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ULTRA-IRREDUCIBILITY OF
INDUCED REPRESENTATIONS

JACOB JACOBSEN and HENRIK STETK AR

Abstract.

We study non-unitary representations of a Lie group, induced from a finite dimensional irreducible
representation of a subgroup, and find criteria for such a representation to be ultra-irreducible. We
apply our criteria to semi-direct products and to nilpotent groups.

1. Introduction.

In the present paper we prove irreducibility criteria for representations of Lie
groups induced from finite dimensional representations. The representations
need not be unitary and the representation spaces of the induced representations
may in our setup be chosen among a variety of different function and distribution
spaces. The notion of irreducibility that we primarily consider is that of
ultra-irreducibility which is stronger than complete and topological irreducibil-
ity.

Let G be Lie group and let u be a continuous irreducible representation of
a closed subgroup K of G on a finite dimensional complex vector space F. Then
G acts by left translations on the distribution space

2,(G; F):= {ue 2'(G; F)| u(gk) = p(k™")[u(9)] for ke K, g G}.

By a representation of G induced from u we mean the restriction of the left
regular representation of G on 2/(G; F) to an invariant subspace with a locally
convex topology for which certain natural continuity and density conditions are
satisfied (See Definition ITL.2).

We find general criteria for ultra-irreducibility (Theorem IV.2 and Corollary
IV.3) and scalar irreducibility (Corollary IV.3) of such induced representations.
(See Section II for irreducibility definitions). We apply the criteria to semi-direct
products and to nilpotent groups.

If G = NH is a semi-direct product of closed subgroups N and H, where N is
normal and connected, we let the u and K from above be of the form: p =y x v
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and K = NH,, where y is a homomorphism of N into C\ {0} and v is a finite
dimensional irreducible representation of the stabilizer subgroup H, for y in H.
This is the setup considered, for compact H, by Thieleker [Th], Williams [Wi]
and Rais [Ra 1,2], who studied the representations of G induced from p with
respect to topological irreducibility on the spaces L%(G;F) ~ I%(H;F) and
C,(G; F) ~ C,(H; F) of square integrable and continuous functions, respectively.

Here we prove a result (Theorem V.1) which extends the fundamental criterion
in [Wi; Theorem 4.11] on three accounts: It concludes ultra-irreducibility, not
just topological irreducibility, it applies to more representation spaces, including
I2(H; F) for compact H, and it does not require compactness of H. It is also more
general than [St; Theorem II1.3], which requires the representation space to
contain C;(G; F).

We next turn to nilpotent Lie groups: For various reasons the Schrodinger
representations, which are induced representations of the (2n + 1)-dimensional
Heisenberg group, have been studied and shown to be topologically (and in some
case even ultra-) irreducible on the function and distribution spaces C*, C, Cg,
2%, B,y and I (1 £ p < o) over R". See Petrosyan [Pe], Litvinov [Li],
Litvinovand Lomonosov [LL1], [LL2], Hole [Ho] and Poulsen [Po; Example
5.1]. In the setting of general nilpotent Lie groups Jacobsen and Stetkar [JS]and
Jacobsen [Ja] proved topological and operator-irreducibility on the spaces
2,(G; C)and C;?(G; C), where p is a character satisfying a polarization condition.
The works [Ho] and [JS] solve particular cases of Helgason’s general program
as described in Chapter II §4 of [He].

These fragmentary facts are generalized by Theorems VI.1 and VIL.2 below.
Our results show in particular that the above representations all are
ultra-irreducible. We proceed by outlining the two theorems:

Let G and its subgroup K be connected and simply connected nilpotent Lie
groups. Then the representation u reduces to a homomorphism of K into C\ {0}.
The Kirillov theory [Ki] tells that the unitary representation of G induced from
a unitary p is irreducible (topologically and hence ultra-), if and only if the Lie
algebra of K is a polarization at the differential of u (extended to a linear
functional on the Lie algebra of G).

We show that this polarization condition, properly modified when u is no
longer unitary, suffices for irreducibility on a variety of other locally convex
representation spaces: Scalar irreducibility holds for all the considered induced
representation spaces and ultra-irreducibility if (apart from continuity and com-
pleteness conditions) either,

(a) the representation space is a C*(G/K)-module (Theorem VI.1), or

(b) uisunitary and the representation space consists of tempered distributions
and contains the space of those smooth functions in 2,(G; C) which decrease
rapidly at infinity modulo K (Theorem VI.2).
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Our proof of Theorem VI.1 builds on properties of the differentiated represen-
tation, established in the unitary case by Kirillov [Ki], while our proof of
Theorem VI.2 uses properties of the integrated representation due to Howe
[Hw].

