne®! 7P w(Q)).

Summing over j, we obtain
W{(T.f > B, M,f < e2}) S NP w({T.f > A},

which implies that

f (T. /Y wdm, < N(e) f (M, S wdm, + Ny e~ J

R

(L1 wdm,.

Letting & > 0 be so small that N3¢ =" < 1/2, we obtain (3.6). Thus (i) follows.

For the proof of (ii) in the case when the measure p is absolutely continuous, we
refer to [14, pp. 31-35]. This additional assumption, however, can be easily
dropped as follows: Without loss of generality, we may assume that p is a non-
negative finite measure. We can find a sequence of nonnegative functions f;
converging to u vaguely such that || fjl| 1, < ||ull. Since K, = 0is lower semicon-
tinuous, it follows that if x; = X, then

lim ianKa(x;ay)f}(Y) dm,(y) 2 fKa(x, y)au(y)

j- o

(see e.g. [10, Lemma 1]). Take a compact set E in {x:|K,(x,y)du(y) > A}.
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Then there is j such that the open set {x: [ K,(x, y)f;(y) dm,(y) > A} includes E.
Hence m,(E) < N| fill1.«/2 < N | ul/A. Since E is arbitrary, we obtain (ii). The
proof is complete.

4. Applications.

First we observe that for some sets E the quantities m,,(E) and R, ,(E) are
comparable. The following corollary immediately follows from (2.3) and
Theorem 2.

COROLLARY 1. Let ap + d(F) < n. For a set E we let
E = U Qk‘
OxnE+0
Then
Mop(B) ~ Ryp(B) » Ryp(B) = H,p(B) 3 17
QxnE+0

In other words, for a union U of Whitney cubes, the quantities m,,(U), R, ,(U),
R',,p(U) and H,_,, (U) are all comparable.

Theorem 1 and Corollary 1 give an estimate of the Riesz capacity of a rec-
tangle. Let us observe that [1, Theorem 5.2 (i)] follows.

COROLLARY2. LetO< a; £a, £ - Z a,andseta = (ay,...,a,) withS(x,a) =

{yeR":|ly;— xS anj=1,...,n}. Suppose L i< nandi— 1 <op <i. Then
Re,(S(6,a) ~ a1 ay.

PROOF. Let F be the affine subspace {xeR":x;,; = ... = x, = 0} and let {Q;}
be the Whitney decomposition of R*\ F. Then d(F)=n—i and d(x) =

x?+ ...+ x2 Let
Xo =(0,...,0,4ai,0,...,0)
N, prvseemmnar’! A e e

i-1 n—i

and we need only consider S = S(x,, a), since R, (') is translation invariant.
Observe that d(x) ~ a; for xeS. Hence if a Whitney cube Q, meets S, then the
side-length of Q, is comparable to a;; the number of those Whitney cubes is
comparable to

@.1) Givt | Gn
a; a;

Therefore Corollary 1 yields that
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—ap i+l P
Rep(§) S Na @ 2.2~ N g, - oa,
i i

Thus the upper estimate follows. For the lower estimate we use the inequality
i — 1 < ap. Observe that an n — i + 1 dimensional cube has positive capacity.
More precisely,

4.2) R.,({0} x -+- x {0} x [—r,r] x -+ x [—rr])=Nr"*

i-1 n—i+1

by the homogeneity. Let S* = S(x,,2a). Then R, ,(5*) =2""*" R, ,(S). If O,
meets S, then Q, N S* includes an n — i + 1 dimensional cube of side-length
greater that N a;. Hence (4.1), (4.2) and Theorem 1 yield that

Rop(S) = 277"R,,(S%) 2 Nay ™ 2502 = Nai ™ g, v,
Thus the lower estimate follows. The proof is complete.

Next we shall consider a-thin sets. Let us define the notion of a-thinness as
follows.
DEFINITION. A set E is called a-thin at & if

i 2008 C(E N 1(8) < oo,

where I;(¢) = C(§,2' )\ C(,27).

