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SMASH PRODUCTS, GROUP ACTIONS AND
GROUP GRADED RINGS

ANDERS JENSEN AND SOREN JONDRUP

Introduction.

Fora graded ring A4, graded by a finite group G, one can define the smash product
A # G*[5]. The purpose of this paper is to continue the study of smash products
from [5] and use the results obtained to get new results on group graded rings
and on fixed point rings for groups acting on rings as well as to get new and
simpler proofs for known results concerning skew group rings and fixed points
rings.

We begin by proving that an 4 # G*-module M is flat (projective or injective)
if and only if M, is. This means that if 4 has a certain “homological” property so
has 4 # G*. In general properties from A # G* are not inherited by A, but for
“separably” graded rings 4 and A # G* are alike.

Finally we show that a ring is perfect if and only if 44, the rings of constants, is.

We start by fixing some notation. k denotes a commutative ring with an
identity element, we say that the k-algebra A is graded by the group G if
(*) A=) @4,

geG

where the A,’s are k-modules and 4,4, < A, for all g, he G.

1. General results on smash products.

Let A4 be a k-algebra graded by a finite group G. The smash product, denoted by
A # G*, is the free left A-module with the set {p,},cq. as a free base and
multiplication given by

(1) (apg)(bph) = abgh—lph’

where for an element x in 4, x, denotes the g’th component in the decomposition
of x given by (*).
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The basic properties of the smash product is stated in the following proposi-
tion from [5, Proposition 1.4] and [5, Corollary 1.5].

PROPOSITION 1.1. Let A be a group graded ring graded by the finite group G.
A # G* is a free right module with base {p,|ge G}. The set {p,},cc- is a set of
orthogonal idempotent with sum 1. Moreover the following multiplication rules
hold:
() pua =Y ,an-1p,for all ac A and all he G.
(i) pnay = azp,-4 for all a,e A,.
(iii) py centralizes A, for all he G.
(iv) puI # G*¥)p; = Iy 1Py = pulp, for all g,he G and for all graded ideals I.
V) pi( # G*)p, = I,p,, which is ring isomorphic to 1, for all graded ideals I.

Furthermore G acts on 4 # G* by (ap,) = ap,, for all g, he G. The fixed-point
ring under this action is 4 # 1. This simple observation together with other
results from [5] in fact give a very short proof of the following result of Fisher and
Montgomery [7].

Let A be a semiprime ring and G a finite group of automorphisms of 4. If 4 has
no |G|-torsion, then 4 *G is semiprime.

A short proof of this results is given in [9], that proof depends on the
Bergman-Isaacs theorem [4] stating: Let 4 be a semiprime ring and G a finite
group of automorphisms of A4, such that 4 has no |G|-torsion. Then A, the fixed
point ring, is semiprime.

We now show that the Fisher-Montgomery theorem is an immediate conse-
quence of the results in [5] and the Bergman-Isaacs theorem.

By [5, Theorem 3.2] (A * G) # G* is semiprime and G acts on this ring with
fixed point ring A * G, which thus must be semiprime.

2. Homological results for smash products.

In [5, Theorem 2.3] a Maschke type theorem was proved, namely:
THEOREM 2.1. Let V be a right A # G*-module and W an A # G*-submodule of
V, which is an A-direct summand of V. Then W is an A # G*-direct summand.

Similar to this is the following:

THEOREM 2.2. Let V and W be two A # G*-modules and u an A-homomorphism
from V to W. Then

ii(v) = 3 u(vp,)p,

geG

is an A # G*-homomorphism from V to W.

Proor. It suffices to show that (vap,) = i(v)ap, for all ve ¥, ae 4 and g G.
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Using Proposition 1.1 we get

a(l’)al’g = Z “(Uph)Phan = Z u(UPh)ahg— 1Dy
heG heG

= Y wWvpsang—1)Py = Y, U(vang— 1P4)P,

heG heG
=u (l) : Z Apg—1° pg> Py = u(vapy)pg = a(vapg)
heG
It is easy to show

PROPOSITION 2.1. Let M be a right A # G*-module and N a right A-module.
Then there is a natural isomorphism between

HOmA(M, N) and HOmA # G*(M, N ®A (A # G*))
ProoF. For feHom (M, N) define f by f(m) =Y ,.c f(m)p, ® p, and for
geHom, 4 6(M,N ® 4(A # G*))define §(m) = Y ,n,, where g(m) = Y ;6 1, ® p,.
PROPOSITION 2.1'. Let M be a right A-module and N a right A # G*-module.
Then there is a natural isomorphism between
HOmA(M, N) and HomA #G‘(M ®A (A # G*), N).

SKETCH OF PROOF. For f in Hom 4(M, N) define f by f(m ® p,) = f(m)p, and
for g in Hom 4 » (M ® 4(A # G*), N) define g(m) =m® 1.

