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MAXIMUM PRINCIPLES FOR
SUBHARMONIC FUNCTIONS

STEPHEN J. GARDINER

1. Main results.

Let s be a subharmonic function on the unit ball B of R" (n = 2). A simple form of
the maximum principle states that, if

(1) limsups(X) <0
X-Y

for all Ye 0B, then s < 0 on B. The same conclusion is true when (1) holds for
almost every (surface area measure) Y € B, provided s is bounded above on B.
Dahlberg [4] has shown that this boundedness hypothesis can be relaxed if the
exceptional set for which (1) does not hold satisfies a Hausdorff measure condi-
tion. In this paper we present a different type of maximum principle based on
weighted volume integrals of s * near the boundary. This, in turn, has a number of
corollaries including the results mentioned above and some new ones.

Let X = (X', x,) = (X1,...,X,) be a typical point of R* = R"~! x R, let |X|
denote the Euclidean norm of X, and B(X,r) be the open ball of centre X and
radius r. Thus B = B(0, 1), where O denotes the origin of R". The main result is as
follows.

THEOREM 1. Let s be a subharmonic function on B and let y = — 1. If, for each
0, > 0, there is a covering of 0B by balls B(X;, r;) with centres X;€ 0B and radii
r; < 0 such that

zr;v-lj (1 — X])s*(X)dX <e,
i B(X;,2r)nB

thens £ 0on B.

Theorem 1 is in the same spirit as a removable singularity result of Kaufman
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and Wu [9; Theorem 2], but the proofis completely different. The main tool used
in the proof of Theorem 1 is estimation of harmonic measure. We remark that the
case y = —1 of the above result corresponds to the elementary fact that, if
(1 — |X])~'s*(X)is Lebesgue integrable on B, then (the mean of s* over dB(0, r)
has lower limit 0 asr - 1— and so) s < 0 on B.

We now give a number of applications of Theorem 1, beginning with a version
of the Schwarz reflection principle. Let 2 be an open set in R”, symmetrical about
the hyperplane {x, = 0} such that Q° = Q N {x, = 0} is non-empty. The classical
reflection principle asserts that, if his a harmonic functionon Q* = Q n {x, > 0}
which continuously vanishes on Q°, then h can be continued as a harmonic
function into €2 by writing

0 XeQ,x,=0)
- WX, —x,) (Xel,x,<DO0).
COROLLARY 1. Let Q be as above and h be a harmonic function on Q*. If, for

each 8,¢ > 0, there is a covering of Q° by balls B(X;, r;) with centres X;e Q° and
radii r; < 6 such that

@ h(X) = {

Y j x! |h(X) dX <,
i B(X,2r)n0R*

then h can be continued as a harmonic function into Q by (2).

The proofs of Theorem 1 and Corollary 1 may be found in §2.
Let w:(0,0)— (0,0) be an non-decreasing function. The (Hausdorff)
w-measure of a bounded set E is defined by

m®(E) = lim {inf Y w(r,.)},
e—=0+ i
where the infimum is taken over all countable coverings of E by open balls of radii
r; < & The limit always exists, but may take the value + co. A set E is said to have
o-finite w-measure if E is a countable union of sets of finite w-measure. In the
special case w(t) = t*, where a = 0, the measure m® is denoted by m, and called
a-dimensional Hausdorff measure. Accounts of Hausdorff measures may be
found in [8; Chapter 5] and [3; Section IT].

COROLLARY 2. Let s be a subharmonic function on B and let E be a subset of 0B
such that (1) holds for all Y € 8B\E. If m®(E) = 0 and

3) sup{s*(X): | X| =r} =0[1—1N'""0(1 —1] (r->1-),
then s <0 on B.

COROLLARY 3. Let s be a subharmonic function on B and let E be a subset of 0B
such that (1) holds for all Y € 0B\E. If E has o-finite w-measure and
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“ csup {sT(X):|X| =r} =o[(1 =)' "0l =N] (r-1-),
thens £0on B.

