LOCALLY COMPACT F-SPACES, SUB-STONEAN SPACES AND QUOTIENTS OF LOCALLY COMPACT GROUPS

ESBEN T. KEHLET

In [1, p. 387] an F'-space is defined as a completely regular space in which disjoint open subsets of type F_{σ} have disjoint closures.

In [3, p. 124] a sub-Stonean space is defined as a locally compact Hausdorff space in which disjoint open, σ -compact subsets have disjoint compact closures. It was noted in passing, [3, p. 129], that if a compact group is sub-Stonean, it is finite.

In section 2 below I give a straightforward proof of the stronger result that if a quotient of a locally compact group by a closed subgroup is an F'-space, it is discrete.

When T is a locally compact Hausdorff space let $C_0(T)$ denote the algebra of real valued continuous functions on T tending to zero at infinity and let $\mathcal{K}(T)$ denote its minimal dense ideal of functions with compact support.

According to [1, p.366] an F-ring is a commutative ring in which each finitely generated ideal is a principal ideal. In section 1 I show that a locally compact space is an F'-space if and only if $\mathcal{K}(T)$ is an F-ring.

1.

THEOREM. Let T be a locally compact Hausdorff space. The following conditions are equivalent:

- (i) $\mathcal{K}(T)$ is an F-ring.
- (ii) For f in $\mathcal{K}(T)$ there exists k in $\mathcal{K}(T)$ such that f = k|f|.
- (iii) Any compact subset of T is a sub-Stonean space.
- (iv) Any point in T has a sub-Stonean neighbourhood.
- (v) T is an F'-space.
- (vi) Disjoint open, σ -compact, relatively compact subsets of T have disjoint closures.

PROOF. We prove (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi) \Rightarrow (ii) \Rightarrow (i).

Assume that $\mathcal{K}(T)$ is an F-ring and let f in $\mathcal{K}(T)$ be given. As in [1, p. 370] note that the ideal generated by f and |f| is generated by some function d in $\mathcal{K}(T)$ so there exist functions g, h, s and t in $\mathcal{K}(T)$ with f = gd, |f| = hd and d = sf + t|f|, and $k = (s + t)^2(gh) \vee 0 + (s - t)^2(gh) \wedge 0$ will do.

Let L be a compact subset of T, and let U and V be disjoint relatively open, σ -compact subsets of L, and so positivity sets for non-negative functions a and b in C(L). Choose by Tietze's theorem an extension f in $\mathcal{K}(T)$ of a-b and choose, assuming (ii), k in $\mathcal{K}(T)$ with f=k|f|. Then $\{t \in L \mid k(t)=1\}$ and $\{t \in L \mid k(t)=1\}$ are disjoint compact subsets of L containing U and V respectively. Thus (ii) implies (iii).

As (iii) \Rightarrow (iv) is no problem, assume (iv) and let X and Y be open subsets of type F_{σ} of T. Let t be a point in $\overline{X} \cap \overline{Y}$, let W be a sub-Stonean neighbourhood of t and let K be a compact neighbourhood of t contained in W. By [3, Theorem 1.4] K is a sub-Stonean space. Since $X \cap K$ and $Y \cap K$ are relatively open and σ -compact in K and t belongs to the intersection of their closures, they have non-empty intersection. Hence T is an F'-space.

As $(v) \Rightarrow (vi)$ is no problem, assume (vi) and let f in $\mathcal{K}(T)$ be given. Since $P = \{t \in T \mid f(t) > 0\}$ and $N = \{t \in T \mid f(t) < 0\}$ have disjoint closures, Tietze's theorem gives a function k in $\mathcal{K}(T)$ which is 1 on P and -1 on N, as wanted.

Finally assume (ii). First we show that any ideal I in $\mathcal{K}(T)$ is hereditary. So let h in I and f in $\mathcal{K}(T)$ be given with $|f| \leq h$. The positivity set S of h is open and σ -compact, and \overline{S} is compact and hence a sub-Stonean space, since (ii) implies (iii). By [3, Theorem 1.10] \overline{S} is homeomorphic the Stone-Čech compactification βS of S, so there exists a function g in $\mathcal{K}(T)$ extending the bounded continuous function $s \mapsto f(s)h(s)^{-1}$ on S, cf. [3, Corollary 1.11]. Thus f = gh is in I.