The weakly tempered topologically irreducible locally convex G-modules
considered in [Cl; Remarque 5.17] are representations of the type covered by our
Theorem VI.2. In particular these modules are indeed even ultra-irreducible.

II. The ultraweak topology.

By a locally convex space we will always mean a locally convex, Hausdorff
topological vector space over the field of complex numbers C. The topological
dual E’ of a locally convex space E will be equipped with the strong dual
topology, and the value of ¢’ € E" at e E is denoted <e,e'). If 7 is a topology on
E then E, denotes E with that topology.

If E and F are locally convex spaces we let L(E, F), resp. S(E, F), resp. B(E, F)
denote the vector space of those linear mappings of E into F which are continu-
ous, resp. weakly continuous, resp. map bounded sets into bounded sets. As is
well-known L(E, F) < S(E, F) = B(E, F). Furthermore L(E, F) = S(E, F) if E has
the Mackey topology [Sc; IV.7.4], as in the case when E is barrelled [Sc; IV.3.4];
in particular if E is reflexive [Sc; IV.5.6]. We abbreviate L(E, E) to L(E) etc.

The ultraweak topology (uw) on B(E, F) is the weak topology defined by the
linear functionals

A Y A;{Au,u;) on B(E,F),
i=1
where the sequence {4;} ranges over I*(N), the sequence {u;} over the bounded
sequences in E, and {u;} over the bounded sequences in F'. The ultraweak
topology is clearly stronger than the weak operator topology (w) on B(E, F), i.e.
the weakest topology making the linear functionals 4 - {Au,u), ueE, W e F’,
continuous.

DErFINITION 1. A representation T of a group G on alocally convex space E, i.e.
a homomorphism of G into the group of invertible elements of S(E), is said to be
ultra-irreducible, if the algebra spanned by T(G) is dense in S(E),.

Ultra-irreducibility is a strong notion in the sense that it entails other forms of
irreducibility: An ultra-irreducible representation is for example topologically
completely irreducible and hence also topologically irreducible, operator irre-
ducible and scalar irreducible (by the last notion we mean that the intertwining
operators in S(E) are multiples of the identity operator Iz on E).

The following lemmas will be convenient tools in dealing with the ultraweak
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topology. Their proofs are standard functional analysis and use the fact that
strongly and weakly bounded subsets of E’ coincide when E is a semi-complete
(i.e. Cauchy sequences converge) locally convex space [Bo; I11. §4.3].

LEMMA 2. Let E and F be locally convex spaces.

(«) IfF is barrelled then any continuous linear map of F into B(E),, will also be
continuous into B(E),,.

(B) IfE is semi-complete then any sequence in S(E) which converges in B(E),, will
also converge in B(E),,,.

If G is a Lie group we let 2(G) denote the vector space of compactly supported
C>-functions on G. When we consider integrated representations of 2(G) it will
be wrt. to some given left Haar measure on G.

LEMMA 3. Let T be a strongly continuous representation of a Lie group G on
a semi-complete locally convex space E. Then we have for the integrated representa-
tion T of 2(G) that

(2) T(¢p)e B(E) for all p € 2(G),

(B) span{T(g)|ge G} and T(2(G)) have the same closure in B(E),.

III. The induced representations.

Throughout this section we let G denote a Lie group which is countable at
infinity, K a closed subgroup of G and p a continuous representation of K on
a finite dimensional complex vector space F. A special case is 4 = 7:= the trivial
representation of K on C. By C*(G; F) we denote the Fréchet space of F-valued
C®-functions on G, by 2(G; F) the LF-space of compactly supported functions in
C*(G; F), and by 2'(G; F), the space L(2(G), F) of F-valued distributions on G,
equipped with the topology of bounded convergence. If F = C we will delete the
symbol F from the notation. Function spaces are continuously imbedded into
distribution spaces by means of fixed left Haar measures dg on G and dk on K.