Corollary 2 is similar to [2; Theorem 10], but the proof indicated there is
incorrect (cf. the Editor’s note added in proof). In the case where w(t) = t* and
Eis closed, the result had previously been established by Dahlberg [4; Theorem],
who dealt more generally with Lipschitz domains. The proof of Theorem 1 is
related to Dahlberg’s work.

Another way of stating the case w(t) = t* of Corollary 2 is as follows. If
1 = |X)s*(X)e*(B) and (1) holds except for some set E such that
m,_1-,(E) =0, then s < 0 on B. It is thus natural to ask what happens if we
replace L* by I?, where p > 1.

COROLLARY 4. Let s be a subharmonic function on B and let E be a subset of 0B
suchthat (1) holds forall YeO0B\E.Let —1 <y <n— lletp=2n/(n—1 — y)and
1/p+1/p =1 If (1 —|X|)’s*(X)eI?(B) and E has o-finite (n — (1 + y)p)-
dimensional Hausdorff measure, then s < 0 on B.

In the case where E is a closed set,y = 0, and s = |h| (Where h is harmonic on B),
Corollary 4 is due to Gaidenko [6], who dealt more generally with solutions of
second order elliptic differential equations. Otherwise the result is new.

The proofs of Corollaries 2—4 are given in § 3, and the sharpness of these results
is discussed in §4.

2. Proofs of Theorem 1 and Corollary 1.

2.1. Let D denote the halfspace {(X’, x,): x, > 0}. For any Z in the hyperplane 6D
let B(Z,r) = B(Z,r) n D and ©(Z,r) = B(Z,r) n 0D. We will establish the follow-
ing.

THEOREM 1'. Let s be a subharmonic function on B(Z,r), where Z € 0D, and let
y 2 — 1. If, for each 6,& > 0, there is a covering of t©(Z,r) by balls B(X;,r;) with
centres X;€ 0D and radii r; < 6 such that

%) Zri‘y_‘j xIsT(X)dX <,
i BX0,2r) N B(Z.r)

then (1) holds for all Yet(Z,r).

Once Theorem 1’ is established, Theorem 1 may be easily deduced using the
Kelvin transformation. Also, Corollary 1 may be obtained by taking s = |h| and
using Theorem 1’ to show that h vanishes on any ©(Z,r) for which B(Z,r) = Q*.

2.2. This section contains some preliminary material required in the proof of
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Theorem 1'. Let r > 0,let 0 < ¢ < n/4 and
Ry = {(X',x,): 0 < x,, < | X'| tan ¢},
Vo(r) = {(X',x,): 0 < x, < (r — |X’'|) tan ¢}.
Since ¢ < 7/4, it follows that V,(r) = B(0,r). If Ze oD, let
A(Z,1) = (X', x) BZ,7): x, 2 (X' — Z'| — 3r/4)tan }.

In fact, we want a version of A,(Z,r) for which the “edge” in the surface
0A4(Z,r) N Dis“rounded off”. More precisely, let 4%(Z, r) denote the union of all
the sets of the form B(Y, 7r/128) n D which are contained in 4,(Z, r). (See Figure
1)

Figure 1.

We will use C(a, b,c,...) to denote a positive constant, depending at most on
a,b,c,..., not necessarily the same on any two occurrences.

LEMMA 1. There is a positive harmonic function on R, of the form
IX[“® F, (tan ™" (x,/IX"])),

where k(¢) > 0, Fy(0) = 0 = Fy(¢) and F, is continuous on (0,n/2). Further,
k(¢) - o0 as ¢ - 0+.

LeMMA 2. Let g(X,Y) denote the Green function for the set V4(1). Then the
normal derivative dg/ony at Y € 0V,(1) satisfies
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(6) ;Tgy((oz [tan ¢1/2),(Y", ya)) < C(n, ¢) ys@~*

whenever 0 < y, < (tan ¢)/2.
LeMMA 3. Let G(X,Y) denote the Green function for the set D\A}(O, 1). Then

0
) S (X)) S Cl )i 3, )

whenever Y € 04%(0, 1), where 0 < y, < (tan ¢)/8, and X € D\ (0, 2).

