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VON NEUMANN INEQUALITY FOR (B(#)"),

GELU POPESCU

0. Introduction.

Let H?(D) be the Hardy space of analytic functions on the unit disk D, i.e.,

Q0 [l
Z a; aeC, ||u||2H2(D) = Z la)? < 00}
<o

k=0

H*(D) = {u(,l) =
k
J. von Neumann’s well-known inequality [11] on Hilbert space operators
asserts that if T'is a contraction on a complex Hilbert space # (i.e., || T|| < 1)and
p is an analytic polynomial in H?(D), then the operator p(T) satisfies the
inequality
(0.1) [p(T)| = sup [p(A)] = sup lpqlluxw)

lAls1 qe(P+ )1

where (2. ), stands for the unit ball of 2, = H?(D) and 2, denote the set of all
analytic polynomials in H2(D).

T. Ando [1] generalized the inequality (0.1) for two commuting contractions.
In [10] N. Th. Varopoulos show that this inequality does not generalize to an
arbitrary number n = 3 of commuting contraction. Moreover, it is shown that,in
general, for n = 3 and some commuting operators Ti,. .., T, € B(#) such that

(s

M=

IA

1,

i=1

the inequality

1p(Ty,. .., T)Il £ K sup {lp(ll,. S I N VM 1},
i=1

where K > 0 and p(4,,...,4,) is any complex polynomial of n variables, is not
true.

Concerning the von Neumann inequality see also [9].

Now let us present the results of this paper. For a natural number n let B(#)"
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denote the set of n-tuples T = (T, . . ., T,) of elements from B(s#) (i.e., the algebra
of all bounded operators on the Hilbert space ). We define a Banach space
norm on B(s)" asking that the injective map

n: B(#)" > My(B(#))
given by
n(T);=T;for1 £j<nand n(T); = 0fori > 1,

be an isometry. The norm gives B(s#)" the product topology, and for each
T =(Ty,...,T,)eB(#)" we have

ITI = I=(D) = | Y, TT*|*
i=1
Let (B(##)"); denote the unit ball of B(s#)", i.e.,

BEE)): = {(Tl,---,T..)e:B(éf)": > TT* < I.#}
i=1

The main aim of this paper is to extend the von Neumann inequality to
(B(s£)"),, forn = 2.

To be more precise, let us consider the full Fock-space [4]
0.2) FH,)=CI® @ H?",

m21

where H, is an n-dimensional complex Hilbert space with orthonormal basis e,
e,,...,e,. We shall denote by £ the set of all pe #(H,) of the form

0.3) p=ay+ Y a, € ®...0¢, meN,
1=<iy,...,ixSn
12k<m

HA

where ay, a;, ;€ C and the sum contains only a finite number of summands.
The set 2 may be viewed as the algebra of the polynomials in n noncommuting
indeterminates, with p ® g, p, q € 2 as multiplication.
Let p(Ty,. .., T,) stand for the operator acting on #, given by

©.4) P(Ty,....T) =aole + Y0, 5, Ty T

Our von Neumann inequality for (B(#)"), asserts that if (Ty,. .., T,) € (B(#)");
and pe 2, then

(0.5) Ip(Ty,..., T = sup [Ip ® qlsa,»

qe(2)1

where

(@), ={pe?:lplsw, = 1}.



294 GELU POPESCU

If n = 1, it is easy to see that, we find again (0.1).

Let us remark that, if n = 2 and T;, T, are commuting contractions such that
[Ty, T»] is a contraction, the von Neumann inequality (0.5) seems to be sharper
than Ando’s inequality [1].

For instance, if

T, T)=T + T,
then Ando’s inequality shows that
Ip(Ty, o) =2,

while, von Neumann inequality (0.5) (see Corollary 2.2) gives

Ip(Te Tl < /2.

In order to extend (0.5) to a Banach algebra containing £, we need to introduce
some Banach algebras (#*,| |l,) and (#,] ||o), which may be viewed as
a noncommutative analogue of the Hardy space H® and the disk algebra,
respectively.

We shall see that if (T3,. . ., T,) e (B(5#)"),, then the mapping

¥: P - B(#), Y(p)=p(T,,...,T,)

extends to a contractive homomorphism from the noncommutative “disc alge-
bra” o to B(5¢).

Also, it is shown that, for a class of elements (T,..., T,) e (B(5#)"),, there is
a functional calculus defined by the mapping

fo(Tl9’7:l)

from the algebra & ® into B(s#).

