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ORTHOGONALLY PINCHED CURVATURE
TENSORS AND APPLICATIONS

WALTER SEAMAN

Introduction.

In his paper we study a condition on algebraic curvature tensors which is strictly
weaker than imposing bounds on the sectional curvature. We characterize a class
of curvature tensors in terms of this condition and the minimal eigenvalue of the
Weitzenbock operator. Finally, we give as an application a generalization of part
of the “Sphere Theorem” in Riemannian geometry.

DEeFINITION (0.1). Let V be a real m-dimensional vector space with inner
product {,), and let R be a curvature tensor on V (see section one for more
details). For P a two-dimensional subspace of V let K(P) denote its sectional
curvature. We say that R is orthogonally pinched between 4 and J, where 4 = ¢
are numbers, if for any two mutually orthogonal two dimensional subspace, P,
P,, of V (i.e., P, = (Py)'), one has

0.2) 24 2 K(Py) + K(P,) 2 26.

Of course this notion only has content if m = 4. We shall shortly give examples
of curvature tensors R which are orthogonally pinched as in (0.2), but whose
sectional curvatures are not pinched between 4 and ¢ (i.e. there are planes P for
which K(P) > 4 and planes P for which K(P) < 6). In this sense requiring R to be
orthogonally pinched between 4 and ¢ is strictly weaker than requiring the
sectional curvature of R to be pinched between 4 and ¢ (this latter certainly
implies R is orthogonally pinched between 4 and 6).

The “Sphere Theorem” (cf. [CE]) classifies compact simply connected
Riemannian manifolds whose sectional curvature K, is globally pinched between
1 and 1/4, by showing that such manifolds are globally symmetric. Using either
the classification of symmetric space [H], or [GG], [GS], or [GWZ], one
deduces the isometry type of such spaces. As an application of our study of
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orthogonally pinched curvature tensors, we prove an extension of part of the
Sphere Theorem:

0.3 THEOREM. Let (M,g) be a compact orientable Riemannian manifold of
dimension = 5 and suppose b,(M) % 0, where b, (M) is the second (real) Betti
number of M. Suppose that for some nonnegative function 4 on M, for each pe M,
R(p) is orthogonally pinched between A(p) and A(p)/4, where R(p) is the curvature
tensor of g at p. Then A is a constant function. If M is odd dimensional, A = 0 and
M isflat. If M is 2n dimensional (n Z 3)then either A = Oand M isflatorA =c > 0
and then (M, g) is biholomorphically isometric to (CP", ¢* gcayn) Where g, is the
Fubini-Study metric.

If one starts by assuming 4 is a positive constant and (M, g) has its sectional
curvature pinched between 4 and 4/4, then this theorem can be deduced from the
Sphere theorem, as mentioned above, by the process of elimination. If one allows
Ato be variable but still requires sectional curvature pinched (pointwise) between
A(p) and A(p)/4, this theorem can be deduced from Theorem (1.3) of [S]. Asin [S],
our proof of Theorem (0.3) shows directly, that under the assumptions there, one
has, in the 2n dimensional case, R(p) = A(p)Rcpn, Where Rcpn is the canonical
curvature tensor for CP”".,

The orthogonal complex structure used to define Rcp» comes from an eigen-
vector X, of R,, the Weitzenbock operator of R (see section one). The orthogonal
“quarter” pinching assumption guarantees that X is parallel, making M Kédhler
(or flat). The remainder of the proof proceeds as in the proof of Theorem (1.3),
[S1.

The bulk of the proof of Theorem (0.3) is to prove that Theorem (1.4) of [S]
holds under the assumption that R is orthogonally pinched between 4 and 6.
Theorem (1.4) of [S] is a characterization of algebraic curvature tensors on 2n
dimensional vector spaces, whose sectional curvature is pinched between 4 and
6 and whose Weitzenbock operator has minimum eigenvalue (n — 1)4/3(46 — A4).

We will show in section one that under assumption (0.2), the minimum possible
eigenvalue of the Weitzenbock operator is (still) (n — 1)4/3(46 — 4) and we get
the following analog of Theorem (1.4), [S].