Lemmas 1, 2, and 3 can be justified along the lines of [7; §§2.1,2.2]. When
n 2 3, (6) and (7) are true for higher powers of y, than y@~1 but the stated
estimates are sufficient for our purposes. Because of the smooth nature of
0A4%(0,1) N D, the estimate (7) is valid for all Ye 0A4%(0,1) N D.

2.3. In proving Theorem 1’ we may take Z = O and r = 1. It is sufficient to
prove that (1) holds for all Ye (0, p), where p €(0, 1) is arbitrary. In the light of
Lemma 1 we can choose ¢ small enough to ensure that k(¢) = y + 1.

From (5) the function f(X) = xXs*(X) is Lebesgue integrable on B(0, p’) for
any p’€(0, 1). Thus there exists p, €(p, 1) for which f is integrable with respect to
surface area measure on S = 0V, (po) N D. It follows from Lemma 2 and a result
of Dahlberg [5; Theorem 3] that s* is integrable on S, with respect to harmonic
measure for the Lipschitz domain V,(p,). Let ho denote the (Perron-Wiener-
Brelot) solution to the Dirichlet problem on V(p,) with boundary data s* on S,
and 0 on 7(0, po). By a strong regularity property of Lipschitz domains [1;
Theorem 2] the function h, continuously vanishes on (0, p,). Thus Theorem 1’
will be established if we can show that s™ < ho on Vj(po).

Nowlet0 < d < (1 — po)/4,lete > 0,and let { B(X;,r;)} be a covering of 7(0, 1)
as described in Theorem 1'. By compactness we can choose a finite subset
B(X,71),.. ., B(X,, ) of the balls B(X;, r,) to cover 7(0, po) and each of the balls
B(X,,2r,),...,B(X,,2r,,) is contained in B(O,1). For each i we can choose
pi€[4r;/3,2r;] such that the surface integral, I;, of f over §; = 04}(X;, p;)) N D
satisfies

I; £ C(n, ¢)ri"_[ f(X)dx
A;(x;,zri)\A;(xiAr./a)

= Cn, ¢)ri“1j fX)dX.

B(Xi,2ry)

Hence, from (5),
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®) YL < C(n, ¢)e.

13

Since [;is finite, we see from Lemma 3 (and the final observation of §2.2) that s* is
integrable with respect to harmonic measure for W, = D\ 4%(X;, p;). Let h; denote
the solution to the Dirichlet problem on W, with boundary data s* on S;and 0 on
0D\t(X}, p;). Let x,, = 4r;. Using o to denote surface area measure on S;, and-G; to

denote the Green function for W,, (7) gives

hi(X) = C(n)f s*(Y)(9G:/ony)(X, Y) do(Y)

= C(n, 9)xa|X — X.-I“"J sT(Y)(ya/p) @ da(Y', y,)

S

§ C(n9 ¢)X: —n‘[ s+(Y)(yn/pi)y dG(Y,’ yn)

S;
SCn,d)x, "r 7l

Hence, if x,, = 49, it follows from (8) that

Y h(X) < Cn, $) 6" .
Let h denote the solution to the Dirichlet problem in
W = V¢(Po)\ U A;(Xi’ pi)
i=1

with boundary data s*. (Clearly W< D.) It follows that, if (X', x,) € V;(po) and
x, = 46, then

s*(X) £ h(X) < ho(X) + i h(X) < ho(X) + C(n, $) 6" "e.

i=1

Since ¢ can be arbitrarily small, s*(X) < ho(X) when X € Vj(po) and x, = 46.
Since 6 can be arbitrarily small, the proof of Theorem 1’ is complete.
3. Proof of Corollaries 2—4.

3.1. Let 6,6 > 0, let E be as in Corollary 2, and suppose that (3) holds. There
exists a countable collection of balls {B(X;,r;)} such that X;e 0B and r; < ¢ for
each i, and

Ec|JBX,r), Yo(r)<e
i i
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The maximum principle and (3) imply that there is a positive constant C such that
sT(X)SCrli "w(r;) (XeB(0,1—r)).
Splitting the integral below into integrals over
B(X;,2r)n{|X| <1 —r;} and B(X;,2r)n{l —r; < |X| <1},
and then using (3) again, we obtain
) Zr.-"'f (1 =Xl !s* (X)dX < C(n) Y w(ry) < C(n)e.
i B(X;,2r)nB i
Now let
W,={XeB: s(X)<e} and F, = {Y€dB: limsups(X) < ¢}.

