VON NEUMANN INEQUALITY FOR $(B(\mathcal{H})^n)_1$

GELU POPESCU

0. Introduction.

Let $H^2(D)$ be the Hardy space of analytic functions on the unit disk D, i.e.,

$$H^{2}(\mathsf{D}) = \left\{ u(\lambda) = \sum_{k=0}^{\infty} \lambda^{k} \, a_{k}; \, a_{k} \in \mathsf{C}, \, \|u\|^{2}_{H^{2}(\mathsf{D})} = \sum_{k=0}^{\infty} |a_{k}|^{2} < \infty \right\}.$$

J. von Neumann's well-known inequality [11] on Hilbert space operators asserts that if T is a contraction on a complex Hilbert space $\mathcal{H}(i.e., ||T|| \le 1)$ and p is an analytic polynomial in $H^2(D)$, then the operator p(T) satisfies the inequality

$$(0.1) ||p(T)|| \leq \sup_{|\lambda| \leq 1} |p(\lambda)| = \sup_{q \in (\mathscr{P}_+)_1} ||pq||_{H^2(\mathbb{D})},$$

where $(\mathcal{P}_+)_1$ stands for the unit ball of $\mathcal{P}_+ \subset H^2(D)$ and \mathcal{P}_+ denote the set of all analytic polynomials in $H^2(D)$.

T. Ando [1] generalized the inequality (0.1) for two commuting contractions. In [10] N. Th. Varopoulos show that this inequality does not generalize to an arbitrary number $n \ge 3$ of commuting contraction. Moreover, it is shown that, in general, for $n \ge 3$ and some commuting operators $T_1, \ldots, T_n \in B(\mathcal{H})$ such that

$$\sum_{i=1}^n ||T_i||^2 \leq 1,$$

the inequality

$$||p(T_1,\ldots,T_n)|| \leq K \sup \left\{ |p(\lambda_1,\ldots,\lambda_n)| : \sum_{i=1}^n |\lambda_i|^2 \leq 1 \right\},$$

where K > 0 and $p(\lambda_1, \ldots, \lambda_n)$ is any complex polynomial of *n* variables, is not true.

Concerning the von Neumann inequality see also [9].

Now let us present the results of this paper. For a natural number n let $B(\mathcal{H})^n$

Received September 25, 1989.

This paper is part of my Ph. D. thesis, written under the guidance of Prof. Carl Pearcy, at the Texas A & M University

denote the set of *n*-tuples $T = (T_1, \ldots, T_n)$ of elements from $B(\mathcal{H})$ (i.e., the algebra of all bounded operators on the Hilbert space \mathcal{H}). We define a Banach space norm on $B(\mathcal{H})^n$ asking that the injective map

$$\pi: B(\mathscr{H})^n \to M_n(B(\mathscr{H}))$$

given by

$$\pi(T)_{1j} = T_j$$
 for $1 \le j \le n$ and $\pi(T)_{ij} = 0$ for $i > 1$,

be an isometry. The norm gives $B(\mathcal{H})^n$ the product topology, and for each $T = (T_1, \dots, T_n) \in B(\mathcal{H})^n$ we have

$$||T|| = ||\pi(T)|| = ||\sum_{i=1}^{n} T_i T_i^*||^{\frac{1}{2}}.$$

Let $(B(\mathcal{H})^n)_1$ denote the unit ball of $B(\mathcal{H})^n$, i.e.,

$$(B(\mathscr{H})^n)_1 = \left\{ (T_1, \ldots, T_n) \in B(\mathscr{H})^n : \sum_{i=1}^n T_i T_i^* \leq I_{\mathscr{H}} \right\}$$

The main aim of this paper is to extend the von Neumann inequality to $(B(\mathcal{H})^n)_1$, for $n \ge 2$.

To be more precise, let us consider the full Fock-space [4]

$$\mathscr{F}(H_n) = \mathsf{C} \, I \bigoplus_{m \ge 1} H_n^{\otimes m},$$

where H_n is an *n*-dimensional complex Hilbert space with orthonormal basis e_1 , e_2, \ldots, e_n . We shall denote by \mathcal{P} the set of all $p \in \mathcal{F}(H_n)$ of the form

$$(0.3) p = a_0 + \sum_{\substack{1 \le i_1, \dots, i_k \le n \\ 1 \le k \le m}} a_{i_1, \dots, i_k} e_{i_1} \otimes \dots \otimes e_{i_k}, \quad m \in \mathbb{N},$$

where $a_0, a_{i_1...i_k} \in \mathbb{C}$ and the sum contains only a finite number of summands.

The set \mathscr{P} may be viewed as the algebra of the polynomials in n noncommuting indeterminates, with $p \otimes q$, p, $q \in \mathscr{P}$ as multiplication.