(0.4) THEOREM. (i) (Existence) Let J be an orthogonal complex structure on V>",
n 2 2, and define
* R = 4/3(4 — 8)Rcpn + 1/3(46 — A)Id.

Then the sectional curvature, K, of R, satisfies (the sharp bounds) 4 = K = 6
(hence R is orthogonally pinched between A and 8) and the minimal eigenvalue of the
Weitzenbock operator, R, of R, equals (n — 1)4/3(46 — 4).

(ii) (Uniqueness) If R is any curvature tensor on V", n 2 3, which is or-
thogonally pinched between A and 5, and whose Weitzenbock operator has
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(n — 1)4/3(46 — A) as an eigenvalue (necessarily minimal), then there is an orthog-
onal complex structure J on V?" such that R = R.

The proof of the uniqueness portion of theorem (0.4) definitely breaks down in
case n = 2(dim V' = 4). One can see the reason for the breakdown even in the
following example.

(0.5) ExaMPLE. Let R be orthogonally pinched between ¢ and ¢ on V™, where
mz= 5. Then K =c¢ (“orthogonally constant implies constant for dimen-
sions 2 5”).

PRrOOF. First assumem = 6. Let P; = V be any two plane, and let P,, P; be two
planes such that P;, P,, P; are mutually orthogonal. Then 2c = K(P;) +
K(P,) = K(Py) + K(P3;) = K(P,) + K(Ps), so subtracting the last term from the
sum of the first two yields K(P;) = c. A slightly different argument also shows
that constant orthogonal pinching implies constant if dimension ¥ = 5. Suppose
R is orthogonally pinched between ¢ and ¢ on a 5 dimensional vector space. Let
P be a two plane in V with orthonormal basis e,, e,. Let e;, e,, €5 be an
orthonormal basis for P* in V. Letting K;; = the sectional curvature of the plane
spanned ¢; and e;, we have: 2c¢ = K, + K34 = K5 + K45 (s0 K34 = Kys);
2c=K;3 + Kys = Ky3 + K35 (50 Ky4s = Kas); 2¢ = K34 + K5 = Kjg + Ky
(so K5, = K55 = K45 = K34); now the firstequation gives K, = c.

Note that these arguments break down in the four dimensional case.

Some information concerning the four dimensional case is still available, and
this is discussed at the end of section one. We now give examples of curvature
tensors which are orthogonally pinched between 4 and 6 but whose sectional
curvatures are not pinched between 4 and 4.

(0.6) ExampLE A). Let V; = V; = R?, ¥, = any real vector space of dimension
=2. Let the curvature tensor, R;, on V; have constant sectioal curvature k;,
i=1,23 wherek, >k, 20> k;. Let V=V, 0V, ®V5,R=R; @R, ®R;
(with the obvious meaning), and K = the sectional curvature of R. If P, is a two
plane in V,, then k; + k, = K(¥;,0,0) + K(0, P,,0) = max(K(P) + K(Q)) over
all mutually orthogonal two planes, P, Q = V, and k3 = K(0,0, V3) + K(Q)
(where Q is the two plane spanned by {(¢},0,0), (0, €5, 0)} where é; is a unit vector
in ¥;) = min(K(P) + K(Q)) over all mutually orthogonal two planes in V. Then
R is orthogonally pinched between (k; +k;)/2 and k3/2, but
K(¥1,0,0) = k; > (k; + k,)/2 and K(0,0, V3) = k3 < k3/2.

ExaMPLEB). Let V, = R"(n 2 4), V, = R, V = V; @ V,. Give V] the curvature
tensor with constant sectional curvature 1, and V the curvature tensor of the direct
sum (so that K(P) =0 if P is spanned by v,,v,, where v;€ V). Then one has
L2 K({P)=0 for any plane Pc V (and the bounds are sharp), while
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2 =2 K(P) + K(Q) = 1if P and Q are any two orthogonal two planes in V (again the
bounds are sharp). Note that this is just the situation on S* x S* at each point.

The Sphere Theorem has been generalized in [GS] and [GG], to allow K > 1
and d(M) = n/2. Additionally, in [MM], the notion of a curvature tensor being
positive on totally isotropic two planes was introduced and it is shown in that
paper that a compact simply connected Riemannian manifold M whose curva-
ture is positive on totally isotropic two planes is homeomorphic to a sphere.