X-Y

The set W, U F, is relatively open in the topology of B and contains the compact
set B\ u;B(X;,r;). Thus we can find a finite collection of balls { B(Y;, p;)} with

Y,-E@B, pi < 63 B(Ynzpl)nBC n/e

for each i, and
aB\U B(Xi’ ri) < U B(Yv pi)a ZPT‘ ! < C(n)
It follows that

(10) ZPF"J (1 — X"~ 's*(X)dX
i B(Y;,2p;) nB

<eToir | (L - x)y-tax

B(Y;,2p))nB

< C(n)ez 't < C(n)e.

The balls { B(X;, r;), (B(Y;, p;)} cover dB. Combining (9) and (10), we can thus apply
Theorem 1 (withy = n — 1) to deduce that s < 0in B. This completes the proof of
Corollary 2.

3.2. Let 6,& > 0, let E be as in Corollary 3 and suppose that (4) holds. There
exists a countable collection of sets E, such that E = U, E, and each M, = m®(E,)
is finite. Without loss of generality we can assume that M, > 0 for each k.

For each k, let 6, < 6 be chosen such that

sup{s*(X):|X| =r} Se27*M (1 — ) "l =) (1=, <r<]1)
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We can now choose a countable collection of balls {B(X, ;,r,)}; such that
X, €0B and r ; < 6, for each i, and

E,c U B(X i 7x,1), Zw(rk.i) < 2M,.

Arguing as in (9) it follows that

ZZr,;{'J a—-1xXpr st (X)dX < C(n)sZZZ""M,,“w(r,‘,,.) < C(n)e.
ki B(Xk,i,2r,i)nB ki

The remainder of the proof of Corollary 3 is similar to the second paragraph of
§3.1.

3.3. Lets,y,p,p’ be as in Corollary 4, let « = n — (1 + y)p’, and let ,& > 0.
A proof will first be given for the case where E has finite a-dimensional Hausdorff
measure. In the next section we will indicate how the argument can be modified
to deal with the o-finite case.

Let M > m,(E), and let 65 < 6 be such that

(11) J [ - |X|)Vs+(X)]"dX < Mi-Pgp
B\B(0,1 - 25)

Then there is a countable collection of balls {B(X,r;)} such that X;edB and
r; < 0 for each i, and

Ec {JB(X,r), Yri <M.
We next introduce a covering of E by dyadic cubes Q which have the property
that, for each Q, there exists k € Z such that {2 X: X e Q} is a cube of side 1 whose
vertices have integral co-ordinates. Each ball B(X;,r;) can be covered by 2" such
cubes of side p;, where p; < 4r;. This yields a covering of E by cubes Q(Y;, p;), of
centre Y;and side pj, such that £ p3 < C(n, p,y)M. Further, for each i, there exists
Jsuch that B(X;, 2r;) = Q(Y}, 5p;). Also, there is a constant a,, depending only on
n, such that each point of R" is in at most a, of the cubes Q(Y;, 5p;) of a given size.
Now let

F(X)=Y p;" " ! xow,s0p(X) (X€R,
J

where y, denotes the characteristic function of a set A4, valued 1 on 4 and
0 elsewhere. If F(X) > t, then X must belong to a cube Q(Yj,5p;), where
P;i?"' > t/b, and b, = a,/(1 — 271 ~7). Hence

{X: F(X)> t}| £ 5"Z9 ",

Wwhere | 4| denotes the n-dimensional Lebesgue measure of a measurable set 4,
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and Z* denotes the sum over all j for which tp} *” < b,. Thus

f P {X: F(X) >t} dt < 5" f PP TLEO Yy dt
1] 0

b,,p._l—y

=5"Zp?f Topria
j 0
=5br Y ph e

J

and so

Ln {FX)} dX < C(n,p,7) 305

Using Holder’s inequality and (11) we now have

Z’i_y_lf (1 = IX)’s*(X)dX

i B(X;,2r;)nB
= L {Z e XB(X..zro(X)} {a@—1x1)s™(X)}dX
= C J;n FXO{(1 = 1X1)" s™(X) Xp\80.1 - 260(X) dX

1/p’
< C(n,p,y) {Zp;‘} M~YP ¢ < C(n,p,v)e.
J

The remainder of the argument is similar to the second paragraph of §3.1.