Let $p(T_1, \ldots, T_n)$ stand for the operator acting on \mathcal{H} , given by

$$(0.4) p(T_1,\ldots,T_n) = a_0 I_{\mathscr{H}} + \sum_{i_1,\ldots,i_k} T_{i_1}\ldots T_{i_k}.$$

Our von Neumann inequality for $(B(\mathcal{H})^n)_1$ asserts that if $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$ and $p \in \mathcal{P}$, then

$$(0.5) ||p(T_1,...,T_n)|| \leq \sup_{q \in (P)_1} ||p \otimes q||_{\mathscr{F}(H_n)},$$

where

$$(\mathcal{P})_1 = \{ p \in \mathcal{P} \colon ||p||_{\mathcal{F}(H_n)} \le 1 \}.$$

If n = 1, it is easy to see that, we find again (0.1).

Let us remark that, if n = 2 and T_1 , T_2 are commuting contractions such that $[T_1, T_2]$ is a contraction, the von Neumann inequality (0.5) seems to be sharper than Ando's inequality [1].

For instance, if

$$p(T_1, T_2) = T_1 + T_2,$$

then Ando's inequality shows that

$$||p(T_1, T_2)|| \leq 2,$$

while, von Neumann inequality (0.5) (see Corollary 2.2) gives

$$||p(T_1,T_2)|| \leq \sqrt{2}.$$

In order to extend (0.5) to a Banach algebra containing \mathscr{P} , we need to introduce some Banach algebras $(\mathscr{F}^{\infty}, \| \|_{\infty})$ and $(\mathscr{A}, \| \|_{\infty})$, which may be viewed as a noncommutative analogue of the Hardy space H^{∞} and the disk algebra, respectively.

We shall see that if $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, then the mapping

$$\Psi: \mathscr{P} \to B(\mathscr{H}); \ \Psi(p) = p(T_1, \ldots, T_n)$$

extends to a contractive homomorphism from the noncommutative "disc algebra" \mathscr{A} to $\mathscr{B}(\mathscr{H})$.

Also, it is shown that, for a class of elements $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, there is a functional calculus defined by the mapping

$$f \mapsto f(T_1, \ldots, T_n)$$

from the algebra \mathscr{F}^{∞} into $B(\mathscr{H})$.

The main tools for proof are some results from dilation theory for the elements of $(B(\mathcal{H})^n)_1$ (see [2, 5, 6, 7]), the Wold decomposition for *n*-tuple $(V_1, \ldots, V_n) \in (B(\mathcal{H})^n)_1$ of isometries with orthogonal final spaces [5, 6, 8], and some facts concerning the Cuntz-algebra \mathcal{O}_n [3].

1. Notation and preliminaries.

Throughout this paper Λ stands for the set $\{1, 2, ..., n\}$, $n \ge 2$. For every $k \in \mathbb{N}^* = \{1, 2, ...\}$, let $F(k, \Lambda)$ be the set of all functions from the set $\{1, 2, ..., k\}$ to Λ and

(1.1)
$$\mathscr{F} = \bigcup_{k=0}^{\infty} F(k, \Lambda), \text{ where } F(0, \Lambda) \text{ stands for the set } \{0\}.$$

A sequence $\mathscr{S} = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ of unilateral shifts on a Hilbert space \mathscr{H} with orthog-

onal final spaces is called a Λ -orthogonal shift if the operator matrix $[S_1, S_2, \ldots]$ is nonunitary, i.e., $\mathcal{L} := \mathcal{H} \ominus (\oplus S_{\lambda}\mathcal{H}) \neq \{0\}$.

We need also the following definitions. A subspace $\mathscr{E} \subset \mathscr{H}$ is called cyclic for a sequence $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ of operators on \mathscr{H} if

$$\bigvee_{f\in\mathscr{F}}A_f\mathscr{E}=\mathscr{H},$$

where A_f stands for the product $A_{f(1)} \dots A_{f(k)}$ if $k \ge 1$, $f \in F(k, \Lambda)$, and $A_0 := I_{\mathcal{H}}$.

We define the multiplicity of $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ to be the minimum dimension of a cyclic subspace for $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$. If $\{B_{\lambda}\}_{{\lambda}\in\Lambda}$ is another sequence of operators on a Hilbert space ${\mathscr K}$ and if there exists a unitary operator U mapping ${\mathscr H}$ onto ${\mathscr K}$ such that

$$A_{\lambda} = U^{-1} B_{\lambda} U$$
 for any $\lambda \in \Lambda$,

then, we say that $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ is unitarily equivalent to $\{B_{\lambda}\}_{{\lambda}\in\Lambda}$.