The left and right actions of G on functions and distributions are denoted by
L and R respectively, and the actions on distributions are defined so as to extend
the ones on functions, ie. [L(g)u](¢):=u(L(g~')$) and [R(g)u](¢):=
u(46(g " "HR(g~Y)¢) for all ge G, ue 2'(G; F), ¢ € 2(G), where Ag is the modular
function on G.

By help of 4 we define an action of K on 2'(G; F) by [u(k)u](¢): = u(k)[u(d)]
for ke K, ue 2'(G; F), ¢ € 2(G), and introduce the space

2,(G;F):= {ue 2'(G;F)| R(k)u = u(k™")u for all ke K}.

Weput C*(G; F):= C*(G; F) () 2/(G; F) and let 2,(G; F) denote the functionsin
C.2(G; F) of compact support modulo K.
The spaces 2,,(G; F) and C7(G; F) are given the topologies from 2'(G; F) and
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C*(G; F) respectively. 2,(G; F) carries the inductive limit topology from the
family of subspaces {¢ € C(G; F)|supp ¢ = CK} of C*(G; F), where C ranges
over the compact subsets of G. Note for later use that Z,(G; F) is reflexive as
a strict inductive limit of a sequence of reflexive Fréchet spaces [Sc;IV.5.8], and
that 9, = C; if G/K is compact. The spaces are all complete. Furthermore they
areinvariant under L, and L restricts to continuous representations of G on them.

We shall usually abbreviate 2,(G; F) by 2,, C;°(G; F) by C;? etc. We will also
write C(G) = C*(G/K)and 2,(G) = 2(G/K), viewing the functions on the right
hand sides as functions on G.

We adapt the notion of a normal space of distributions (Cf. [ Tr; Def28.1 p. 302])
ta the situation at hand:

DEFINITION 1. A normal subspace of &, is a locally convex space E such that
9, < E c 2, with weakly continuous and linear inclusions and with &, dense in
E.

DEFINITION 2. By a representation of G induced from p we mean a restriction Ly
of the left regular representation L of G to an L-invariant normal subspace E of
2, with the property that L is a strongly continuous representation of G on E.

So we require of a representation space that it must contain 2, which then is
minimal among the representation spaces.

There is a natural module structure in the given setup: For each y e C*(G/K)
the operator M(y) of multiplication by ¥ is a continuous endomorphism of 2,
that restricts to continuous endomorphisms of C;? and 9,. If Y € 2(G/K), then
M(y) maps C;? continuously into .

Many of the important spaces of distributions, e.g. all the local ones, are
invariant under multiplication by C®-functions. Here we may regularize the
distributions prior to multiplying. Technically what we need is

DEFINITION 3. A normal subspace E of 2, is said to be a C*-semimodule, if

(«) for each y € C*(G/K) and ¢ € 2(G) the map M(y)L(¢) leaves E invariant
and belongs as an operator on E to B(E),

(B) the corresponding map ¥ — M(y)L(¢) is continuous from C®(G/K) into
B(E),, for each fixed ¢ € 2(G).

In general it is a severe restriction on E to demand that it is a C*-semimodule,
because the condition («) excludes space like I? with growth conditions at infinity.
The continuity condition () is by the closed graph theorem automatically
satisfied for the commonly met spaces of distributions.

A normal subspace E of 2, is a C*-semimodule if for instance C;° < E with
weakly continuous inclusion. This condition is always satisfied if G/K is compact,
since in that case 9, = CY.
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We conclude this section by identifying the dual space of 2,(G; F) and intro-
ducing a certain canonical bilinear form. To that end we need the continuous
representation u' of K on F’ defined by u'(k):= y4(k ") u(k ') for k € K, where y,,
denotes the quotient between the modular functions on K and G.

There is a natural topological isomorphism of the strong dual 2(G; F)' onto
2'(G; F') (See [Wa; Appendix 2.31]). We denote the corresponding bilinear form
on 2(G; F) x 2'(G; F') by -, )¢. It is L-invariant.

Let 7, denote the continuous linear map of 2(G; F) onto 2,(G; F) given by

(D)9 = L u(k) p(gk) dk for ¢ € 2(G; F) and geG,

(Cf. [Wa; 5.1.1.4]).

PROPOSITION 4. There is an L-invariant bilinear form {:,->, on 2,(G;F) x
2,/(G; F'), which identifies 2,(G; F) and 2,,(G; F') with the strong duals of one
another and is characterized by

(@), ud, = {p,u)g for ¢ € 2(G; F) and ue 2,,(G; F').
We call (-, >, the canonical bilinear form.