3.4. We now indicate how the above proof can be modified to deal with the
case where E has o-finite a-dimensional Hausdorff measure. In this case we can
write E = U, E,, where each m,(E,) is finite. For each k let M, > m,(E,) and let

J, < 0 be chosen such that

f [(1 — X)) s*(X)]PdX < 275 M} ~Pen.
B\B(0,1-24)

Arguing as in §3.3, there is a countable collection of balls { B(X; ;, ¢ ;)}; covering

E; such that r, ; < J, for each i and

Zr{.!“Lw - S IX)"s*(X)dX < C(n,p,7)27"e,
i k,ir 4P, i)

whence
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;ZWZ?”J (1 = IX)s™(X)dX < C(n,p,7)e.

B(Xy,i,2ri,i)nB

4. Sharpness of results.

4.1. Dahlberg [4; Proposition] has shown that Corollary 2 is sharp in the case
w(t) = t*, where 0 < o < n — 1. He showed that, if E is a closed subset of B for
which m,(E) > 0, then there is a positive harmonic function s on B such that (1)
holds for all Ye dB\E and (3) holds.

4.2, The sharpness of Corollary 3 is similarly demonstrated by the following.

THEOREM 2. Let 0 < o < n — 1 and let E be a closed subset of 0B which is not
a-finite with respect to m,. Then there is a positive harmonic function s on B such
that (1) holds for all Y € 0B\E and (4) holds.

To prove Theorem 2 we note (see [10; pp. 83, 84]) that, since E is not g-finite
with respect to m,, there is a positive non-decreasing continuous function w on
(0, o) such thatt™* w(t) » O0ast — 0+ and E is not o-finite with respect to m®. By
Frostman’s Lemma [8; Lemma 5.4] there is a finite positive measure y supported
by E such that u(B(X,r)) < w(r)for all X e R"and r > 0. If we let s be the Poisson
integral of u in B, then (1) holds for all Y € B\ E. The proof of [4; Proposition] is
now easily modified to show that (4) also holds.

4.3. Corollary 4 is sharp in the following sense.

THEOREM 3. Let —1 <y<n—l,letp=n/n—1—9y)and 1/p+ 1/p' = 1. If
Eisaclosed subset of 3B such that m,(E) > 0 for somea > n — (1 + y)p', then there
is a positive harmonic function s on B such that (1) holds for all Y e 0B\E and
(1 — |X|))"s(X)e I2(B).

By Frostman’s Lemma we can choose a finite positive measure y supported by
E such that u(B(X,r)) £ r*forall X and r > 0. If we let s be the Poisson integral of
u in B, then (1) holds for all Y edB\E. It remains to check that (1 — |X])" s(X)
belongs to I?(B).

Let f be a positive step function on B which satisfies fn f? =1 and let
t=m—(1+9yp)p +a/p so that n — (1 +y)p' <t < a Following the ap-
proach of Carleson [3; p. 76] we define a function F of a complex variable z on the
strip Q = {z: 0 < Rez < 1} by

F(z) = f (- IXI)VJ [A(X)]E % (1 — X)X — Y] 777~ +em du(y) dX.
B E

Minor modification to the estimates in [6; §3] now shows that [F(z)] £ M on 0,
where M is independent of the choice of f. Since F is bounded and analytic in the
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interior of ©, it follows from the maximum principle that
F(1/p) = C(n)L(l — X)) s(X) f(X)dX = M
for any f as above. Hence, by the converse to Holder’s inequality,
L [ — 1X))"s(X)]PdX < C(n,p) M,

and the proof is complete.
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