Let us recall from [6, 7, 8] some results concerning the Λ -orthogonal shifts. If $\{S_{\lambda}\}_{{\lambda}\in\Lambda}$ is a Λ -orthogonal shift on $\mathscr H$ then,

$$\mathscr{L} = \bigcap_{\lambda \in \Lambda} \operatorname{Ker} S_{\lambda}^{*} \text{ and } \mathscr{H} = \bigoplus_{f \in \mathscr{F}} S_{f} \mathscr{L}$$

Each $h \in \mathcal{H}$ has a unique representation

$$h = \sum_{f \in \mathcal{F}} S_f l_f, \quad l_f \! \in \! \mathcal{L}, \, f \! \in \! \mathcal{F}.$$

In this case $||h||^2 = \sum_{f \in \mathscr{F}} ||l_f||^2$ and $l_f = P_0 S_f^* h$, $f \in \mathscr{F}$,

where

$$P_0 = I_{\mathscr{H}} - \sum_{\lambda \in \Lambda} S_{\lambda} S_{\lambda}^*$$

is the projection of \mathcal{H} on \mathcal{L} .

Now one can easily prove the following theorem. We omit the proof.

THEOREM 1.1. If $\mathscr{S} = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ is a Λ -orthogonal shift on \mathscr{H} , then \mathscr{L} is cyclic for \mathscr{S} and dim $\mathscr{L} \leq \dim \mathscr{E}$ for every cyclic subspace \mathscr{E} for \mathscr{S} .

As a corollary, we obtain that the multiplicity of $\mathcal S$ is equal to dim $\mathcal L$.

THEOREM 1.2. Two Λ -orthogonal shifts are unitarily equivalent if and only if they have the same multiplicity.

PROOF. If $\mathscr{S} = \{S_{\lambda}\}_{{\lambda} \in \Lambda} \subset B(\mathscr{H})$ and $\mathscr{S}' = \{S'_{\lambda}\}_{{\lambda} \in \Lambda} \subset B(\mathscr{H}')$ are two Λ -orthogonal shifts with the same multiplicity, then \mathscr{L} and \mathscr{L}' have the same dimension. Hence, there is an isometry W which maps \mathscr{L} onto \mathscr{L}' . For any $h \in \mathscr{H}$ define

$$Uh = \sum_{f \in \mathscr{F}} S'_f W l_f$$
 for $h = \sum_{f \in \mathscr{F}} S_f l_f$.

Then U is a unitary operator from \mathcal{H} onto \mathcal{H}' and

$$S'_{\lambda}U = US_{\lambda}$$
 for any $\lambda \in \Lambda$.

Thus, \mathcal{S} and \mathcal{S}' are unitarily equivalent.

The converse implication is obvious.

Let $\mathscr{S} = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ be a Λ -orthogonal shift on \mathscr{H} with the multiplicity α , i.e., $\dim \mathscr{L} = \alpha$. If $\{l_i\}_{i \in I}$ is an orthonormal basis of \mathscr{L} , then the subspaces

$$\mathcal{M}_i = \bigoplus_{f \in \mathcal{F}} S_f(\mathsf{C} l_i), i \in I$$

are orthogonal and reduce each $S_{\lambda}(\lambda \in \Lambda)$. Hence, it follows that

$$S_{\lambda} = \bigoplus_{i \in I} S_{\lambda}|_{\mathcal{M}_i}$$
 for any $\lambda \in \Lambda$,

and for any $i \in I$, $\mathcal{S}_i := \{S_{\lambda}|_{\mathcal{M}_i}\}_{\lambda \in \Lambda}$ is a Λ -orthogonal shift with the multiplicity 1.

Therefore, \mathscr{S} may be viewed as a direct sum of α copies of a Λ -orthogonal shift of the multiplicity 1.

Let us consider a model Λ -orthogonal shift with multiplicity 1, acting on the full Fock-space $\mathcal{F}(H_n)$, given by (0.2). For each $\lambda \in \Lambda$ we define the isometry S_{λ} by

$$(1.2) S_{\lambda}h = e_{\lambda} \otimes h \text{for } h \in \mathcal{F}(H_n)$$

It is easy to see that $\mathscr{S} = \{S_{\lambda}\}_{{\lambda} \in \Lambda}$ is a Λ -orthogonal shift with multiplicity one. This model will play an important role in our investigation.

Now let us recall the Wold decomposition theorem for sequences of isometries [6].

Let $\mathscr{V} = \{V_{\lambda}\}_{{\lambda} \in \Lambda}$ be a sequence of isometries on a Hilbert space \mathscr{K} , with orthogonal final spaces.

Then \mathcal{K} decomposes into an orthogonal sum $\mathcal{K} = \mathcal{K}_u \oplus \mathcal{K}_s$ such that \mathcal{K}_u and \mathcal{K}_s reduce each operator $V_{\lambda}(\lambda \in \Lambda)$ and we have

$$(I_{\mathscr{K}} - \sum_{\lambda \in \Lambda} V_{\lambda} V_{\lambda}^*)|_{\mathscr{K}_{u}} = 0$$
 and $\{V_{\lambda}|_{\mathscr{K}_{s}}\}$ is a Λ -orthogonal shift acting on \mathscr{K}_{s} .

