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ON RODSETH’S #-BASES
Ak ={1, a, 2(12, ceey (k - 2)612, ak}

ERNST S. SELMER and BJORG KRISTIN SELVIK

Given an integral basis
A, ={a,a;,...aq),1=a,<a,<...<aq

for a positive integer h, we form all the combinations

k
xia;, x; 2 0, Z x; S h,
i=1 i=1

M=

and ask for the smallest integer N(h, 4,) which is not represented by such
a combination. The number n(h, A;,) = N(h, A;) — 1iscalled the h-range of A,. In
this connection, A, is often called an h-basis.

With h, we denote the smallest number of addends which is sufficient for the
h-range to reach the largest basis element a;:

ho = hO(Ak) = min {hE N | n(h, Ak) = ak}.
It is easily seen that
n(h + 1, 4;) 2 n(h, A) + a,h 2 ho — 1.

There exists a smallest h = h; = hy — 1 such that this holds with equality for all
h = hy = hy(A4;). We say that the h-range is stabilized from h = h,.

The h-bases of the title were introduced by Rodseth [1]. We shall assume
knowledge of his paper. In particular, double formula numbering refers to [1],
without further comment. We shall use his notation throughout, with the one
exception that we write a, when he uses d.

Rodseth (his Remark 2) determines n(h,, A;) explicitly. In particular,
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1) n(hy, Ay) = hyay — (@ — 1)(S, — Sp41 — 2)

~ (o= x| =t

when R, <k =k — 2.

In his Theorem 1, Rodseth also determines h,. However, he leaves two
problems open:

I) Describe explicitly all bases with h; > hy.

IT) For these bases, determine n(h, A;) for all h with hg < h < h,.

We shall solve problem I completely. The resulting bases A, are of two types,
one with v = 1, and the other with v = m, s,, = 1. For the first type, we have
proved formulas for n(hy, A), but for the “intermediate” h-ranges of problem II
only when k = 4. For the second type, we have not tried to solve the (apparently
very complicated) problem II. — Since hy < hy for k = 3, we assume k = 4
throughout.

Our results were first conjectured, using extensive numerical evidence pro-
duced by Svein Mossige on the Univac 1100 computer at the University of
Bergen. We are grateful for his support.

We shall use Rodseth’s Theorem 1 to determine the cases with hy = b’ > h,,.
A necessary condition is then 0 < R, < k. On the other hand, Rédseth shows (p.
13)that R; — Rj,.; =2 k,j =0,1,...,m If we find an R; with 0 < R; < k, we thus
have R;,; < 0and hence v =j.

The case v = 1 is straightforward. By (3.1), we have

Ry =ks; — Py + kQ, = ks; — q, + k.
We substitute R=x—R;, so 0<R; <x means 0 <R <k. Since
a, = q.a, — 5, and q; = ks; + R, we thus get the bases
(@  Ar={1,a;,2a,,...,ka;,(ks; + R)a; —5,},0 <R < k,0 < 5; < ay,

as the only candidates for h; > hy when v = 1. Using a, = ¢,5; — s, and
P, = g,q, — 1, it then follows easily from (3.4-5) that

oo Jatsi—1 if R<2
° 7 la, + sy if R>2

- 1R -2
hl=az+31'—1+[‘(-q2_‘%““_—“l.

Consequently, we get hy = h' > hg for the bases (2) just when
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w1 4 if R=1
qz=[—i_‘g3 if R=2
1O kRI+2 if R>2

In terms of s,, this may be written as

“23'1 if R=1
3) 5 < “22_1 if R=2

az—l .

/R]+ 1 if R>2.

In addition to these cases, Mossige’s calculations indicated another type of
bases A, for which h, > hy. If we put a, — a,_ = a, — ka, = u, there is then
a basis element ta,, t < k, which is = 1 (mod u), hence
@ Ay = {1,a5,2a,,...,ta = au + 1,...,kay,ka; + u},0 <t < k.

Since (a,,u) = (az,a) = 1, Rodseth’s division algorithm (p. 6) ends with
Sm=1,5p+1 =0,and P,y =s_; = ay, Qm+1 = So = a,. We consider the inde-
terminate equation
(&) ax —apy = 1.