PRrOOF. Letmy: 2,(G; F)— 2(G; F)denote the continuous linear map of multi-
plication by a C*-function #: G [0, o[ satisfying (i) CK () supp 8 is compact
for each compact subset C of G, and (ii) jK 0(gk)dk = 1 for all ge G, (Cf[Wa;
A.1.1]).

Easy computations show that t,m, is the identity on 9,(G; F), that the adjoint
7, maps 9,(G; F) into 2,,.(G; F'), when 2(G; F) is identified with 2'(G, F'), and
that {myt, @, ude = (¢, u)g for all ¢ € D(G; F) and ue C;2(G; F). Since C;2(G, F')
is dense in 2,,(G; F") this last identity holds for all ue 2,,.(G; F').

This proves that 7} is a topological isomorphism of 2,(G; F) onto Z,,.(G; F')
with inverse given by the restriction of mj. The desired form <-,* ), may now be
defined by

(P, u), =0, uds = (d),(rz)_lu}G for ¢ €2,(G; F) and ue 2,,(G; F).

It is L-invariant, since <',*)¢ is L-invariant and 7, commutes with L. It
identifies 92,,.(G; F’) with the dual of 9,(G; F) by continuity of 7}, and mj, and it
identifies 9,(G, F) with the strong dual of 2,,.(G; F’) by reflexivity of 2,(G; F).

The canonical form {:,*), restricts to a separately continuous L-invariant
bilinear form on 9, x 2, If up to a constant scalar factor this restriction is the
only such form we say that the canonical form is unique.

PROPOSITION 5. () The canonical form is unique if and only if every continuous
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linear L-intertwining map from 9, into 9, is proportional to the inclusion map i:
2,—9,.

(B) If the canonical form is unique then every representation of G induced from
w is scalar irreducible.

PrOOF. () There is a linear bijection B+ A of the space of separately con-
tinuous L-invariant bilinear forms on 9, x 9, onto the space S(2,,2,)° =
L2, 9;‘)6 of intertwining operators given by B(¢, y) = {y, A¢p), for all p€ 2,
and Y € 9,.. Moreover (Y, 9>, = (P, ¥), for all g P, and Yy €D,

(B) By restricting anintertwining operator Te S(E) to the dense subspace 2, of

the representation space E we get a map Ty € L(2,, 2 ”)G‘ By (o) Ty is a multiple of
i, so T is a multiple of the identity on E.

IV. Irreducibility criteria

Let G, K and p be as in Section III. The operator L(¢), ¢ € 2(G), maps 2, con-
tinuously into C;?, so for ¥ € 2(G/K) the composite operator M(y)L(¢) maps
2, continuously into Z,. The technical key to our irreducibility results is the
following theorem on the space A spanned by such operators.

THEOREM 1. Let the representation u be irreducible, and put
A:=span{M)L(¢)| Y € 2(G/K) and ¢ € 2(G)} < L(D,,, D,).
Then

(®) Ais dense in (D), Dy)uw-

(B) If E is a normal subspace of 9, and the identity operator Ig on E belongs to
the closure of L(D,,, 9,) in S(E),w, then the set of operators A|g is a dense subspace
S(E)uy-

(y) Any A€S(2,,9,) = L(2,,9,) which commutes with each of the operators
from A is a constant multiple of the inclusion map i: D, - D,

PROOF. («) Let {1;} and {u}} be bounded sequences of 2,(G; F) and 2,.(G; F') =
2,(G; FY respectively, and let {4;} '(N). We shall prove that if

1 fi i (Y LUPJus, Uiy, = 0 for all Y € D(G/K), ¢ € D(G)
then =
@ i A {Au, u>, =0 for all A€ (D), D,).

i=1

We assert that (1) is equivalent to

3) i 2<%, (L )U)G ) Dp gy = O for all ¢’ € D(G), geG, x€F,
i=1 ,
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where the series in (3) converges in 2, by completeness of Z,,.

Now, replacing in (1) ¥ and ¢ by their translates L(g~ ')y and L(g~')¢ and
using that L(g ™~ )M)L(¢) = M(L(g~ ")) L(L(g~')¢) we get by the L-invari-
ance of <-,-), that (1) is equivalent to

@ i A YL@, Lg)ui >, = 0 for all Y € Z(G/K), ¢, ¢’ € 2(G).