CoROLLARY 1. Let E be an injective right A-module. Then the right
A # G*-module E ® 4(A # G*) is injective.

The following are also easy consequences

THEOREM 2.3. Let V be a right A # G*-module. Then
(i) V is projective if and only if V, is.
(i) V is injective if and only if V, is.

Proor. We have an exact sequence of A # G*-modules
0-K->F->V-0,

where F is a free 4 # G*-module. F is A-free by Proposition 1.1 and hence (i)
follows from Maschke’s Theorem.

Now let ¥, be injective and let W be an 4 # G*-module containing V. V is
a direct summand in W and by Maschke’s Theorem V is injective.

Finally assume V is injective and M, N A-modules, M c N and if f: M -V,
a homomorphism, then f: M ® ,(4 # G*) - V defined by fm® p,) = mp,is an
A # G*-homomorphism (Theorem 2.2 and Proposition 2.1'), f can be extended
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to an A # G*-homomorphism g: N ® 4(4 # G*)— V. Now §(y) = g(y ® 1) ex-
tends f.

In[13,3.4lemma 1] itis shown that under an extra assumption on the grading
(separability)an 4 # G*-moduleis flat if and only if it is A-flat, here we show that
the extra assumption is superfluous. Let us first recall a well-known result of
Villamayor.

VILLAMAYORS LEMMA. Let

0-K->F5M-0

be an exact sequence of A-modules such that F is afree A-module and K the kernel of

¢. The following conditions are equivalent:

(1) M is flat.

(2) For all kin K there exists a ue Hom (F, K) such that u(k) = k.

(3) Forallk,,...,k in K there exists a ue Hom 4(F, K) such that u(k;) = k; for all
i=1,...,t

It is now easy to get

THEOREM 2.4. Let M be an A # G*-module. M is flat if and only if M 4 is flat.

ProOOF. We have an exact sequence of A # G*-modules
0-K->F-M-0(,

where F is a free A # G-module. The lemma shows that if M is flat so is M ,.
Conversely let M, be flat, k € K and let u: F — K be an A-homomorphism such

that u(kp,) = kp, for all ge G.

i constructed in Theorem 2.2 is an A # G*-homomorphism from F to K and

12'(k) = Z u(kpg)pg = Z kpg = k,

geG geG
and M is A # G*-flat by Villamayors lemma.
We can now list a number of corollaries
COROLLARY 1. Let N be an A # G*-module. Then

rhd N = rhd A N A
injdim N = injdim 4 N,
thN = thANA'
where rhd, (injdim and whd), denotes the projective (injective and flat) dimension of
a module.
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COROLLARY 2. Let A be a group graded ring. Then

rgldim A # G* < rgldim 4
wegldim 4 # G* < wgldim 4
rFDP A # G* < rFPD A.

In Corollary 2 equality does not hold in general. Let A4 be the groupring k[G],
where kis a feld, then A # G* is Morita-equivalent to k [5, Theorem 2.12]. But in
case char k||G]|, 4 is not semisimple.

Before we state and prove the last corollary let us recall that a ring A4 is said to
be of finite representation type (FRT) if A has only a finite number of finitely
generated indecomposable left A-modules, and A moreover is left artinian. This
concept is left/right symmetric, and furthermore every left A-module is a direct
sum of finitely generated modules if A is FRT.

COROLLARY 3. Let the ring A be graded by the finite group G. If A has finite
representation type, then A # G* is also a ring of finite representation type.

PrOOF. The argument showing [8, Theorem 2] together with Theorem 2.1 can
easily be applied here.

REMARK. If k is a field of characteristic p and G is a finite group, then k[ G] is of
finite representation type precisely when the p’th Sylow subgroups are cyclic.
k[G] # G* is Morita-equivalent to k, this shows that in general the converse to
Corollary 3 does not hold. We will return to this question later on.

Finally we note that the assumption (separably graded)in [13, 3.7 Proposition
and 3.10 Corollary] is not necessary because by Corollary 1 and Theorem 2.3 we
get

COROLLARY 4. Let A be a group graded ring, A is a QF (selfinjective) if and only if
A # G*is.

By [5, Theorem 3.2] we get

COROLLARY 5. (cf. [6, Theorem 24.297) Let A be a ring and G a finite group of
automorphisms of A. Then Ais QF if and only if A * G is QF. A isright self-injective
if and only if A * G is self-injective.

Since for a strongly graded ring A A # G* is Morita equivalent to 4, most of
the results in [12, Chapter 2] can easily be derived.
3. Separability.