The main tools for proof are some results from dilation theory for the elements
of (B(#)"); (see [2,5,6,7]), the Wold decomposition for n-tuple (V4,...,V,)e
(B(>#)"), of isometries with orthogonal final spaces [5,6,8], and some facts
concerning the Cuntz-algebra 0, [3].

1. Notation and preliminaries.

Throughout this paper A stands for the set {1,2,...,n}, n = 2. For every
keN* = {1,2,...},let F(k, A) be the set of all functions from the set {1, 2,...,k} to
A and
11 F = | F(k, A), where F(0, A) stands for the set {0}.

k=0

A sequence & = {S,} ;.4 of unilateral shifts on a Hilbert space J# with orthog-
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onal final spaces is called a A-orthogonal shift if the operator matrix [S,,S,,...]
is nonunitary, i.e., Z:= # © (@ S,#) + {0}.

ieA
We need also the following definitions. A subspace & = # is called cyclic for

a sequence {A;} .4 of operators on  if

\ Ap6 =K,
feF
where A stands for the product A ... Apgyifk 2 1, feF(k, A),and Ay := L.
We define the multiplicity of { 4;} ;.4 to be the minimum dimension of a cyclic
subspace for {4;},.4. If {B;} .4 is another sequence of operators on a Hilbert
space ¢ and if there exists a unitary operator U mapping J onto )" such that

A, =U"'B,U forany ie4,

then, we say that {4,} ., is unitarily equivalent to {B;}c4-
Let us recall from [6, 7, 8] some results concerning the A-orthogonal shifts.
If {S1} 1c4 is @ A-orthogonal shift on # then,

&= (\KerSf and # = @ S, &
AeA SeF
Each he s has a unique representation

h= Zsflf’ lfe.?,fee?/".
SfeF

In this case |h||> = Y, |lI;|*> and I, = Py,Sth, fe Z,
feF

where
Po=1Le— ), S:S%
AeA
is the projection of # on Z.
Now one can easily prove the following theorem. We omit the proof.

THEOREM 1.1. If & = {S,},c4 is a A-orthogonal shift on #, then Z is cyclic for
& and dim & < dim & for every cyclic subspace & for &.

As a corollary, we obtain that the multiplicity of & is equal to dim Z.

THEOREM 1.2. Two A-orthogonal shifts are unitarily equivalent if and only if
they have the same multiplicity.

PROOF. If & = {S,}1c4 = B(5#) and &' = {8}},c4 = B(X") are two A-or-
thogonal shifts with the same multiplicity, then % and £’ have the same

dimension. Hence, there is an isometry W which maps & onto #’. Forany he #
define
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Uh = Z S}Wlf for h = Z Sflf.

JeF feF
Then U is a unitary operator from J# onto s#’ and
S, U=US,; foranyled.

Thus, & and &’ are unitarily equivalent.
The converse implication is obvious.

Let & = {S;} 14 be a A-orthogonal shift on 3# with the multiplicity «, i.e.,
dim & = o. If {I;},.; is an orthonormal basis of .#, then the subspaces
M= ® S;(Cly),iel

feF

are orthogonal and reduce each S,(4 € A). Hence, it follows that

S; = ®S,lu, foranyied,
iel
and for any i€ I, &;:= {S,|.4,} 1c4 is a A-orthogonal shift with the multiplicity 1.
Therefore, & may be viewed as a direct sum of « copies of a A-orthogonal shift
of the multiplicity 1.
Let us consider a model A-orthogonal shift with multiplicity 1, acting on the
full Fock-space & (H,), given by (0.2). For each 1 € A we define the isometry S; by

(1.2) S;h=e,®h forhe%(H,)

It is easy to see that & = {S,} ., is a A-orthogonal shift with multiplicity one.

This model will play an important role in our investigation.

Now let us recall the Wold decomposition theorem for sequences of isometries
[6].

Let ¥" = {V,}1.4 be a sequence of isometries on a Hilbert space X, with
orthogonal final spaces.

Then J¢" decomposes into an orthogonal sum )" = %, @ A such that 2/, and
A, reduce each operator V(A€ A) and we have

(Ix — Y, VaV¥)lx, =0 and {Vjls,} is a A-orthogonal shift acting on .