Given f e C(G; F)and '€ C2(G; F') the function {f("), f'()>r « r- belongs to
CZ(G), so that for any y € 2(G/K) (Cf. the proof of Proposition 4)

YL S u = OULS Y6 = [6 0@ (@) <f @), f' @) xr dg = Y, S, f'(VrxrDe
Hence the left hand side of (4) equals

i Ay (U@ ) (LS NV x D = P .i A {(LUDYu)( ), (LS V) ()Dp xF s

where the last series converges in C?(G). By the non-degeneracy of (-, ),, (4) is
therefore equivalent to

O .i Ll{(L(P)ui)(g), (LUPIu)(@)Drxp = 0 for all ¢, ¢’€ Z(G) and g€ G.

Replacing ¢’ by L(gkg' ~!)¢’, where ke K and g’ € G, and using that L(¢')u;e
C.(G; F') we get that (5) is equivalent to

6) ;1/1.~<(l(¢)w)(g),/t'(k)(l-(¢')u§)(g')>pxp'=0 for all ¢, ¢'€2(G),9,9'€G,keK.

Via Burnside’s theorem [y is a finite dimensional irreducible representation,
since so is u] (6) is equivalent to

'=Zl li <(L(¢)u‘)(g)’ <x’ (L(¢’)u:)(g,)>l~‘ X F'x,>p xF' = 0
for all ¢, ¢'eg(G)ag’QIEG,XEF,x'GF',

which again is equivalent to
(M) % Ax, (L(PNu)g rxr Lid)u; =0 for all ¢, ¢' € D(G),g'€G, xeF.
i=1

Being continuous L(¢$) may be pulled outside the summation, so (7) is equival-
ent to (3). This proves the asserted equivalence between (1) and (3).
Given (1) we apply A€ L(2,,,9,) to (3) and get

8) Y i x, (P YUNG))E x - Auy = 0 for all ¢'€ D(G), ¢ €G, xeF.
i=1
Since {Au;} is bounded in 9, and hence in 2/, we obtain from (8), via the fact
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that (3) implies (1), that

) Y. A YL($) Auy, ujy, = 0 for all Y € 2(G/K), ¢ € D(G).
i=1

We may choose a sequence {{;} = 2(G/K) such that M(y;) - I in (D),
Also, the closure of {L(¢)| ¢ € 2(G)} in L(2,),, contains I. Hence (9) implies (2).
This proves ().

(B) Since the restriction map A+ Alg is continuous from (D), D,).. into
S(E),w- it suffices by () to prove that the subspace L(Z,,, 9,)|g is dense in S(E),,.

To that end let T € S(E) be arbitrary. Now BTC € S(2),, 2,) = (2, 2,) for all
B,Ce L(2,,2,). By hypothesis we may let B and C converge in S(E),,, towards
the identity operator on E. Composition in S(E),,, is separately continuous, so
T lies in the closure of L(Z),, 2,)|g in S(E)yy.

(y) Since A is dense in 1(Z),, 9,), the relation ACi = iCA holds by continuity
for all Ce (2, 2,). This implies that 4 is a multiple of i: Choose Y € Z, and
¢e(2,) with iy, l) = 1. Let €2, and put C =<, {>Pe (D), 2,). Then
Ad = AKiy, &> @) = ACiy = iCAY = {AY, &) id.

An immediate corollary is the following

THEOREM 2. General Irreducibility Criterion.
Let the representation u be irreducible, and let Lg be a representation induced
Sfrom u on a semi-complete space E. If
() The identity Ig on E belongs to the closure of L(2),,2,) in S(E)w, and
(i) The operators M(y)L(¢), for all Y € 2(G/K) and ¢ € D(G), belong to the
closure of L(2(G)) in B(E),,
then Ly is ultra-irreducible.

COROLLARY 3. Let u be irreducible and assume that there is a dense subset </ of
C*(G/K) such that

(%) M) L(¢) € L(2(G)) (as operators on 2,,) for all Y € A, ¢ € D(G).

Then any representation of G induced from u and acting on a semi-complete
C*®-semimodule E is ultra-irreducible.

Furthermore the canonical bilinear form {-,- ), is unique, and so any representa-
tion of G induced from p is scalar irreducible.