A general theme for the results in Section 2 was that properties from the group
graded ring were inherited by the smash product. Also examples showed, that in
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the general the converse results were not always true. We will describe the extra
assumption which is needed to obtain the converse results. The reader might also
consult the papers [11] and [14] for the strong group graded case and [2] and
[13] for the general situation.

Let A be a strongly group graded ring and suppose we have fixed decomposi-
tions of the identity element

1=YuP®  uPed, and v ed, , forall geG.
i

The Miyashita automorphism of the center of 4, is defined by

g(a) =Y uPav? ..
g is characterized by the property g(a)x = ax for all xe A,.

For a in the center of 4; we can thus define tr(a) = ) 4 g(a).

If |G| is a unit of A4, then clearly A; has an element with tr equal to 1. Some
consequences of the existence of an element with trace 1 are given in [11] and
[13]. Let us also recall from [14], that 4 has an element ain the center of 4, with
tr(a) = 1 if and only if the natural epimorphism from 4 ® 4, 4 to A is split as
a homomorphism of bimodules.

In [2] the notion of a separable functor is introduced as a generalization of the
above concept to not necessarily strongly group graded rings.

Following [13, 3.6 Theorem] we make the following:

DEFINITION 3.1. Let the ring A be graded by the finite group G. We say A is
separably graded if there is a family of elements {x?},.; in the center of A, such
that
(i) Y,x*=1

(ii) rx? = x"r for all re A, and all geG.
We have the following interpretation in terms of the smash product.

THEOREM 3.1. Let A be a graded ring. A is separably graded if and only if the
A-bimodule epimorphism from A # G* to A defined by p, — 1 is a split epimorphism
as a bimodule homomorphism.

PROOF. Let r denote the right A-module homomorphism from 4 # G* to
A defined by 1(ap,) = afor all g€ G. 7 is a bimodule homomorphism by Proposi-
tion 1.1 (i). 7 is split as a bimodule homomorphism precisely when there is an
element 6(1) in A # G* such that ad(1) = d(1)a, ae 4 and 16(1) = 1.

Suppose first 4 is separably graded and {x},.; is a family of elements
satisfying i) and ii). Then define 6(1) = Y, xp,. By i) t6(1) = 1 and for a€ 4, we
have by ii)
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ay x%p, =Y x"ap, = Y x"p,.a = i(1)a.
) ) 9

Conversely assume that there is an element §(1) in A such that ad(1) = &(1)a
and t6(1) = 1. We can write §(1) = Y, )°p,, )* € A. Now ) ;) = Isincetd(1) = 1.
Moreover, for ae A, we have

agygpg = (;m) a,

consequently we get ) ,ay’p, = Y, y%apy,_ 1, thus ay? = y"a. If one projects each
element of the family {)?} onto A4, it follows that A is separably graded.

COROLLARY 1. Let A be separably graded and let M be aright A-module. M is an
A-direct summand in the right A-module M ® 4(A # G*).

Proor. This is immediate since A4 is a bimodule direct summand in 4 # G*.
Corollary 1 and the results in section 2 imply

COROLLARY 2. Let A be separably graded and M an A-module. Then
(1) thd,M, =rhd 46+M ® (A # G*)
(1) injdim4 M, = injdimy 46+ M ® 4 (4 # G*)
(2) rgldim(A4 # G*) =rgldim A
(3) rFDP(A # G*) =rFDP(A)

If moreover A is strongly graded A # G* is Morita equivalent to A4, [5,
Theorem 2.12] and

rgldim A, = rgldim A # G* = rgldim A.
This last equation is known in case r gldim 4, = 1 [11, 2.3 Proposition].

THEOREM 3.2. Let A be a separably graded ring such that A # G* is of finite
representation type. Then A has finite representation type.

Proor. First notice that A4 is left and right artinian for instance by Proposition
1.1 (v). We know that for a finitely generated 4 # G*-module M, M is a finite
direct sum of indecomposable 4 # G*-modules, i.e. we have a finite number of
finitely generated indecomposable A4 # G*-modules M,, « = 1,...,k such that
every finitely generated 4 # G*-module is a direct sum of copies of the M,’s.
Thus let M be an indecomposable finitely generated A-module; then
M ®,(A # G*) ~ @M as A-modules. Each of the M,’s is a direct sum of
finitely generated indecomposable A-modules, M, = ®@M,4, = 1,...,m,. By
the Krull-Schmidt Theorem [1, Theorem 12.9] M is isomorphic to one of the
finitely many M,,’s. Finally note that the indecomposable A-modules come from
decompositions as A-modules of indecomposable 4 # G*-modules.
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COROLLARY. ([8]) Let the ring A be of finite representation type and let G be
afinite group of automorphisms of A such that |G|~ ' € A. A * G has finite representa-
tion type.

PROOF. (4 *G) # G* has finite representation type by [5, Theorem 3.2].