Observe that E is a-thin at ¢ if and only if there is a potential k, * u F oo such
that
kg p(x)
lim ———=
a—&,xeE ka(x - é)

(¢f. [2, Theorem IX, 7] and [11, Theorem A]). By the aid of Theorems 1 and 2 we
obtain the following corollaries immediately.

COROLLARY 3. Let o + d(F) < nand let ¢ € F. Suppose E is a bounded set. Then
E is o-thin at & if and only if

Ca(Ek)
Loy <
where E, = E n Q, and p,(&) = dist (&, Qy).

COROLLARY 4. Let a + d(F) < n and let £ € F. Suppose E is a bounded measur-
able set. If E is a-thin at &, then
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o(x)""
Elx =&
Corollary 4 may be considered to be a counterpart of [4, Theorem 2]. Let us

state a result corresponding to [4, Theorem 1]. A sequence {x;} is said to be
separated if there is a positive constant ¢ such that

Ix; — xi| = €d(x;) forj # k.

dx < o0.

Itis easy to see that {x;} is separated if and only if the number of points x;lying in
0, is bounded by a positive constant independent of k.

COROLLARY 5. Let a + d(F) < n and let £ F. Suppose E is a bounded set. Let
E= Ug.ne+0 Qx- Then the following statements are equivalent:

(i) E is o-thin at &.

.. o(x)~®
(ii) L——————Ix e dx < 0.

(iii) E does not contain a separated sequence {x;} convergent to & such that

ox;) "¢ _
§(|x,-—¢|> -

. n V*
) anEE:*o ( Pk(f)) =

(v) There is a measure p supported on F such that k, * u £ o and

ke *p(x)
lim ———=
x—¢&,xeE ka(x - é)
S. Quasiadditivity of Green energy and minimal thinness.
Let D be the half space
D = {(x15...,%,): X, > 0}

with the boundary 0D = {(x,...,x,):x, = 0}. For x and y in D define the Green
function

_ Jlog(lx — jl/I1x — y) ifn =2,
G(x’y)—{|X—Y|2_"—|x—}7|2_" ifn__>._3,

where § = (yy,...,Vn—1, — ya) is the reflection of y = (yy,..., Ys—1,ys). We write

Gu(x) = L G(x, y)du(y).
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Let 6(x) = dist(x, 0D). Given E < D, suppose that there exists a measure Ag
whose Green potential is GAz = R, where R} is the regularized reduced
function of 6(x) on E. Let y(E) = j G2g(x)dAg(x) and call it the Green energy of E.

In view of [7], we can give an alternative definition of the Green energy. Let

_ Gy
KD = 50950)

and denote by the same symbol its continuous extension on D x D. Let

Tu(x) =J , K(x, y)du(y)

DuoD

and write Tf(x) for Tu(x) if du = fdx. Then we have

Y(E) = inf {||u|| : Tu(x) Z 1 on E}.

Note that the kernel K is comparable to the Naim’s @ kernel (cf. [12]). The
symmetric kernel K(x,y) is homogeneous of degree —n and has singularity

log forn = 2 and |x — y|*> " for n = 3. Hence

|x — ¥l

f K(x,yPPdy £ Né(x)~"®~ 1
D

for 1 < p < nf(n — 2) (cf. (3.1)). We can, therefore, regard K as the restriction of
a standard kernel satisfying (H) in [8, p. 49] and can obtain

THEOREM 4. Let m be the n-dimensional Lebesgue measure.
(@) Let 1 <p < oo. Then |Tf|l, E NI fll,.

(i) If 2 > 0, then m({x € D:|Tu(x)| > A}) £ N ull/A.

(ili) If E is a measurable subset of D, then m(E) < N y(E).

REMARK. Theorem 4 (iii) was first proved by Dahlberg [4] with the aid of
sharp estimates for the characteristic constants of sets on the unit sphere. Sjogren
[13] introduced the notion of convolution sets and provided an alternative
proof. According to the referee, E. M. Stein gave around 1980 a proof of the weak
type inequality in (i) using singular integrals (private communication to P.
Sjégren). However, this proof has not been published.