This decomposition is uniquely determined; indeed we have:

$$\mathscr{K}_{u} = \bigcap_{k=0}^{\infty} \left(\bigoplus_{f \in F(k,A)} V_{f} \mathscr{K} \right) \text{ and } \mathscr{K}_{s} = \bigoplus_{f \in \mathscr{F}} V_{f} \mathscr{L},$$

where $\mathscr{L} = \mathscr{K} \ominus (\bigoplus_{\lambda \in \Lambda} V_{\lambda} \mathscr{K}).$

We recall from [6] that for any sequences $\mathcal{F} = \{T_{\lambda}\}_{{\lambda} \in \Lambda}$ of operators on

a Hilbert space \mathscr{H} such that $\sum_{\lambda \in \Lambda} T_{\lambda} T_{\lambda}^* \leq I_{\mathscr{H}}$, there exists a minimal isometric dilation $\mathscr{V} = \{V_{\lambda}\}_{\lambda \in \Lambda}$ on a Hilbert space $\mathscr{K} \supset \mathscr{H}$, which is uniquely determined up to an isomorphism, i.e., the following conditions hold:

(i)
$$V_{\lambda}^* V_{\lambda} = I_{\mathcal{K}}$$
 for any $\lambda \in \Lambda$,

(ii)
$$\sum_{\lambda \in A} V_{\lambda} V_{\lambda}^* \leq I_{\mathscr{K}}$$
,

(iii)
$$V_{\lambda}^* \mathcal{H} \subset \mathcal{H}$$
 and $V_{\lambda}^*|_{\mathcal{H}} = T_{\lambda}^*$ for any $\lambda \in \Lambda$,

(iv)
$$\mathscr{K} = \bigvee_{f \in \mathscr{F}} V_f \mathscr{H}$$
.

2. The Von Neumann inequality.

We begin this section by recalling some facts concerning the Cuntz-algebra \mathcal{O}_n and a certain extension of \mathcal{O}_n . In [3] the C*-algebra \mathcal{O}_n ($n \geq 2$) was defined as the C*-algebra generated by n isometries V_1, V_2, \ldots, V_n such that $\sum_{i=1}^n V_i V_i^* = I$. It was shown that \mathcal{O}_n does not depend, up to canonical isomorphism, on the choice of the generators V_1, \ldots, V_n . In other words, if $\hat{V}_1, \ldots, \hat{V}_n$ is a second family of isometries satisfying $\sum_{i=1}^n \hat{V}_i \hat{V}_i^* = I$, then $C^*(\hat{V}_1, \ldots, V_n)$ is canonically isomorphic to $C^*(V_1, \ldots, V_n)$, i.e., the map $\hat{V}_i \to V_i$ extends to an isomorphism from $C^*(\hat{V}_1, \ldots, \hat{V}_n)$ onto $C^*(V_1, \ldots, V_n)$.

Now, let V_1, \ldots, V_n be isometries on a Hilbert space K such that $\sum_{i=1}^n V_i V_i^* \leq I_{\mathscr{K}}$ (n finite). Then the projection $P = I_{\mathscr{K}} - \sum_{i=1}^n V_i V_i^*$ generates a closed two-sided ideal \mathscr{I} in $C^*(V_1, \ldots, V_n)$ which is isomorphic to the C^* -algebra of all compact operators on an infinite-dimensional separable Hilbert space, and contains P as a minimal projection.

We have the short exact sequence

$$(2.1) 0 \to \mathscr{I} \to \mathbb{C}^* V_1, \dots, V_n) \to \mathscr{O}_n \to 0$$

The main result of this paper is the following

THEOREM 2.1. If $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, $n \ge 2$ and $p \in \mathcal{P}$, then

PROOF. Since $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, there is a minimal isometric dilation $(V_1, \ldots, V_n) \in (B(\mathcal{H})^n)_1$, on a Hilbert space $\mathcal{H} \supset \mathcal{H}$, such that

$$(2.3) V_i^* V_i = I_{\mathcal{K}} , i = 1, 2, \dots, n$$

$$(2.4) \qquad \qquad \sum_{i=1}^{n} V_i V_i^* \leq I_{\mathscr{K}}$$

$$(2.5) V_{i|_{w}}^{*} = T_{i}^{*}, i = 1, \dots, n.$$

By (2.5) it follows that

$$p(T_1,\ldots,T_n)=P_{\mathscr{H}}p(V_1,\ldots,V_n)|_{\mathscr{H}}, p\in\mathscr{P},$$

where $P_{\mathscr{H}}$ stands for the orthogonal projection of \mathscr{K} on \mathscr{H} . Hence we get

According to the Wold decomposition for the sequence V_1, \ldots, V_n of isometries, we infer that the Hilbert space \mathcal{K} decomposes into an orthogonal sum

$$\mathscr{K} = \mathscr{K}_{\nu} \oplus \mathscr{K}_{s}$$

such that \mathcal{K}_{u} and \mathcal{K}_{s} reduce each operator V_{i} (i = 1, 2, ..., n) and we have

(2.8)
$$\sum_{i=1}^{n} W_{i} W_{i}^{*} = I_{\mathcal{K}_{u}}$$

(2.9)
$$\{U_i\}_{i=1}^n$$
 is a Λ -orthogonal shift on \mathcal{X}_s ,

where, for each i = 1, 2, ..., n, $V_i = W_i \oplus U_i$ is the decomposition of the operator V_i with respect to (2.7).

