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GENERALIZATION OF THE GENERAL DIOPHANTINE
APPROXIMATION THEOREM OF KRONECKER

ERLING FOLNER

1. Introduction
Let G be the abelian group

G=2 ={(hy,...,h):hy,...,heZ}
We consider the additive characters

Xl(hl,“',hr) = ﬁl,lhl +...+ Bl,rhr (mOd 1)

Xp(hl’ .e .,h,.) = ﬂp,lhl + ...+ ﬂp,rhr (mod 1)
where B; ;€ R. The necessary and sufficient condition that the p inequalities

lx1(hy,....hy) — ay] < & (mod 1)

IXp(hl’--~9hr) - apl é & (mOd 1)

wherea,,...,a,€R,for every ¢ > 0 have at least one solution (h;, ..., h,) is that for
arbitrary integers n,,...,n, with

nixi(hy, . ) + .o+ npxp(hy,...,h) =0 for (hy,...,h)eZ'
or equivalently

nifia+...+n,6,,=0 (mod1)

.................................

nPir+...+n,p,"=0 (mod 1)
also
nia; + ...+ n,a,=0 (mod 1)

This is Kronecker’s general diophantine approximation theorem from [5].
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We shall generalize this result in two directions. In both cases we replace the
group Z" by an arbitrary topological abelian group G, and the characters
X1,---» Xp DYy arbitrary continuous additive characters of G.

2. The first direction.

The first direction we take consists in proving the

THEOREM 1. A necessary and sufficient condition that the set C of solutions x of
the inequalities

x1(x) — ay| < & (mod 1)
)

lxp(x) — a,| = & (mod 1)

where a,,...,a,€R, for every € > 0 be not empty, is that for arbitrary integers
ny,...Nn, with

2 nyxi(x) + ... + nyx,(x) =0 (mod 1) for xe G
also
3) na; +...+nya, =0 (mod 1)

(A simpler proof than mine can be given by help of theorem 1.8.3 in [6] but my
method leads to the deeper-lying Theorem 5.)

It is obvious that the condition is necessary. In order to prove the sufficiency,
we prove somewhat more. Let 0 < ¢ < 3 and let (2) = (3). Then we prove that
C for ¢ small is W-almost periodic and that its mean value MC is positive. Then of
course C isnot empty. We do it by proving that MC, when (2) = (3), and ¢is small,
does not depend on a;,...,a, (and consider a; = ... = a, = 0).

A generalization of this fact is used in the second direction we take, which
consists in finding formulas for the mean value of C and more general sets.

For orientation about W-almost periodic (W-ap) functions on a topological
group G, about the Bohr compactification BG of G, and about the W;-ap
functions on BG we refer to [2], [3], [4].

As stated above, G is a topological abelian group. Let y: G— R/Z = H be
a continuous additive character of G. We consider H as the interval 0 S y £ 1
with identification of 0 and 1, modulo 1 addition, and usual circle topology.

We shall need the following

THEOREM 2. Let the values of y(x) be everywhere dense on H and let g: H — C be
a Riemann-integrable function on H with the Fourier series

(4) g(y) ~ i Cneriny

n= - 00
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Then g(x(x)) is a W-ap function on G with the Fourier series

©) G~ T cerm

n=—ao

where e2minx()

for each integer n is a certain continuous multiplicative character:
G- {z:zeC,|z| = 1}.

PRrROOF. Let

A= (xy,...,0;X),...,Xg)

Q
where ¢, >0and ) o, =1and x,eG.
q=1
We know that the Riemann-integral

dy -0 for N> oo

1 N .

Hg(y) - Y c,emm
n=-N

0

We shall show that

(©) 0sM ’g(x(x)) - f} c, e2mimee)

n=-N

N
gux + xp)) — Y c,etmimErsD
n=-N

2
inf sup Y a, <

A x q=1

dy -0 for N> «©

1 N '
I ‘g(y) - Y c e
n=-N
V]
For a Riemann-integrable function f(y) on H, viz.

N
9 — X cae®™™

n=-N

fly)=

we know that

1

Q

Z:l SO+n)(y + ) = (¥ + Yg-1)) = Jf(y)dy
0

uniformly in y for |D| - 0 where D: yo =0 <y, <y, <...<yo=1and |D| =
max(y, — yg-1)and y,_, < n, £ y,. Thus to ¢ > 0 we can find 6 > 0 such that
q
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Q N .
Ylgy +n)— Y cpernorm
q=1 n=-N

1
(Yg = Yg-1) = Jf(y)dy +e

(4]
for ye H and |D| < 8. We take y = x(x) and let yo = 0 = y(xo) < ¥, = %(x1) <
y2=x(x2) <...<yo=xlxg) =1 where xo=x9=0, and x(x,-;) S n,=
x(&,) < x(x,) and |D| < 8. Here we have used that the values of (x) are every-
where dense on H. Then we get

Q N .
sup 3. (K(xg) — Axg- ) |gUtlx + E)) = 3] cperminnstiw

x q=1 n=-N

1
N .
< ”g(y) — Y ce’™™ldy +e
n=—-N

0

Q
Since x(x,) — x(Xq-1) > 0and Y, (x(xg) — x(x4-1) =1
q=1

we see that

N
M ‘g(x(x» — Y cpermim®
n=-N

N
g(X(x + x;)) _ z c"eZninx(x+x;,)
n=~-N

Q
infsup Y a,

A x q=1

<

1

N .
”g(y) - Y c, e

n=-N

dy + ¢

0

for every ¢ > 0 and hence (6) follows.
(6) shows that

—0 for N> w

M ’g(x(x)) — Y cpetmin

n=-N
and hence g(x(x)) is W-ap with the Fourier series
d .
gax) ~ ¥ ¢ e
n=-o
when we note that the multiplicative characters

e2nin1(x)’ ne z

are continuous on G since 2™ is continuous on H and y = y(x) is continuous on
G, and they are different, because otherwise, for a certain n $ 0
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ny(x) = 0(mod 1) for xe G
which contradicts that the values of y(x) are everywhere dense on H.
A special consequence of (4) and (5) is that