ProOF. To prove ultra-irreducibility we verify (i) and (ii) of Theorem 2. Note
that since E is a C®-semimodule the map  — M()L(¢)|s is continuous from
C*(G/K) into B(E), (via Lemma II.2) for each ¢ € 2(G).

(i): Choose a sequence {y;} in 2(G/K) such that y; - 1 in C*(G/K). Then for
each ¢ € 2(G), {M(y;)L(¢)} is a sequence in I(D,, Z,) such that M(y;) ()| —
L(¢)|g in B(E),. Since E is semi-complete Lemma II.3 implies that the closure of



314 JACOB JACOBSEN AND HENRIK STETK ZR

L(2(G))|g = Lg(2(G)) in B(E),,, contains Ir. This proves (i).

(ii): The hypothesis (*)implies by the density of .7 that the closure of Lz(2(G))
in B(E),, contains the operators M(y)L(¢)|g for all e C*(G/K) = 2(G/K),
¢ € 2(G). Hence (ii) holds.

The final statement follows by Proposition IIL5 if any 4 € L(2,, ;) commut-
ing with L is a multiple of the inclusion map i: 9, — 2/,. Now, such 4 commutes
with L(0) for all § € 2(G), so by assumption (¥) A commutes with M(y) L(¢) for all
Y e/ and e P(G). Since o is dense in C*(G/K), this extends to all ye C*(G/K) o
2(G/K). The conclusion is now a consequence of Theorem 1(y).

As the proof of Corollary 3 shows, the statement of scalar irreducibility
requires only that the representation space E is invariant, not that L is a repre-
sentation or that it is strongly continuous.

V. Applications to semi-direct products.

Let G be a Lie group, countable at infinity, and assume that G = NH and
N H = {1}, where N and H are closed subgroups of G with N normal and
connected. We let n denote the Lie algebra of N.

Let y: N — C\ {0} be a continuous homomorphism, not necessarily unitary.
Let v be a continuous irreducible representation of the stability subgroup H, for
x in H on a finite dimensional complex vector space F. Then u:= y x v is
a continuous, irreducible representation of the stability subgroup G, = NH, on
F.

The representation space 2,(G, F) of the corresponding induced representa-
tion L is topologically isomorphic to

D (H; F) = {ue 2'(H; F)| u(hh,) = v(h; ")[u(h)] for he H,h,e H,},
and L transferred to 2/,(H; F) has the form
[L(nh)f1(hy) = x(h{ *nhy)f(h~*hy) forneN, h,h,eH and fe P,(H;F).

In this setting topological irreducibility of the induced representation has been
studied for compact H on the subspaces L2(H; F) and C,(H; F) of 2'(H; F)ine.g.
[Th], [Wi], [Ral] and [Ra2], and on other subspaces and with respect to
ultra-irreducibility in [St].

The space

&, .= span {his 1 Adh"ND) | 7 £ nC}

is an H-invariant subalgebra of C*(H/H,) containing the constants and separat-
ing the points in H/H, (See [Wi; Proposition 4.4]). Since it is H-invariant, it is
dense in C*(H/H,) iff it is dense in C(H/H,).

THEOREM 1. Let v be irreducible and assume that o/, is dense in C*(H/H,).
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Then any representation of G induced from y x v on a semi-complete
C*-semimodule is ultra-irreducible. If H/H, is compact any induced representation
with semi-complete representation space is ultra-irreducible.

Furthermore the canonical bilinear form (-, ), is unique, and so any representa-
tion of G induced from y x v is scalar irreducible.

PROOF. Put y,(9):= x(g 'ng) for neN, geG. Then M(y,)L(d)u=
L(n)L(¢)u = L(L(n)p)u for all ne N, ue &', . Hence the condition (x) of Corol-
lary IV.3 holds with .« := span{y,|neN}. Since N is connected, &/ equals
span {y, | n€ exp (1)}, so by analyticity of the map

ZenCi (g A6 N2) e C2(G/G,),

&/ has the same closure in C*(G/G,) ~ C*(H/H,) as «/,, so & is dense in
C*(G/G,). If H/H, is compact then any semi-complete representation space is
a C*-semimodule.

If v = 7 the condition that <7, is dense in C*(H/H, ) is necessary for topological
(but not for scalar) irreducibility of the induced representation L (Cf. Wi; The-
orem 5.10]). Fell’s example (See [Th;§9] or [Wi; p. 82]) shows that L is not
always topologically irreducible. Criteria for the density of &, in C*(H/H,) can
be found in [Wi; Section 5], [St; Section IV] and [Ra 1] (or the more detailed
version [Ra2]). It is easy to see that .o, is self-adjoint and hence dense, if  is
unitary.