A remarkable corollary to this result is the following: if there is a strictly
positive function 4 on M, such that the sectional curvature K of M satisfies
A(p) 2 K(p) > A(p)/4, then M is homeomorphic to a sphere. The main point here
is that “pointwise strict quarter pinching” implies positive on totally isotropic
two planes. We will show in section one ((1.21)) that if a curvature tensor on V",
n 2 2, is orthogonally pinched between 4 and 4/4, then it is nonnegative on
totally isotropic two planes (and strictly positive if the orthogonal pinching is
strict). Thus “quarter” orthogonal pinching lies somewhere between quarter
pinching and positive on totally isotropic two planes.

A natural question stemming from these remarks is the following: can the
orthogonal pinching assumption in Theorem (0.3) be weakened to nonnegative
on totally isotropic two planes? Since any metric with nonnegative curvature
operator automatically has nonnegative curvature on totally isotropic two
planes, it is clear that some additional assumption, besides nonnegative curva-
ture on totally isotropic two planes, would have to be made in order to get some
result analogous to Theorem 0.3. This will be discussed in [S,].

Finally, the author thanks Professor D. Hulin and others for suggestions
which lead to massive simplifications in the proof of Theorem 0.4.

Section 1. Proof of Theorem (0.4).

Our notation for an algebraic curvature tensor, R, on a vector space ¥ with inner
product ¢, ), its sectional curvature K, and Weitzenbock operator R,, are exactly
as in [S], section 1. In particular we will assume V is 2n or 2n + 1 dimensional
(initially we will allow n 2 2), and if {e,,...,e,,} (€2,+1) is an orthonormal basis
for V, then R;;, means {R(e;,e;)ex, e;). and distinct letters (i,j, k,1) stands for
distinct numbers. Also, K;; means the sectional curvature of the plane spanned by
e;and ej, while K, ; , 4, stands for the sectional curvature of the plane spanned by
ete ete

\/5 2
(2.17) and (2.21) a-d in [S].

We start off by showing that [S] Proposition (2.8) and (2.9) hold for orthog-
onal pinching.

From now on we assume that R is orthogonally pinched between A and o.

. The properties of R in Theorem (0.4) (i) are given in Proposition
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PrROPOSITION (1.1) @) [Rjul £ %4 —9). Riyu=3%4—9)(—34—9) iff
Kityjee + Kiopj-r = 24(20) = K;—1i+4 + Kj41,i- and
Kipj+c+ Ki+l,j—k = 26(24) = Kj+l,i+k + Kj—l,i—k-

b) The minimum eigenvalue, r, of the Weitzenbock operator, R,, satisfies
r=(n— 1446 — 4) if dimension V =2n. If dimension V =2n+ 1, then
r = 3(8n — 5)6 — 24(n — 1)).

ProOF. a) This follows from the decomposition of R;;, given in [S] 2.8A) and
e;+e e j + e
and the

V272
ei—ﬁ e; —

€k
plane spanned by {7 }, and so on, are mutually orthogonal.
2 \/E

2.8B), together with the fact that the plane spanned by {

Similar remarks handle the remaining curvature terms in R,

b) The proof of this follows just as in Proposition (2.9) [S], up to the number
(2.12). We now show how to use the orthogonal pinching assumption to go from
(2.12) to (2.12a) in the 2n dimensional case:

2n n—1
(1.2 Z (Kj1 + Kjp) = Z (K@i+1),1 + Kai+2),2 + Kaiv2),1 + Kai+1),2)
j=3 1=1

by the orthogonal pinching assumption, one has
K(21+l),1 + K(21+2),2 g 26, K(21+2),1 + K(2!+1).2 ; 25

since the planes spanned by {e,;+ 1, e, } and {e,;+ », e, }, are mutually orthogonal.
Thus the term in (1.2) is =4d(n — 1), and the proof of (1.1) b) now proceeds
exactly as in Proposition (2.9) of [S], using part a) of this proposition between
(2.12) b) and (2.12c) of [S].