REMARK. Let M be a simple right A-module, where A4 is graded by G. Then
M®, A # G*is A # G*-semisimple. To see this consider M" as a M,,(4)-module
in the natural way. Noting that M,(4) ~ (4 # G*)* G and applying Clifford’s
Theorem [10, 1.3.33 Theorem] we arrive at M" being semisimple as an
A # G*-module. The module action of A # G* on M" is (cf. [2, Remarks after
Lemma 3.1])

(my)yecapn = (X1hec

where x,=0 for I$+h and x,=),mya,_,. One easily verifies that
M'~M®,A# G* as A # G*-modules. This establishes the claim.

We give two applications of this. For a separably graded ring A we have (cf.
[13, 3.9 Proposition]) A4 is a V-ring if and only if 4 # G* is a V-ring.

Suppose first, that 4 is a V-ring, and let S be a simple A # G*-module. Since
S is graded simple it is semisimple of length at most |G| as an A4,-module and
hence it has finite length as an A-module. Since simple A-modules are injective,
S is A-semisimple of finite length and hence A-injective. By Theorem 2.3 S is
A # G*-injective.

Conversely, let S be a simple 4-module. Then from the above S® 4 A # G*is
semisimple of finite length as an A # G*-module and hence 4 # G*-injective.
Theorem 2.3 and Theorem 3.1 Corollary 1 establish the claim.

The above remark also applies to yield a general result of Greszczuk (cf. [2,
3.15 Corollary]) requiring no assumptions on the grading: if M is A-semisimple
of finite length then M is semisimple as an A;-module and
long 4, (M) < |G|long,(M). It suffices to prove the claim in case M is a simple
A-module. In this case M ® 4 A # G* is semisimple as an A # G*-module of
length at most |G| and hence (as it is graded semisimple) A-semisimple of length
at most |G|2. Since as A;-modules M" ~ M ® 4, A # G* the claim follows.

The last part of the paper is concerned with perfect rings. In [13, 3.11
Proposition] it is proved that for a separably graded ring A, A is left perfect if and
only if 4 # G* is.

We show again that the assumption on the grading is superfluous and, which
may be more surprising 4 perfect if and only if A, is.

As a basic reference we use [1].

THEOREM 3.3 Let the ring A be graded by the finite group G. The following
conditions are equivalent:
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1) A is left perfect
2) A, is left perfect
3) A # G* is left perfect.

PRrROOF. Let us recall [1, 28.11 Proposition]:

Let Abearingande,,...,e, a complete set of orthogonal idempotents. A4 is left
perfect if and only if e;Ae; is left perfect forallil <i < n.

To show that 1) implies 2) it suffices to show that any descending chain of
principal right ideals of A, terminates. :

Suppose given

(a14)) 2 (a1a,4,) > ... o (a1a,...aAy).

We can find an element ae 4 and a ke N such that a;a,...aa,+ 0 = a;...a.
The desired result follows by projecting on A4;.

Next we show 2) implies 3). This is done by showing that p,(4 # G*)p, is left
perfect for all ge G.

p1(A4 # G*)p, is left perfect by Proposition 1.1 (v). By (iv) in the same proposi-
tion we get p,(A # G*)p, = p,Ap, = A,p,. Thus we can write a descending chain
of principal right ideals in p,(4 # G*)p, as follows:

(alpy)pgApg > axl’gangAPg 2.

or

(a1pg)pgApy © @1a,P,p,AP, > ..

but this chain terminates.
We finally have to show that 3) implies 1). Let

(@) > (@a)>...o(@1a;...a41) > ...

be a descending chain of principal ideals of A. In A # G* we have the same
descending chain of principal right ideals. Thus we can find ), b,p, such that
ay...ay =ay...axa+1 (Y, b,p,). Suppose b, is non-zero. Then multiply the
above equation by p, on the right

ay...0kPy; =0a1...0;+ lbgpg9
thus a,...a, = a, ... a.a,+ b, and the result is proved.
THEOREM 3.3'. Let the ring A be graded by the finite group G. The following
conditions are equivalent:
1) A is semiprimary

2) A, is semiprimary
3) A # G* is semiprimary.
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Proor. By Theorem 3.3 we may assume that all three rings here are left and
right perfect. 1) implies 2) by [5, Corollary 5.4].

To show that 2) implies 3) we only have to show that p,(4 # G*)p, is semip-
rimary [1,28.10 lemma]. p,(4 # G*)p, = p,Ap, is a perfect ring, so we only have
to show that its primeradical is nilpotent. The argument in Theorem 3.3 showing
that 2) implies 3) shows that an element a, p, is in the prime radical of p,4p,
exactly when a, is in the primeradical of A, and the result now follows easily.

3) implies 1) since a perfect subring of a semiprimary ring is semiprimary [4].
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