Aed
This decomposition is uniquely determined; indeed we have:

e#)
A= (1 ® Vo) and A,= ® V, 2,
k=0 feF(k,A) feF

where ¥ =X (@ V,X).
Aed

We recall from [6] that for any sequences J = {T,},., of operators on
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a Hilbert space # such that ) T, T} < I, there exists a minimal isometric
AeA

dilation ¥ = {V,},.4 on a Hilbert space " > s, which is uniquely determined
up to an isomorphism, i.e., the following conditions hold:

@) V¥V, =1y for any Ae A,
(i) Y VaV¥ < Iy,

Aed
(i) V¥ o# < A and V¥, = T for any Ae 4,

(V) # = \/ V,
JeF

2. The Von Neumann inequality.

We begin this section by recalling some facts concerning the Cuntz-algebra @),
and a certain extension of ¢,. In [3] the C*-algebra 0, (n = 2) was defined as the

C*-algebra generated by nisometries Vy, V3,..., V,such that ) V;V* = I. It was
i=1

shown that 0, does not depend, up to canonical isomorphism, on the choice of

the generators V;,...,V,. In other words, if V..., ¥, is a second family of

isometries satisfying z V;V:* = I, then CX(V,,. .., V,)is canonically isomorphic

to C*(V,...,V,), ie., the map ¥, — V; extends to an isomorphism from
Cx(V,,...,V,) onto C*(V,,..., V).

Now, let V,,.. ., V, be isometries on a Hilbert space K such that Z *<L Iy

(n finite). Then the projection P = I, — ), V;V;* generates a closed two-sided
i=1
ideal .# in C*(V4,..., V,) which is isomorphic to the C*-algebra of all compact
operators on an infinite-dimensional separable Hilbert space, and contains P as
a minimal projection.
We have the short exact sequence

(2.1 0-SF >C*V,...,V,)»0,-0
The main result of this paper is the following

THEOREM 2.1. If (Ty,..., T,) e (B(#)");,n = 2 and pe P, then
(2.2 Ip(Ty,. .., Tl £ sup [lp ®4qllsm,)

q&(P)1

PRrOOF. Since (Ty,..., T,)e(B(5#)"),, there is a minimal isometric dilation
M,...,V,)e(B(X)"),, on a Hilbert space ¥~ o 5#, such that
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2.3) V*V, =1, ,i=12...,n
24 Y ViV*<1Ie
i=1
(2.5) Vit = T, i=1,...,n
By (2.5) it follows that

p(Tl""’T:l)=P)?’P(Vl9---’Vn)’Jf’, pE?’
where P, stands for the orthogonal projection of 2#" on s#. Hence we get
(2.6) Ip(Ty, ..., T = llp(Vy, ..., V).

According to the Wold decomposition for the sequence V..., V, of isometries,
we infer that the Hilbert space /" decomposes into an orthogonal sum

@.7 N =A@,

such that J¢, and J; reduce each operator V(i = 1,2,...,n) and we have

(2.8) Y WWr =1y,
i=1

2.9) {U;}i-, is a A-orthogonal shift on X,
where, for eachi = 1,2,...,n, V; = W, @ U, is the decomposition of the operator
V; with respect to (2.7).

Therefore we have
(210) p(Vl’yVn) =p(WbsW) @p(Ula’Un)
and

2.11) lp(Vs,..., V)l = max {llp(W,,..., W), Ip(Uy,..., U}

First, let us consider the case where ), + {0}. Since ). U;U¥ < I, we have
i=1
the following short exact sequence

(2.12) 0> ¢->C*¥Uy,...,U)—»0,-0

where # denote the closed two-sided ideal in C*(U,,..., U,) generated by the
projection

P:= Ix.— Z UiU?.
i=1

If n, denote the natural quotient map from B(X;) to B(X;)/#, from (2.12) we
deduce
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(213) "ns(p(Ub' R Un))” = ||p(ns(U1)9' .. ’ns(Un))” = ||P(0'1,- .. ,O',,)",

where 04,...,0, is a system of generators for the Cuntz-algebra 0,.
On the other hand, since (2.8) holds we have also that

(2.14) [p(Wy,..., W)l = lIp(oy,. . ., o).

By (2.11), (2.13), (2.14) and the fact that
I7(p(Uy,..., UDII £ Ip(Uy, ..., Uyl

we infer that

(2.15) Ip(Vis. .., V)l = [Ip(Uy, ..., Ul

According to Section 1, if the multiplicity of the A-orthogonal shift {U,,...,U,}
is a, then the operator p(Uy,. .., U,) is unitarily equivalent to the direct sum of
« copies of p(S,...,S,), where {S;,...,S,} is the model A-orthogonal shift with
the multiplicity 1, acting on the full Fock space & (H,), given by (1.2).

Therefore (2.15) implies

(2.16) 1P(Vis- s V)l = p(S1s- - -, Sl
The second case is o = {0}.

Since Y, V;V* = I, we have

i=1

(217) "p(Vl,,V;n)" = "p(ab"'van)”-

Considering {S;,. .., S,} be the model A-orthogonal shift on #(H,) we have, as
in the first case, the following short exact sequence

04— C*Sy,...,8,)—>0,-0.