To get the conclusion in the 2n + 1 dimensional case, use the following
regrouping of terms:

2n+1
(1.2.1) (Kj; + Kj2) = K31 + K32 + K4y + Ky + K5y + Ksp
ji=3
2n+1
+ Y (Kn+Kjp)

j=6
= (K13 + Kaz) + (K15 + Kz3) + (K14 + K3s)
+ ) ([(Ka 1+ Kas1,2] + [Kai2 + Kaieg,1])
1=3

268+ (n — 2)46 = 26(2n — 1)

now proceed as in the 2n dimensional case.
From now on we will assume V is 2n-dimensional.
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REMARK. If r = (n — 1)§(4 — 4) then just as in [S], we have |Ry;_1 32,1 =
44— 8)fori=2,...,n,and wecantake 1 = A; = 4, =... = A,. (Note that this
requires 4 > 6, which we assume from now on).

COROLLARY (1.3). If r = (n — 1)3(46 — A), then for i,j distinct, between 1 and n,
we have

(1.3) a) Ryi-1,24,2j,2j-1= %(A —0)

and

b) Z (Kai-1,2j-1 + Ka1,2j) + (Ko 25— 1 + Kz1-1,25) = 46(n — 1)

1#j
15Isn

Proor. This follows as in Corollary (2.13), [S], where one can, in a similar
grouping to (1.2), write

(1.4 n— 1546 — ) =r (Ki,2j-1+ Ky 25) — 2 Z Rii-1,2i,25,2j~1

1¥2j ij
1£2j-1 15isn
1sls2n
(1.5) = Y (Ku-1,25-1 + Ka2) + Kzt 25-1 + Kai-1,2))
1*j
lglén
=2 Y Rai-y,2i2j2j-1
i+j
1<isn

=45(n — 1) —%(n — 1)(4 — &) = (n — 1)3(46 — 4).
From now on we assume r = (n — 1)3(46 — A).
PROPOSITION (1.6) a) For i & j between 1 and n, we have
24 = Kgi-n+@j-n.2i+2j + Kei-n-@j-1,2i-2;
ZA = K2i—(2j-l),(2i—1)+2j + K(2!)+(2j—l),(2i—1)-2j
(1.6) (b) Ifn = 3, then
0= Kzi,zj = Kzi—1,2j—1 = Kzi,zj—1 = Kzi—l,Zj

Proor. a) This follows from (1.3) a) and Proposition (1.1) a).

b) The proof of (1.6) b) consists of examining the terms in (1.3) b), and various
rearrangements of those terms, and using the fact that R is orthogonally pinched.
Wefirst show that the sectional curvatures appearing in (1.6b) are equal, and then
compute their common value to be .
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Since n = 3, there are distinct numbers /,, [,, and j between 1 and n. Thus, the
following sum appears in (1.5):

.7 (K1, -1,2j-1 + Ko, 25) + (Kouy 25-1 + Kai,-1,25)
+ (Ka1,-1,2j-1 + Koy, 25) + (Ko, 25-1 + Kaiy—1,25)

Since R is orthogonally pinched, the sum in (1.7) is = 84. (the terms are grouped
to make the orthogonal planes clear). Since r = (n — 1)3(46 — 4), the sumin (1.7)
must actually equal 8. This means that each of the four sums enclosed in
parentheses in (1.7) must actually equal 26. However, the terms in (1.7) can be
rearranged in such a way that one still has sums of sectional curvatures of
orthogonal planes. We now list the results of these observations: (1.7) equals 85
and R orthogonally pinched implies each of (1.8), (1.9), and (1.10) are true:

(1.8) a) Ko, —1,2j-1 + Ka,,2j =20
b) Koy 2j-1 + Kaiy—1,25 = 20
©) Ka,-1,2j-1 + Kap 25 =20
d) Kapp 251+ Kpy—1,25 =26
1.9) a) Ko —1,25-1 + Kaip 25 =26
b) Ku,,2j + Kaiy—1,2j-1 = 20
©) Ku,2j-1+ Kaiy—1,25= 20
d) Kji,—1,2j + Koy, 25-1 = 20
(1.10) a) Ky, —1,25-1 + Kaiy—1,2j =20
b) Kai,,2j + Ky, 2j-1 =20
©) Kay2j-1+ Ko, 25 =26
d) Kyp,—1,2j+ Kaiy—1,2j-1 =20