Therefore we have

$$(2.10) p(V_1, \ldots, V_n) = p(W_1, \ldots, W) \oplus p(U_1, \ldots, U_n)$$

and

$$(2.11) ||p(V_1,\ldots,V_n)|| = \max\{||p(W_1,\ldots,W_n)||, ||p(U_1,\ldots,U_n)||\}.$$

First, let us consider the case where $\mathcal{K}_s \neq \{0\}$. Since $\sum_{i=1}^n U_i U_i^* \leq I_{\mathcal{K}_s}$ we have the following short exact sequence

$$(2.12) 0 \to \mathscr{J} \to C^*(U_1, \dots, U_n) \to \mathscr{O}_n \to 0$$

where \mathcal{I} denote the closed two-sided ideal in $C^*(U_1,\ldots,U_n)$ generated by the projection

$$P := I_{\mathcal{K}_s} - \sum_{i=1}^n U_i U_i^*.$$

If π_s denote the natural quotient map from $B(\mathcal{K}_s)$ to $B(\mathcal{K}_s)/\mathcal{I}$, from (2.12) we deduce

where $\sigma_1, \ldots, \sigma_n$ is a system of generators for the Cuntz-algebra \mathcal{O}_n .

On the other hand, since (2.8) holds we have also that

$$||p(W_1,\ldots,W_n)|| = ||p(\sigma_1,\ldots,\sigma_n)||.$$

By (2.11), (2.13), (2.14) and the fact that

$$\|\pi_s(p(U_1,\ldots,U_n))\| \leq \|p(U_1,\ldots,U_n)\|$$

we infer that

$$||p(V_1,\ldots,V_n)|| = ||p(U_1,\ldots,U_n)||.$$

According to Section 1, if the multiplicity of the Λ -orthogonal shift $\{U_1, \ldots, U_n\}$ is α , then the operator $p(U_1, \ldots, U_n)$ is unitarily equivalent to the direct sum of α copies of $p(S_1, \ldots, S_n)$, where $\{S_1, \ldots, S_n\}$ is the model Λ -orthogonal shift with the multiplicity 1, acting on the full Fock space $\mathcal{F}(H_n)$, given by (1.2).

Therefore (2.15) implies

The second case is $\mathcal{K}_s = \{0\}$.

Since
$$\sum_{i=1}^{n} V_i V_i^* = I_{\mathcal{K}}$$
 we have

$$||p(V_1,\ldots,V_n)|| = ||p(\sigma_1,\ldots,\sigma_n)||.$$

Considering $\{S_1, \ldots, S_n\}$ be the model Λ -orthogonal shift on $\mathcal{F}(H_n)$ we have, as in the first case, the following short exact sequence

$$0 \to \mathcal{I}_0 \to \mathbf{C}^*(S_1, \ldots, S_n) \to \mathcal{O}_n \to 0.$$

Here \mathscr{I}_0 is the closed two-sided ideal in $C^*(S_1, \ldots, S_n)$ generated by P_{CI} , which is the orthogonal projection of $\mathscr{F}(H_n)$ on C1.

Consequently, if π_0 denote the quotient map from $B(\mathscr{F}(H_n))$ onto $B(\mathscr{F}(H_n))/\mathscr{I}_0$, then we have

The relations (2.17) and (2.18) imply

Now, taking into account (1.2) it is easy to see that

$$p(S_1, \ldots, S_n)h = p \otimes h$$
 for any $h \in \mathcal{F}(H_n)$.

Since \mathscr{P} is dense in $\mathscr{F}(H_n)$, it is clear that

$$||p(S_1,...,S_n)|| = \sup_{q \in \mathscr{P}_1} ||p \otimes q||_{\mathscr{F}(H_n)}.$$

From (2.6), (2.16), (2.19) and (2.20) the result follows.

The proof is complete.

COROLLARY 2.2. If $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, $n \ge 2$ and $p \in \mathcal{P}$, then

$$||p(T_1,\ldots,T_n)|| \leq ||p(S_1,\ldots,S_n)|| = \sup_{q\in\mathscr{P}_{11}} ||p\otimes q||_{\mathscr{F}(H_n)}$$

where $\mathcal{S} = \{S_1, \dots, S_n\}$ is the model Λ -orthogonal shift on $\mathcal{F}(H_n)$.