Theorem 1 generalizes, as mentioned in the introduction, the fundamental
irreducibility criterion of [Wi; Theorem 4.11] and also [St; Theorem IIL.3].

ExampLE. The (ax + b)-group.

The (ax + b)-group is the semi-direct product G = N x; H = R x,R* with
composition rule (by,a)(b,,a,) = (by + a,b,, a,a,). Any continuous homomor-
phism y: N — C\ {0} is of the form y(b, 1) = ¢*® for some a€C.

If « # 0, then H, consists of the identity alone, so v is the trivial representation,
the representation space reduces to Z,(H) = 2'(H) = 2'(R*) ~ 2'(R), and the
corresponding representation on 2'(R) is given by

(*)  [L(b, a)ul(x) = €™ “u(x — loga) for (b,a)eG, ue2'(R)and xeR,
an expression which is well known from the unitary theory. Moreover
of, = span {(1,q)— e '?|ze C} = C*(H/H,),

so &/, is self-adjoint and hence dense in C*(H/H,). By Theorem V.1, () therefore
defines ultra-irreducible representations on the subspaces 2'(R), CF(R), C*(R),
C(R) etc. of 2'(R).

In the case of a unitary g, (*) defines representations of G on the spaces If(R) for
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1 < p < o0. Using Theorem IV.1 () it can be proved that these representations
are ultra-irreducible as well. To the best of our knowledge this has been shown
earlier only in the Hilbert space case p = 2.

VL. Applications to nilpotent Lie groups.

In this section G will denote a connected, simply connected, real and nilpotent Lie
group with Lie algebra g and K will be an analytic subgroup of G with Lie algebra
I

Let y: K — C\ {0} be a continuous homomorphism and assume that the
following maximality condition is satisfied: There is a complex linear extension o:
g¢ — C of the differential dy: £ — C of x such that

€= {Xeg®a([X,1°]) = {0}},

where superscript C means complexification.

This maximality condition is known to be both necessary and sufficient for
topological and scalar irreducibility of the induced representations of G on the
spaces C7(G) and Z/(G), cf. [Ja].

The representations induced from y will be dealt with in their standard
realizations which are constructed as follows: Let X,,...,X, be a basis of
gmodulo f with the property that g;: = span {X;,...,X,} + fisanidealing;_,
foreachi=1,...,n Then the map

(X150 vs Xp k) exp (x1X7). .. exp(x, X, )k

is a diffecomorphism of R” x K onto G, and the map r: f + f|g. of restriction to
R" = R" x {e} < G defines topological vector space isomorphisms of the spaces
2,(G), C7(G) and 2,(G) onto 2'(R"), C*(R") and 2(R") respectively.

The i~nduced representation L of G on 2/(G)is via r equivalent to the represen-
tation L on 2'(R") given by

(1) [Lgulx) = x '(x(g~,x)u(g™-x) forgeG, ueZ'(R"), xeR",

where (g, x) — g x is the canonical action of Gon R" ~ G/K and k: G x R" - K is
the map defined by gx = (9 x)x(g, x) for all ge G, xeR" = G.

THEOREM 1. Let G and y be as described above. Then any representation of
G induced from y acting on a semi-complete C®-semimodule is ultra-irreducible.
Furthermore the canonical bilinear form <+, ), is unique, and so any represen-
tation of G induced from y is scalar irreducible.

ProOF. We need only verify the condition (*) of Corollary IV.3. Let #(g)°
denote the complexified universal enveloping algebra of g. If L is a realization of
L|4;, on 2'(R") as constructed above, then dL(D)I(¢) = [(dL(D)¢) € [(D(G)) for
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all De%(g)°® and ¢ € 2(G); furthermore, the image d(%(g)°) consists of all
differential operators on R" with polynomial coefficients (by Theorem 3.2 of
[Ja]). Hence (*) is satisfied with ./ equal to the algebra of all polynomials on
R" ~ G/K.

The uniqueness of the canonical bilinear form was observed in [Pe] for the
Schrodinger representations of the 3-dimensional Heisenberg group.