We now conclude that various sectional curvatures are equal by equating entries
from (1.8), (1.9), and (1.10). We first write the equality of the sectional curvatures
and then parenthetically show which equations from (1.8), (1.9) or (1.10) are
used: Ky, 55 = Ky, 25 (1.82) = (1.92)); Kay,,25 = K2y, -1,2; ((1.9b) = (1.10d));
K, -1,2; = Ka1,- 1,25 (1.8d) = (1.9d)). Summarizing so far, we get:

(L.11) K25 = Koy, 2 = Koty -1,2; = Koty 1,25

Similarly, we have: K211—1,2j—1 = K2,2_1,2j_1((1.8a) = 1.9b)); K212,2j-1 =
K211,2j—l((1'8d) = (1.9¢)); K212—1,21-1 = KZIl,Zj—l((l'Sc) = (1.10¢)).



12 WALTER SEAMAN

Summarizing, we now have
(1-12) Kzl,-1.2j~1 = K2!2—1,2j—1 = Kzz,,zj—x = K2!2,2j—1-

Now (1.11) and (1.12) must be true for any distinct j, I, I, between 1 and n.
Thus, for example if a + be{l,...,n} and ¢ £ de{l,...,n}, c + b, then (1.11)
implies Ky, 25 = Ky, 26 = Ka¢, 2. Thus K, 55 = Ky, 54 if b £ ¢, but also
K34, 20 = K2p,24 by (1.11),50 K 3,4, 25 = K, 24in all cases. Similarly, (1.12) implies
Kia-1,26-1 = K3c-1, 24~ 1. Briefly, we can use (1.11) to show all terms of the form
“Keven,even are equal, and (1.12) to show all terms of the form “K,4q,044” are
equal. Finally, using the K, _,, ,;appearingin (1.11) and the K;, 5;-1,in(1.12),
with [, replaced by j and j replaced by I, we conclude K, —1,2; = “Keyen, even”
(from (1.11)) and K3, —1,2j = “Koad, 0ad -

We have now shown that all the sectional curvature terms appearing in 1.6b)
are equal (note that we do not yet know about terms of the form K,;_; ;). Now
one can use just 1.8a) to conclude that all these terms equal é.

PROPOSITION (1.13). If n = 3 then we have
(1.13) K2i—l,2i=A i= 1,...,n.

PRrOOF. Id g, b, c, d represent any four orthonormal vectorsin ¥, then a straight-
forward computation shows:

(114) Ku+b,c+d + Ka-—b,c—d = %{Kac + Kad + Kbc + Kbd + 2Racdb + 2Radcb}

Use (1.14) together with the first equationin (1.6a), (@ = e5;—1,b = ezj_1,¢ = ey,
d = ey;), together with (1.6b) and (1.3a) to get:

(1.15) 44 =Ky y,2i+ Kjj—1,2j + 20 + 34 — 0) + 2R, _1,2j,2i,2j-1-

Use (1.14) together with the second equation in (1.6a) (a = ey, b= —ey;_y,
¢ = ey, d = ey;), together with (1.6b) and (1.3a) to get:

(1.16) 44 =Kj;_1,2i + Kpj_1,2;+ 20 + 34 — 8) — 2Ry 35, 2i-1,2j-1-

Adding(1.15)and (1.16), using the Bianchi identity on the “R” terms (which yields
another R,;_; 5, 2j-1 = 3(4 — 6) by (1.3a) again), yields

(1.17) 24 =Ky;_y,2 + Kjj_y,2j

Just as in Example (0.5) in the introduction, this yelds 1.13a).