Here .4, is the closed two-sided ideal in C*(S,,. .., S,) generated by Pc;, which is
the orthogonal projection of #(H,) on C1.

Consequently, if 7, denote the quotient map from B(# (H,)) onto B(¥ (H,))/ %o,
then we have

(2.18) Ip(@y,...,0,) = IP(Mo(S1); . -, Mo (Sa)
= [mo(PS1s- -, SHI S (S, -, Sa)l-
The relations (2.17) and (2.18) imply
(2.19) Ip(Vis- -, VIl S PS5 - -5 Sa)ll-
Now, taking into account (1.2) it is easy to see that

p(Sy,...,S)h=p®@h for any he #(H,).
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Since £ is dense in & (H,), it is clear that

(2.20) IP(S1,.... 8.l = sup |p ® gl

qe(#P)y
From (2.6), (2.16), (2.19) and (2.20) the result follows.
The proof is complete.

COROLLARY 2.2. If(Ty,...,T,)e(B(#)");, n = 2 and pe P, then

IP(T, ..., TN = [p(S1,. .., Sl = sup [P ®qllsw,

qe(2)1

where & = {Sy,...,S,} is the model A-orthogonal shift on F (H,).

3. Functional calculus for (74,..., T,) € (B(#)");.

Throughout this section we keep the definitions from the previous sections. Let
us note that any element g € #(H,) can be written as follows

(3.1 g= ) ase; withaseCand
Se&F

lghs = . lagl* < oo,
SfeF

where e, stands for e, ® ... @ esq, if feF(k,A),k 2 1,and ¢y = I.
We make the natural identification of e, ® I with e/, for any fe #. If pe 2,
then there is me N such that

p= Y ase;, where #,= ) F(k, A).

feFm k=0

We omit the proof of the following lemma, which is straightforward.
LEmMA 3.1. (i) Ifge #(H,) and pe P, then g ® pe F (H,).

(i) If g.n€ & (H,) such that ||gn|, = 0 (as m - o)
then ||g,, ® p|l2 = 0 (as m — ), for any pe 2.

Now let us define & = as being the set of all ge % (H,) for which

(3.2) lgllw:= sup g ®pll, < oo.

Pe(P)1
It is easy to see that, if f € # ® and g € # (H,)), then the multiplication defined by
(3.3) f®g:=1lmf®p, (inF(H,)),

where p,e 2 and ||p, — gll, = 0, is well-defined and f ® ge % (H,).
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THEOREM 3.2. (F %, || | ) is @ noncommutative Banach algebra.

Proor. That & *® is a linear space and that | || is a norm is obvious. Let us
suppose that {g,},>, is a Cauchy sequence in (¥, | ||). Since ||g, — gmll2 <
gs — gmll o (n,me N), the sequence {g,}, is a Cauchy sequence in F(H,), so
there exists g € & (H,) such that |g, — gl» = 0 (as n - o).

If N is chosen so that n,m = N implies ||g, — gmll < 1, then, according to
Lemma 3.1 and (3.2), for any pe 2 we have

lg@pl, = lg®p—gn®pl2+ gy ® pll2

< limsup (gn — gnllw lIPll2 + llgnllw P2

n— oo

(1 + lignllw) llpl2

Thus, g€ # * and it remains to show that lim ||g — g,/ = 0.
n-—oo

Given ¢ > 0, choose N such that n,m = N implies ||g, — gmll~ < & Then, for
any pe? and n,m = N, we have

g —9)®Pl2 = (g — gm) @ P2+ (gn — 9:) @ Pll2 £ (g — 9m) ® Pll2 + £lPll2.

Since lim |[(g — gm) ® pll, = 0, we have ||g — gnllo < & Therefore (F=, || ||)is

a Banach space.
Now let f, g be in # . According to (3.3) it follows that f ® g€ £ (H,). On the
other hand, if p, € 2 such that ||p, — g|, — 0, then, for any pe # we have

I(f ®9)®pllz = lim [|f ® (p» ® P)ll2

n—*oo

< lim |flo P ® Pll2

n— o

=flxllg ®pl2
S 1w 9l P12,
Hence, it follows that f ® ge # * and
If ®gllw = 1fllo 19 -
The proof is complete.
Now let us denote by o the closure of the polynomials 2 in (%, || [ «)-

COROLLARY 3.3. (#, | |l») is @ noncommutative Banach algebra.
Let ge % (H,) be given by (3.1) and let {S;,. .., S,} be the model A-orthogonal
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shift on &% (H,). We denote by ¢(S;,...,S,) the formal sum

(3.4 9(S1,....8):= Y a;S,,
feF
where S, stands for Sy,)... S if feF(k,4) and So = Igg,).
THEOREM 3.4. Let g be in #(H,). Then ¢(S,,...,S,) is strongly convergent in
B(F (##,)) if and only if g belongs to F ©.
PrOOF. Let ge # (H,) be given by (3.1) and
gm= 2 ases
SeFm

If g(Sy4,...,S,) is strongly convergent in B(¥# (H,)), then

(3.5 19(S1,- .., S)pll2 = 19(S1s- -, Sl lIpll2
for any pe 2.