By (2.2), this has the solution x = P,,, y = Q,,, which is of course unique if we
demand 0 < x < @y, = P,+1,0 < y < a, = Qp+. On the other hand, it follows
from (4) that (5) also has the solutionx = ka + t,y = a. Ifa = qa, + r,0 <r < a,
(r > O since (,a,) = 1), we “translate” the second solution into the first one by

Qu=0—qa;=r,P,=xka+1t —qa,=kKr +t— qu.
From (3.1), it follows that
R,=kKSpy—Pp+KkQu=Kk—t+qu>0=v=m

(since always R,,+; < 0). The necessary condition R, < « for h; > h, is satisfied,
since

ru+1
<t
a
From Rodseth’s first expression for h (bottom line p. 8), we find

ho=a2+1+[u—2a2J={a2 if u<2a,

ta=ou+1=(ga,+ru+1 = qu=t—

Ka, a, +1 if uz2=2a,.

On the other hand, we have from (3.5) that
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hf:sm_smﬂ_2+[£'£1_i'x_&"_1£—|=a2+[(q+l)u—(t+1)‘|'

K
Consequently, we get h, = h’' > h, for the bases (4) just when

k+t+1
g+1 §’

t+1
q+1

(6)

<u<gla,—-1, or u>max{2a2— 1,

where q =| o/a, |.

We make three remarks:

1) There may be casesof (4) A (6) withv = 1, hence overlap with (2) A (3). The
simplest example is given by

A4 = {1,4,8,11}, ho = 4, hl = 5.

2) In a basis of the type (4), the choice of basis element ta, is not necessarily
unique. Probably the simplest example (with h; > h) is given by

A;={1,7,14,21,28,35,38}, hy = 7, h; = 8.

It has u = 3, but we may choose eithert = l,a = 2,ort =4, = 9.

3) It is fairly easy to show by Rodseth’s methods that h, < ho whenu = 1,2.
The choice u = 3 in the above examples is thus smallest possible.

We shall now prove our main result:

THEOREM. The bases
A, = {1,02, 2a,,...,(k — 2)az,ak}, k z 4,
with hy > hy are either of the form (2) satisfying (3), or of the form (4) satisfying (6).

ProoF. Since the case v = 1 is completely settled, we may assume v > 1, and
must show that the only possibility for h; > hy is then given by (4). By Rodseth’s
Theorem 1, we may also assume 0 < R, < k.

Using (3.4-5), we form

—2 Py  + R, — 1
ho—h’=a2“'1+|>qlx \1“"Sv+s,)+1+2_|‘—_+}__—__‘|9

K

which should “usually” be = 0.
By (2.4), we can substitute a, = so = Q,+15, — 0,5, +1- We then assume the
“worst cases”

Sv+1§sv_1’[Pv+1+Rv“ 1‘l< Pv+1+Rv+K:_2.

K = K

In the resulting expression, we substitute

Pv+l =qu+1Pv_Pv—1a Qu+1 =qv+1Qv—‘ Qv—l’ Pv= KSy, + KQv_ Rv
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by (2.1) and (3.1), and get
(7) hO - K g 9o+ l{stu - Qv - sv} - (Sv - 1)(Qv + Qv—l) -1
P,y —xkQ,_ 1+ (q+1— DR, +2 + l“h - 2].

+
K K
By (9) below and (3.1), we have P, — kQ, = ks, — R, = 1.
(i) ks, — R, < k. Since we assume R, < k, wemust have s, = 1 and thusv = m,
hence the situation described in connection with (5). Again with a, = xa, + u, we
have (a,,u) = 1, and thus solutions of the indeterminate equation in t and o:

(8) 1 = at — ua = a,(t + xa) — a0
We choose the known solution « = Q,,, t + ka = P, for which
R, =«ksy, — P, +kQ,, =k —t.

But R,,=R,, and our assumption 0 < R, <k implies 0 <t < k. Since
ta, = oau + 1 by (8), we thus get the form (4) of 4,.

The proof of the Theorem will then be complete if we can show that
ho — W = 0, hence hy = hy, in the remaining case:

(i) xs, — R, = k. Since we assume R, > 0, we must now have s, = 2. With
v > 1, we also have Q, = 2, and so { } = 0in (7). We note that

P
Sl P k021

Q: a

q1="&_lgx+lg3 - {&"—2—]21.
as K

The first = of (9) stems from the fact that the convergents P;/Q; decrease for
increasing j, cf. (2.2).
Substituting g,+; =2 and P,_; — kQ,_, = 1in (7), we get

©®

R,+3 -2
hO_h,;(sv_ 1)(Q0‘Qv—l)—zsv— 1+ v: +‘Vqlx _‘

If Qv - Qv—l 23, then

R -2 R, +3
ho—H 2s,—4+ "+3+[‘1‘ ]g—u Oy,
K K K

s0 hy — K = 0 then. It thus remains to consider the possibilities Q, — Q,—; =
or 2.