3. Functional calculus for $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$.

Throughout this section we keep the definitions from the previous sections. Let us note that any element $g \in \mathcal{F}(H_n)$ can be written as follows

(3.1)
$$g = \sum_{f \in \mathscr{F}} a_f e_f \quad \text{with } a_f \in \mathbb{C} \text{ and}$$

$$||g||_2^2 = \sum_{f \in \mathcal{F}} |a_f|^2 < \infty,$$

where e_f stands for $e_{f(1)} \otimes ... \otimes e_{f(k)}$ if $f \in F(k, \Lambda)$, $k \ge 1$, and $e_0 = I$.

We make the natural identification of $e_f \otimes I$ with e_f , for any $f \in \mathcal{F}$. If $p \in \mathcal{P}$, then there is $m \in \mathbb{N}$ such that

$$p = \sum_{f \in \mathscr{F}_m} a_f e_f$$
, where $\mathscr{F}_m = \bigcup_{k=0}^m F(k, \Lambda)$.

We omit the proof of the following lemma, which is straightforward.

LEMMA 3.1. (i) If
$$g \in \mathcal{F}(H_n)$$
 and $p \in \mathcal{P}$, then $g \otimes p \in \mathcal{F}(H_n)$.

(ii) If
$$g_m \in \mathcal{F}(H_n)$$
 such that $||g_m||_2 \to 0$ (as $m \to \infty$)

then $||g_m \otimes p||_2 \to 0$ (as $m \to \infty$), for any $p \in \mathcal{P}$.

Now let us define \mathscr{F}^{∞} as being the set of all $g \in \mathscr{F}(H_n)$ for which

$$||g||_{\infty} := \sup_{p \in \mathscr{P}_{1}} ||g \otimes p||_{2} < \infty.$$

It is easy to see that, if $f \in \mathcal{F}^{\infty}$ and $g \in \mathcal{F}(H_n)$, then the multiplication defined by

$$(3.3) f \otimes g := \lim_{n \to \infty} f \otimes p_n \quad (\text{in } \mathscr{F}(H_n)),$$

where $p_n \in \mathcal{P}$ and $||p_n - g||_2 \to 0$, is well-defined and $f \otimes g \in \mathcal{F}(H_n)$.

THEOREM 3.2. $(\mathscr{F}^{\infty}, \| \|_{\infty})$ is a noncommutative Banach algebra.

PROOF. That \mathscr{F}^{∞} is a linear space and that $\| \|_{\infty}$ is a norm is obvious. Let us suppose that $\{g_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $(\mathscr{F}^{\infty}, \| \|_{\infty})$. Since $\|g_n - g_m\|_2 \le \|g_n - g_m\|_{\infty}$ $(n, m \in \mathbb{N})$, the sequence $\{g_n\}_{n=1}^{\infty}$ is a Cauchy sequence in $\mathscr{F}(H_n)$, so there exists $g \in \mathscr{F}(H_n)$ such that $\|g_n - g\|_2 \to 0$ (as $n \to \infty$).

If N is chosen so that $n, m \ge N$ implies $||g_n - g_m||_{\infty} < 1$, then, according to Lemma 3.1 and (3.2), for any $p \in \mathcal{P}$ we have

$$\begin{split} \|g \otimes p\|_{2} & \leq \|g \otimes p - g_{N} \otimes p\|_{2} + \|g_{N} \otimes p\|_{2} \\ & \leq \limsup_{n \to \infty} \|g_{n} - g_{N}\|_{\infty} \|p\|_{2} + \|g_{N}\|_{\infty} \|p\|_{2} \\ & \leq (1 + \|g_{N}\|_{\infty}) \|p\|_{2} \end{split}$$

Thus, $g \in \mathscr{F}^{\infty}$ and it remains to show that $\lim \|g - g_n\|_{\infty} = 0$.

Given $\varepsilon > 0$, choose N such that $n, m \ge N$ implies $||g_n - g_m||_{\infty} < \varepsilon$. Then, for any $p \in \mathcal{P}$ and $n, m \ge N$, we have

$$\|(g - g_n) \otimes p\|_2 \le \|(g - g_m) \otimes p\|_2 + \|(g_m - g_n) \otimes p\|_2 \le \|(g - g_m) \otimes p\|_2 + \varepsilon \|p\|_2.$$

Since $\lim_{m\to\infty} \|(g-g_m)\otimes p\|_2 = 0$, we have $\|g-g_n\|_{\infty} < \varepsilon$. Therefore $(\mathscr{F}^{\infty}, \|\ \|_{\infty})$ is a Banach space.