While the statement on ultra-irreducibility in Theorem 1 covers spaces which
are invariant under multiplications by C®-functions, our next result applies to
spaces like IP. It involves tempered distributions and requires unitary of .

In order to present the result without reference to realizations we define the
spaces &,(G) and & (G) as the preimages under the restriction map r: 2'(G) —
2'(R") of the spaces #(R") and &’(R"), respectively, with their usual topologies. If
xis unitary this definition is independent of the choice of realization, because any
isomorphism 6 intertwining two standard realizations of L|5; has the form

[0u](x) = x~ ' (p(x))u(g(x)), ue 2'(R"), xeR",

where p: R" - K and ¢: R" — R" are polynomial maps, g with polynomial inverse.

The expression (1) for L shows that the spaces <,(G) and &' (G) are invariant
under the action of L and that L restricts to strongly continuous representations
of G on them.

THEOREM 2. Let G and x be as described in the beginning of the section and
assume that x is unitary. Then any representation of G induced from y on
a semi-complete space E that satisfies ¥, (G) c E = & (G) with weakly continuous
inclusion maps is ultra-irreducible.

Proor. Identify L = L|,, with one of its standard realizations. Then L re-

stricts to a strongly continuous unitary representation of G on I?(R"), and by
Theorem 3.4 of [Hw] there exists a linear map ¢ — K4 of #(G) onto #(R" x R")
such that

[L(P)u](x) = J Ky(x, Y)u(y)dy = <Ky(x,"), up 5 x 5
an
for all ¢ € #(G), ue I?(R") and x e R".

This formula implies that L(¢) extends to a continuous map of &'(R") into
&(R") for each ¢€F(R"). The map ¢+ K, is continuous from &(G) into
&(R" x R") (by the closed graph theorem), so the map ¢ — L(¢) is continuous
from &(G) into L(¥'(R"), #(R"),. The assumptions on E then implies that
¢+ L(¢) | is a continuous map of &(G) into S(E)y,, hence into S(E),,, by Lemma
IL.2.
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By surjectivity of the map ¢ € #(G)— K, € (R" x R"), L(¥(G))|g contains all
the operators of the form Y L(¢)|r where y € #(R") and ¢ € #(G), in particular
those with iy € 2(R"). Hence so does the closure of Lg(2(G)) = L(Z(G))|g in
S(E)uw> 2(G) being dense in £(G).

We claim that the identity operator on E is contained in the closure of
L(2'(R", 2(R") in S(E),.. Indeed, choose y e 2(R") with y(0) =1 and put
Vi(x) = ¥(x/i) for xe R",ie N. Then for each ue ¥(R"), y;u - u in £(R") and
hence weakly in E. Therefore y;L(¢)|z — Lg(¢) in S(E),, and so in S(E),, by
Lemma I1.2, for each ¢ € 2(G). Since I is contained in the closure of Lg(2(G)) in
B(E),w the claim is verified.

The theorem now follows from the general irreducibility criterion Theorem
Iv.2.

EXAMPLE. The Heisenberg group.

The (2n + 1)-dimensional Heisenberg group is G = {(x,y,z)eR"| x,yeR",zeR}
with group multiplication (x, y,z)(x’,y,2) = (x + X,y + ¥,z + 2’ + x* y').

For x given on K = {(0,y,2z)| ye R", ze R} by x((0, y,z)) = e~ ***, where 1€C,
the induced representation on 2/(G) is realized as

[Ty(x, y, 2)u](t) = €2yt — x) for (x,y,z)e G, ue 2'(R"), te R".

For Ae R\ {0} the restrictions of T; to I?(R") are the well known unitary
Schrodinger representations of G which are known to be irreducible.

Our Theorem VL1 implies ultra-irreducibility for each 1€ C\ {0} of the
strongly continuous representations of G obtained by restricting T} to e.g. the
spaces:

C,(R™, C'(R") for 0 < r < oo,
Z'(R"), &'(R"),
L (R"), E(R) for 1 < p < 0.

If 2e R\ {0}, then Theorem V1.2 implies ultra-irreducibility of T} restricted to
the spaces (for definitions see [H6])

S (R"), #'(R"),
IP(R", kdx), B,x(R") for1 < p < co and k a tempered weight function,
H,(R") (Sobolev spaces) for — o0 < s < o0.

The above list of representation spaces covers the ones considered in [Pe],
[Li], [LL1], [LL2], [Ho] and [Po; Example 5.1].
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