If 9,—Q,-1 =1, we must have Q; — Q;_; =1 for i =1,2,...,v. This is
possible if and only if ¢; = 2,i = 2,3,...,v, giving

(10) Po=ig—(i—1),0,=i;i=12,...0.
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In (7), we substitute R, = ks, — P, + kQ,, and take P,_;,Q,_4, P, and Q, from
(10). Still using g, .+, = 2, the terms with s, then cancel, and we are left with

-2 —
q1 —‘_(11 2+i_1>_1=>h0—h'20
K K Kk

ho—h’g(

If Q,—Q,-.y=2, we substitute ¢,+;=22, Q,-;=0,—2 and
R, = ks, — P, + kQ, in (7). The terms with Q, then cancel, and we are left with

P, — 2 -
(11) ho—H 25, — 1 + =L P, + +P‘ 21.
K K

We noted that Q, — Q,_; = 1 implies (10). Similarly, it is easily seen that
Q,—0Q,_, =2implies q, = 3,and q; = 2fori = 3,4,...,vifv > 2. Forallv = 2,
this gives
(12) P=QRi—1)g—(@(—1,0,=2i—1i=12,...,v

Substituting in (11), we get
-2 — -1
ho — W 25, — 1+ q’+3+[‘h 2—‘gsv—1—i’——>—1.
K K K

The last inequality follows from ¢q; < ks,. To see that this holds, we note that
assuming ¢q, = ks, + 1, and using (12), we easily get the contradiction
R, =ks,— P, + kQ, < 0.

This concludes the proof of our Theorem.

As remarked earlier, we are still left with the problem of determining n(h, 4,) for
ho < h < h, in the cases when h; > hq.

For the bases 4, of (4), numerical evidence indicates that this is a very
complicated problem, which we have not tried to sort out.

For the bases A, of (2), we can determine n(h, Ay):

(Bksy + 2)a, — (251 + 2), R=1¢,23
ntho, Ax) = (2xsy + 2)a; — (sy + 2), R=2q,22
(q2ksy + k)az — (@2 — sy +2), R23, g 2|k/R]+ L

The straightforward but rather tedious proof is found in [2].

With equalities for q,, we see from (3) that we then have the largest g, for which
hy = hy. In these cases, the results follow from (1). It is rather striking that the
formulas for n(h,, 4,) are valid also for all larger g,, when h; > h,. This fact was
first observed numerically, from Mossige’s computations.

The above formulas do not cover the cases

(3KS1 +3‘—K)a2 "‘(231 +2), R = 1, 42=2

nlhor Ax) = {«qz T 1k, + R+ 2)a, — (@2, +2, R23, 254, S[KR]
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They follow from (1), since here h, = h,.

Still considering the bases (2), we now know n(h, A,), and also n(hy, A;) by (1).
But we are left with the problem of determining n(h, A;) if hg < h < h;.

Let us first look at k = 4:

Ay ={1,a5,2a,,25; + D)a, — 5,}, 0<s;<a,
ho =a; + s, — 1L,hy =a, +s; —2 +|q,/2]
hy >hyg < g, 24 < a, > 3sq.
With R = 1, the earlier formulas give
n(ho, Ag) = (65 + Da, — (25; +2), g, =2
n(ho, Ag) = (651 + 2)a, — (2s; +2), g, > 2.
If hy > hy, it is fairly easy to prove that
A=nhAy)—nh—1,4,)=2a,, h=ho+1,....hy,
except for ¢, even, when the last difference equals
Ay = n(hy, Ag) — n(hy — 1, 4,) = 2a,4 — a,.

To see how the series of “jumps” 4 behaves for larger k, Mossige performed
extensive calculations for k = 5,6, 7. We give the observed result for k = 5:

2as — ay, ¢, =1 (mod 3)

R=1.4=3a;, but 4,= {3a5 —as, g, =2 (mod 3)

R = 2: A alternates between as + 2 and 2as — a,,
but 4, = 2as — a5 if g, = 1 (mod 3).

The increasingly complicated observed patterns for k = 6,7 are given in [2].
The only simple rule seems to be 4 = xa, for R = 1, but even then the exceptions
for 4, behave rather irregularly.

Because of the complexity, we have not tried to prove any of the “jump
patterns” for k > 4.
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