REMARK. In the same way as in Section 3 (F = 0D, = 0), we can prove

. n—2
Theorem 4. In fact, we have the following inequality: Let_?._(n_—l_) <y < % Then
there is a positive constant B such thatif 1 >0,0<¢ <1, f 20, and a cube

Q < D has a point x’ satisfying Tf(x') < 4, then
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m({xeQ: Tf(x) > BA, M f(x) < eA}) < Ne'""m(Q),

where # f(x) is the usual maximal function defined by

1
d
mQ) L fidy

with the supremum taken over all cubes Q = D containing x. This approach is
applicable to a general C***-domain D. Necessary estimates for the Green kernel
were given by Widman [15]. Thus the results below will hold for a C***-domain
D. In particular, [4, Theorems 1 and 2] follows.

M f(x) = sup
Q

Let {Q,} be the Whitney decomposition of D. By c(E) we denote the logarith-
mic capacity of E if n = 2, and the Newtonian capacity of E ifn = 3. If a set E is
included in a Whitney cube Q,, then the Green energy of E can be estimated by
the ordinary capacity c(E) ([5, Lemma 3]).

LeMMA 7. Let Q, be a Whitney cube in D and let E be a subset of Q. Then

. [iRlogan eE) " ifn=2,
ﬂE)~{$dE) ifn>3,

where t, = dist (Qy, D).

Using Theorem 4 (iii), Lemma 7 and the homogeneity y(r E) = r"y(E), we can
prove the following theorem in the same way as in Section 2.

THEOREM 5. Let {Q.} be the Whitney decomposition of D. For E = D we set
I'(E) = Z, y(E N Qy). Then I'(E) ~ y(E).

As an immediate consequence, we have
COROLLARY 6. Let &€ 0D. Suppose E is a bounded set of D. Then E is minimally
thin at £ in D if and only if
2 (log (41/c(E,)) "
N

Zﬂcﬁg ifn23,
k P

where E, = E N Qy and p,(&) = dist (&, Qx).

ReMARK. Slightly weaker forms of Theorem 5 and Corollary 6 were first given
by Essén [5]. In [6, Section 1], he has given a proof of Corollary 6 based on the
weak L'-estimates of Sjogren [13].

< o0, ifn=2

COROLLARY 7. Let £€dD. Suppose E is a bounded measurable set. If E is
minimally thin at &, then
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fL@O
p—er

LetE = Uan e+0 Qi asin Corollary 5. We infer from Harnack inequality that
E is not minimally thin at ¢ if and only if E determines the point measure at & in
the notation of [4]. By P(¢, x) we denote the Poisson kernel for D at ¢ € @D and
xeD. We write P(u, x) for the Poisson integral

J P(&, x)dp(&).
oD

Observe that if 1 is a measure supported by 0D, then 6(x) Tu(x) coincides with the
Poisson integral P(u, x) up to a positive multiplicative constant. Hence we have

COROLLARY 8 ([4, Theorem 1]). Let £e€dD. Suppose E is a bounded set. Let
E= Uan £+ 9 Qr. Then the following statements are equivalent:
(i) E does not determine the point measure at &.
(ii) E is minimally thin at &.

dx
(iit) J;‘W < 0.

(iv) E does not contain a separated sequence {x;} convergent to £ such that

o(x;) "=
;<|x1—5|> %

Ty "
v) ( ) < .
rié +0 \ Px($)
(vi) There is a measure u supported on 0D such that P(u,") & oo and

x—+¢,xeE P(é’ x)

ADDED IN PROOF. On the occasion of ICPT91 Professor Maz’ya informed that
his paper On Beurling’s theorem for the minimum principle for positive harmonic
functions, (in Russian), Zapiski Naucnyh Seminarov LOMI 30 (1972), 76-90, was
precedent to [4].
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