To show that $\mathcal{K}(T)$ is an F-ring it is obviously enough to show that the ideal generated by two functions f and g in $\mathcal{K}(T)$ is the principal ideal generated by |f| + |g|, cf. [1, Theorem 2.3]. The ideal generated by |f| + |g| contains f and g by the above. As f = k|f| and hence |f| = kf for some funtion k in $\mathcal{K}(T)$, the ideal generated by f and g contains |f| and likewise |g| and thus |f| + |g|.

COROLLARY 1. Any locally compact subspace of a locally compact F'-space is an F'-space.

Proof. Obvious form condition (iii).

COROLLARY 2. A locally compact Hausdorff space T is sub-Stonean if and only if it is an F'-space with $C_0(T) = \mathcal{K}(T)$ and if and only if $C_0(T)$ is an F-ring.

PROOF. The condition $C_0(T) = \mathcal{K}(T)$ is equivalent to the condition that any open σ -compact subset of T has compact closure, so T is a sub-Stonean space if and only if T is an F'-space and $C_0(T) = \mathcal{K}(T)$, and this implies that $C_0(T)$ is an F-ring. Assume that $C_0(T)$ is an F-ring and let f in $C_0(T)$ be given; as in the proof

of the theorem there exists a function k in $C_0(T)$ with f = k|f|; thus f has a compact support. As $\mathcal{K}(T) = C_0(T)$ is an F-ring, T is an F-space.

2.

LEMMA. Let Tbe a locally compact Hausdorff space and t_0 a point in T; assume that there is a basis $\mathcal B$ for the neighbourhoods of t_0 consisting of open, compact sets and closed under the formation of intersections of decreasing sequences. Then $\{t_0\}$ is open.

PROOF. Assume $\{t_0\}$ is not open. Then we can choose a strictly decreasing sequence of sets in \mathcal{B} . But a strictly decreasing sequence of compact sets cannot have an open intersection.

Proposition. Let G be a locally compact group and H a closed subgroup, which is not open. There exists a compact subgroup K of G of type G_{δ} in G, such that KH is not open. If G is σ -compact, K may be chosen as a normal subgroup.

PROOF. Assume first that G is σ -compact. Remember that any neighbourhood U of e in G contains a compact normal subgroup of type G_{δ} [2, Theorem A.9.]. If KH were open for each compact normal subgroup K of type G_{δ} then the set of images in G/H of the normal compact G_{δ} subgroups in G would be a basis for the neighbourhoods of H in G/H satisfying the conditions of the lemma above and H would be open.

If G is not σ -compact we choose an open σ -compact subgroup G_0 (generated by any symmetric compact neighbourhood of e in G). Then $H \cap G_0$ is not open so we can choose a compact subgroup K of type G_{δ} in G_0 and in G with $K(H \cap G_0) = KH \cap G_0$ not open and hence KH not open.

THEOREM. Let G be a locally compact group and H a closed subgroup. Assume that G/H is an F'-space. Then G/H is discrete.

PROOF. It is enough to show that some non-empty open subset of G/H is discrete, so we may assume that G is σ -compact. Let K be any compact normal subgroup of type G_{δ} in G. Then KH = HK is a closed subgroup. As G/K has countable basis for the neighbourhoods of K and the natural map $gK \mapsto gHK$ is open and continuous, G/(KH) has countable basis for the neighbourhoods of KH. The natural map $gH \mapsto gKH$ of G/H onto G/(KH) is continuous, open and proper, so disjoint open, σ -compact, relatively compact subsets of G/(KH) have disjoint closures, i.e. G/(KH) is an F'-space (cf. Theorem in section 1, and [3, Proposition 1.2]). As in [1, Corollary 2.4] and [3, Proposition 1.5] we see that KH is isolated in G/(KH), so KH is open in G.

By the proposition above H is open in G, so G/H is discrete.

REFERENCES

- 1. L. Gillman and M. Henriksen, Rings of continuous functions in which every finitely generated ideal is principal, Trans. Amer. Math. Soc. 82 (1956), 366-391.
- 2. F. P. Greenleaf and M. Moskowitz, Cyclic vectors for representations associated with positive definite measures: Nonseparable groups, Pacific J. Math. 45 (1973), 165-186.
- K. Grove and G. K. Pedersen, Sub-Stonean spaces and corona sets, J. Funct. Anal. 56 (1984), 124-143

MATEMATISK INSTITUT UNIVERSITETSPARKEN 5 DK-2100 KØBENHAVN Ø DENMARK