On the other hand, for any pe &, we have
(36) g(Sls e 9Sn)p = hm gm(Sb e 9Sn)p =

= lim g, ®@p=9®p.

m-— o

By (3.5) and (3.6) it follows that ge #
The converse implication can be easily deduced.

COROLLARY 3.5. The mapping
fo(Sla- . ,Sn)’
from & to B(¥ (H,)), is an isometric functional calculus.

Let us remark that, according to Section 1, the above corollary remains true if
we replace {S,...,S,} by a A-orthogonal shift of arbitrary multiplicity.

THEOREM 3.6. If (T,...,T,)e(B(#)"), such that
(3.7 lim ) | T*h|*>=0 foranyhest,
k- oo feF(k,A)
then, the mapping
g—49(Ty,...,T,)
is an algebra homomorphism of & © into B(#) with the following properties:
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@ gT,...,T)=T ifg=e,i=12,...,n
=Ly ifg=1
(i) Ng(Ty,..., T = ligll
(iii) g(T3,..., T,) = Peg(Vi,..., Vo)l g, where (Vy,..., V,)
is the minimal isometric dilation of (Ty,...,T,).

Proor. Since (Ti,...,T,) satisfies (3.7), its minimal isometric dilation
4,. .., V,) is a A-orthogonal shift on a Hilbert space X o J# (see [6, 8]).
Therefore,
(3.8) Ty, ... ) = P p(Vy,..., Vlw

for any pe 2.

Taking into account the results so far, it follows that g(V,,. .., V,) is strongly
convergent in B(X') for any ge #®. Hence, and by (3.8), we deduce that
g(Ty,..., T,) is strongly convergent in B(sf).

Since |g(V},. .., V)l = llgll », the result follows.

Remark 3.7. If (Ty,...,T,)e(B(#)"),, 0 <r <1, then (T,,...,T,) has the
property (3.7) (see [6]).

Let Alg(S,,...,S,) denote the smallest closed subalgebra of B(# (H,)) contain-
ingl,S,,...,S,. This algebra is the closure in the uniform norm of the collection
of polynomials in S,...,S,, that is,

Alg(Sy,...,S,) = clos{ Y a;Ssa,€C, meN}

SeFm

THEOREM 3.8. The following equality holds
Alg(S;,...,8,) = {g(Sy,...,S,):ge A}

Proor. If AeAlg(Sy,...,S,), then there exists a sequence {P,}x-, of poly-
nomials such that

(3.9 |4 — pm(Sy,...,S,)ll =0 (as m — o).
Since {pn(Sy,...,S)} 2= is a Cauchy sequence and
(3.10) Ig(Sss.--» Sl = llqll for any ge F*

it follows that {p,,} 2, is a Cauchy sequence in the norm || || ,,. Thus, there exists
ge & such that |g — pullo = O (as m — co). Again by (3.10) we deduce that

Ng(S1s---+8s) — Pm(S1s...,S)| =0 (as m— o).
According to (3.9) we have 4 = ¢(Sy,...,S,).
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The converse inclusion is simple to deduce.
Now, let us note that, by using the von Neumann inequality (2.2), that is,
Ip(Tys .-, T S 1Pl (Ths- .., T,) €(B(H))s
one can easily show the following
THEOREM 3.9. If (T,..., T,)€(B(#)"),, then the mapping
Y:2 - B(#), Y(p) =p(Ty,..., T,)
extends to a contractive homomorphism from the Banach algebra o to B(¥).

Finally, let us remark that all the results of this paper hold true, if we replace the
setA ={1,2,...,n},n 2 2,bytheset A = {1,2,...},inaslightly adapted version.

ADDITION BY THE EDITOR. After this paper was submitted a result similar to
the main theorem appeared in a paper of M. Bozeiko, “Positive-definite kernels,
length functions on groups and a noncommutative von Neumann inequality”,
Studia Math. 95 (1989), 107-118, in particular Theorem 8.1.
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