(1.18) ReMARK. Starting with Corollary (1.3), the indices have referred to an
orthonormal basis e,,...,e,, for which X = i eyi—1 A ey, where X is the

i=1

eigenvector of R, with eigenvalue r = 3(n — 1)(48 — 4). This X yields an orthog-
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onal complex structure J, by J(e,;— ) = —e,;, J2 = —Id, so in this case we have

X=— Y ey AJ(eyi-1). But now it is straightforward to verify that if
i=1
{f Jfi}, i=1...n is any orthonormal basis of V “adapted to J”, then

X = — Y fi A Jf;. Therefore the above results, starting with Corollary (1.3) are
i=1

in fact valid for any such orthonormal basis. That is, the orthonormal basis

ey,..., €2, may be replaced by f;, —Jfi,..., fn, —Jf,inall of the cited results, and

the conclusions still hold for this latter basis.

Using the above remark, we can now complete the

PrOOF OF THEOREM (0.4) (ii). Let ¥ and R be as in Theorem (0.4) (ii). Let P be
any two dimensional subspace of V. Without loss of generality, we may assume
that P has an orthonormal basis of the form { f;, aJf; + bf,}, where f}, Jf1, f are
orthonormal vectors, a> + b> = 1. Now

(119 K(P) = @®K(Uf1, f1) + b*K(f1, f2) + 2ab{RUSy, f) 1, £

From (1.13) and remark (1.18), we have K(Jfy, f;) = 4. From (1.6b) and remark
(1.18), we have K(f1, f2) = 6. We will now show that (R(Jf}, f1)f1, f2> = 0 Let P,
be the plane spanned by f3, Jf;, where fs, Jf; are any adapted orthonormal
vectors perpendicular to f;, Jf}, f3, Jf,. Then we have K(f3, Jf3) = 4, as above.
Let P,(6) be the plane spanned by {cos 0Jf; + sin 6, f;}. Note that P, and P,(6)
are mutually orthogonally planes. Letting f(6) = K(P;) + K(P,(0)), we see that
a f(0)=24 is a maximum for f(f). Thus f'(0)=0 and this yields
{RUf1, fi)f1,)2> = 0. Now (1.19) yields

(1.20) K(P) = a4 + b%5.

But (1.20) is exactly the result obtained from computing the sectional curva-
ture, K(P), of P with respect to the curvature tensor R (usingJ = — Y. fi A Jfias
inremark (1.18)). Therefore R and R have the same sectional curvatures and must
therefore be identical.

We now examine the consequences of the assumptions: dim V = 4(n = 2), Ris
orthogonally pinched between 4 and 6, and r = $(46 — 4). We still find an
orthonormal basis ey, ...,e, of V such that X = e, + €34, R, X = $(46 — A)X,
from Corollary (1.3). We can also still conclude R,,43 =%(4 — 9), ((1.32)),
K3 +K;u=K,3+K,=26 ((1.3b)), K+ Kisa=24 (1.17), and
Ri433 = }(4 — 6) = Ry4y13. Using these facts allows one to determine the values
of sums of various sectional curvatures, but does not seem to pin down R exactly.

In [MM], Micallef and Moore introduce the notion of nonnegative (positive)
curvature on totally isotropic two planes. For an algebraic curvature tensor R to
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satisfy this condition is equivalent to the following condition ((MM], p. 203):
(1.21) For all orthonormal e;, e, e, ey,

K,'j + Kkl + Ku + Kkj + 2Rikjl = 0(> 0)

From Proposition (1.1a), we see that if R is orthogonally pinched between
A and 4/4(4/4 + ¢,& > 0), then R is indeed nonnegative (positive) on totally
isotropic two planes.

Section 2. Proof of Theorem (0.3).

We just indicate the proof, since it is so similar to that of Theorem (1.3), [S].

At any point where A(p) =0, one trivially has (from example (0.5)),
R(p) = A(p)- Rcpn. Since b,(M) # 0, there is a harmonic two form, X, on M. Since
R(p)is orthogonally pinched between 4(p) and 4(p)/4, Proposition (1.1b) guaran-
tees that R,(p) is nonnegative definite. The Bochner method now guarantees that
X is parallel and R, X = 0. In the odd dimensional case, this implies 4 = 0. At
any point where A(p) # 0, the above statement means that R,(p) has 0 as an
eigenvalue, hence R,(p) = A(p)Rcpn, from Theorem (0.4) ii). Now proceed as in
the rest of the proof of Theorem (1.3) [S].
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