Now let f, g be in \mathscr{F}^{∞} . According to (3.3) it follows that $f \otimes g \in \mathscr{F}(H_n)$. On the other hand, if $p_n \in \mathscr{P}$ such that $||p_n - g||_2 \to 0$, then, for any $p \in \mathscr{P}$ we have

$$\begin{split} \|(f \otimes g) \otimes p\|_2 &= \lim_{n \to \infty} \|f \otimes (p_n \otimes p)\|_2 \\ &\leq \lim_{n \to \infty} \|f\|_{\infty} \|p_n \otimes p\|_2 \\ &= \|f\|_{\infty} \|g \otimes p\|_2 \\ &\leq \|f\|_{\infty} \|g\|_{\infty} \|p\|_2, \end{split}$$

Hence, it follows that $f \otimes g \in \mathscr{F}^{\infty}$ and

$$||f \otimes g||_{\infty} \leq ||f||_{\infty} ||g||_{\infty}.$$

The proof is complete.

Now let us denote by $\mathscr A$ the closure of the polynomials $\mathscr P$ in $(\mathscr F^\infty, \|\ \|_\infty)$.

COROLLARY 3.3. $(\mathscr{A}, \| \|_{\infty})$ is a noncommutative Banach algebra. Let $g \in \mathscr{F}(H_n)$ be given by (3.1) and let $\{S_1, \ldots, S_n\}$ be the model Λ -orthogonal shift on $\mathcal{F}(H_n)$. We denote by $g(S_1, \ldots, S_n)$ the formal sum

$$(3.4) g(S_1,\ldots,S_n):=\sum_{f\in\mathscr{F}}a_fS_f,$$

where S_f stands for $S_{f(1)} \dots S_{f(k)}$ if $f \in F(k, \Lambda)$ and $S_0 = I_{\mathcal{F}(H_n)}$.

THEOREM 3.4. Let g be in $\mathcal{F}(H_n)$. Then $g(S_1, \ldots, S_n)$ is strongly convergent in $B(\mathcal{F}(\mathcal{H}_n))$ if and only if g belongs to \mathcal{F}^{∞} .

PROOF. Let $g \in \mathcal{F}(H_n)$ be given by (3.1) and

$$g_{m} = \sum_{f \in \mathcal{F}_{m}} a_{f} e_{f}$$

If $g(S_1, \ldots, S_n)$ is strongly convergent in $B(\mathcal{F}(H_n))_1$ then

$$(3.5) ||g(S_1,\ldots,S_n)p||_2 \leq ||g(S_1,\ldots,S_n)|| ||p||_2$$

for any $p \in \mathcal{P}$.

On the other hand, for any $p \in \mathcal{P}$, we have

(3.6)
$$g(S_1, \dots, S_n)p = \lim_{m \to \infty} g_m(S_1, \dots, S_n)p = \lim_{m \to \infty} g_m \otimes p = g \otimes p.$$

By (3.5) and (3.6) it follows that $g \in \mathcal{F}^{\infty}$

The converse implication can be easily deduced.

COROLLARY 3.5. The mapping

$$f \mapsto f(S_1, \ldots, S_n)$$

from \mathcal{F}^{∞} to $B(\mathcal{F}(H_n))$, is an isometric functional calculus.

Let us remark that, according to Section 1, the above corollary remains true if we replace $\{S_1, \ldots, S_n\}$ by a Λ -orthogonal shift of arbitrary multiplicity.

THEOREM 3.6. If $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$ such that

(3.7)
$$\lim_{k \to \infty} \sum_{f \in F(k,A)} ||T_f^*h||^2 = 0 \quad \text{for any } h \in \mathcal{H},$$

then, the mapping

$$g \mapsto g(T_1, \ldots, T_n)$$

is an algebra homomorphism of \mathscr{F}^{∞} into $B(\mathscr{H})$ with the following properties:

(i)
$$g(T_1, ..., T_n) = T_i$$
 if $g = e_i$, $i = 1, 2, ..., n$
= $I_{\mathcal{H}}$ if $g = I$

(ii)
$$||g(T_1,\ldots,T_n)|| \leq ||g||_{\infty}$$

(iii)
$$g(T_1,\ldots,T_n)=P_{\mathcal{H}}g(V_1,\ldots,V_n)|_{\mathcal{H}}$$
, where (V_1,\ldots,V_n)

is the minimal isometric dilation of (T_1, \ldots, T_n) .

PROOF. Since (T_1, \ldots, T_n) satisfies (3.7), its minimal isometric dilation (V_1, \ldots, V_n) is a Λ -orthogonal shift on a Hilbert space $\mathcal{K} \supset \mathcal{H}$ (see [6, 8]). Therefore,

$$(3.8) p(T_1, \ldots, T_n) = P_{\mathscr{H}} p(V_1, \ldots, V_n)|_{\mathscr{H}}$$

for any $p \in \mathcal{P}$.

Taking into account the results so far, it follows that $g(V_1, \ldots, V_n)$ is strongly convergent in $B(\mathcal{X})$ for any $g \in \mathcal{F}^{\infty}$. Hence, and by (3.8), we deduce that $g(T_1, \ldots, T_n)$ is strongly convergent in $B(\mathcal{X})$.

Since $||g(V_i, \ldots, V_n)|| = ||g||_{\infty}$, the result follows.

REMARK 3.7. If $(T_1, ..., T_n) \in (B(\mathcal{H})^n)_r$, 0 < r < 1, then $(T_1, ..., T_n)$ has the property (3.7) (see [6]).

Let $Alg(S_1, \ldots, S_n)$ denote the smallest closed subalgebra of $B(\mathcal{F}(H_n))$ containing I, S_1, \ldots, S_n . This algebra is the closure in the uniform norm of the collection of polynomials in S_1, \ldots, S_n , that is,

Alg
$$(S_1,\ldots,S_n)$$
 = clos $\left\{\sum_{f\in\mathcal{F}_m} a_f S_f; a_f\in\mathbb{C}, m\in\mathbb{N}\right\}$

THEOREM 3.8. The following equality holds

$$Alg(S_1,\ldots,S_n) = \{g(S_1,\ldots,S_n) : g \in \mathscr{A}\}.$$

PROOF. If $A \in Alg(S_1, ..., S_n)$, then there exists a sequence $\{P_m\}_{m=1}^{\infty}$ of polynomials such that

Since $\{p_m(S_1,\ldots,S_n)\}_{m=1}^{\infty}$ is a Cauchy sequence and

$$(3.10) ||q(S_1,\ldots,S_n)|| = ||q||_{\infty} \text{for any } q \in \mathscr{F}^{\infty}$$

it follows that $\{p_m\}_{m=1}^{\infty}$ is a Cauchy sequence in the norm $\| \|_{\infty}$. Thus, there exists $g \in \mathscr{A}$ such that $\|g - p_m\|_{\infty} \to 0$ (as $m \to \infty$). Again by (3.10) we deduce that

$$||g(S_1,\ldots,S_n)-p_m(S_1,\ldots,S_n)||\to 0 \quad (as \ m\to\infty).$$

According to (3.9) we have $A = g(S_1, \ldots, S_n)$.

The converse inclusion is simple to deduce.

Now, let us note that, by using the von Neumann inequality (2.2), that is,

$$||p(T_1,\ldots,T_n)|| \leq ||p||_{\infty}, (T_1,\ldots,T_n) \in (B(\mathcal{H})^n)_1$$

one can easily show the following

THEOREM 3.9. If $(T_1, \ldots, T_n) \in (B(\mathcal{H})^n)_1$, then the mapping

$$\Psi: \mathscr{P} \to B(\mathscr{H}), \ \Psi(p) = p(T_1, \ldots, T_n)$$

extends to a contractive homomorphism from the Banach algebra \mathcal{A} to $\mathcal{B}(\mathcal{H})$.

Finally, let us remark that all the results of this paper hold true, if we replace the set $\Lambda = \{1, 2, ..., n\}$, $n \ge 2$, by the set $\Lambda = \{1, 2, ...\}$, in a slightly adapted version.

ADDITION BY THE EDITOR. After this paper was submitted a result similar to the main theorem appeared in a paper of M. Bozeiko, "Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality", Studia Math. 95 (1989), 107–118, in particular Theorem 8.1.

REFERENCES

- 1. T. Ando, On a pair of commutative contractions, Acta Sci. Math. (Szeged) 24(1963), 88-90.
- 2. J. W. Bunce, Models for n-Tuples of Noncommuting Operators, J. Funct. Anal. 57 (1984), 21-30.
- 3. J. Cuntz, Simple C*-algebras generated by isometrics, Comm. Math. Phys. 57 (1977), 173–185.
- 4. D. E. Evans, On On, Publ. Res. Inst. Math. Sci. 16(1980), 915-927.
- A. E. Frazho, Complements to Models for Noncommuting Operators, J. Funct. Anal. 59 (1984), 445–461.
- G. Popescu, Isometric dilations for infinite sequences of non-commuting operators, Trans. Amer. Math. Soc., 316 (1989), 523-536.
- G. Popescu, Characteristic functions for infinite sequences of noncommuting operators, J. Operator Theory, 22 (1989), 51-71.
- G. Popescu, Multi-analytic Operators and Some Factorization Theorems, Indiana Univ. Math. J., 38 (1989), 693-710.
- B. Sz.-Nagy; C. Foias, Harmonic Analysis on Operators on Hilbert Space, North-Holland, Amsterdam, 1970.
- 10. N. Th. Varopoulos, On an inequality of von Neumann and an spplication of the metric theory of tensor products to operator theory, J. Funct. Anal. 16(1974), 83-100.
- 11. J. von Neumann, Eine Spectraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258–281.

DEPARTMENT OF MATHEMATICS INCREST BD. PÄCII 220 79622 BUCHAREST ROMANIA.

CURRENT ADDRESS
DEPARTMENT OF MATHEMATICS
TEXAS A & M UNIVERSITY
COLLEGE STATION
TEXAS 77843–3368
U.S.A.