1

M, (x(x)) = ¢co = Jg(y)dy
(1]
which for G = Z gives a result of Weyl, viz. that for an irrational number o the
sequence an,n = 1,2,... satisfies

1

% Y glan(mod 1)) - Jg( y)dy for N -

n=1
V]
and thus, in particular, is equi-distributed modulo 1.
Next we assume that each of the first t,0 < ¢t < p, of the charactersin (1) do not
have values that are everywhere dense on H, while each of the rest do, and intend
to prove the following

THEOREM 3. Let (2) = (3)and let 0 < & < }. Then the set C, of solutions of the
p relations

Z1(x) = ay (mod 1)

x(x) = a,(mod 1)
™

[X+1(X) — 41| < e(mod 1)

lxp(x) — a,| < &(mod 1)

is W-apand MC, > 0. Further, MC does notdependonay,...,a,. For ¢ small, say
0<e<eg <4, Cy=C,sothat Theorem 1 follows.

ProoF. Let T;forj =1,...,t be the smallest positive integer with
T; xj(x) = 0(mod 1) for xeG

Let g;(y) be the characteristic function of the one-point set {a;(mod 1)} on H for
j=1,..,tand of theset a; —e < y<a;+e(modl)on Hforj=t+1,...,p.
Then the characteristic function of C, is

® C1(x) = g1(x1(x)) - - gp(xp(x))-
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Since (2) = (3) we have Tia; =0 (mod 1) for j=1,...,t, abbreviated Ta =0
(mod 1), and hence for ¢ small, say 0 < ¢ < ¢; < §,the sets C and C, are identical.
Similarly we write g for g; and x for x; whenj = 1,...,t.

Now
1 i 2msnz{l for §=0
T %% 0for S=1,...,.T—1
and if
aE—STi(mod 1)
we have

LTil miSsso, _ [1 for $ =S, (mod T)
T =% ~ |0 otherwise
178 o~ 2mina 52 i3 17 -2 2
—_ nina an —_— e mnae miny(x)
T ; nZO
1 for y(x) = a(mod 1)
0 otherwise

g(x(x)

a trigonometric polynomial, where the T continuous multiplicative characters
e2mm) p=0,...,T—1
are different.

Ge+1(e+1(%), . . ., g,(xp(x)) are W-ap on account of Theorem 2, that also gives
us their Fourier series. Forj =1t + 1,...,p, if

g;(y) ~ Z cj."ezﬂny

ajte
we have ¢; o = j ldy=2¢andforn+$0
aj;—e

ajt+e
sin 2mne

—_ e-—2niny dy = e—2mna, -

Cj_,,
aj—e
We let it mean 2¢ifn = 0.

The multiplication theorem for W-ap functions on topological abelian groups
is proved as for the usual almost periodic functions in [1], so the Fourier series of
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the W-ap function C,(x) in (8) is obtained by formal multiplication of its factors.
In particular, since (2) = (3),

MC 1 sin2znn, & sin2nn,e
1 = Y
T,...T, Ty 4 ¢ nn,

nixi(x) + ... + nyxp(x) = 0(mod 1) for xeG
0nm<T,...0En<T,

where the series, as for the usual almost periodic functions, is absolutely conver-
gent.

We see that MC,, when (2) = (3), is independent of a4,...,a,.

Fora, = ... = a, = 0, trivially (2) = (3), and the set C, of solutions of (7) in this
case has MC, = MC,. Weshall show that MC, > 0. We divide the cube H? "*'in

o . 1
g° "' closed and congruent cubes, where the positive integer q satisfies — < ¢. We
q

consider the points

1 T, —1
(1 (x), - ., xp(x)) € {O,?l,..., 1T1 }x

1 T, -1 ot
X{O’E""’ T }xH for xeG.

There are at most T ... T,q” " possibilities for the simultaneous choice (i.e.
for a given x) of the values of y,(x),...,x(x) and a small cube in which
Ote+1(x), ..., xp(x)) is lying. Let x,,...,x;,..., X, give all the possibilities where
s £ Ty...T,q°"". For an arbitrary xe G we can therefore find an x; such that

x1(x — x;) = 0(mod 1)

x(x — x;) = 0(mod 1)

Xe+1(x — x;)| = e(mod 1)

[xp(x — x;)| < e(mod 1)

Thus

J

1 s
MC1=MC0=_MCoglnf“s“ Co(x—Xj)
x =1

1 1 1\P~*
2—2 - .
"‘s‘T,...’I}(q) >0
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We remark that Theorem 1, in contrast to Theorem 2 and 3, is contained in its
discrete form (we give G the discrete topology). We could also say that the
characters do not have to be continuous in the original topology. Let us use the
discrete form to the discrete abelian group G, of the continuous additive charac-
ters x of the topological abelian group G. Since

x(X) = X(x)s xX€ G’ XG Gl
is an additive character of G,, we get the

THEOREM 4. Let Xxy,...,x,€G and a,,...,a,€R. A necessary and sufficient
condition that the p inequalities

Ix(x1) — a4] £ e(mod 1)

Ix(x,) — a,] < & (mod 1)
have a solution y € G is that for arbitrary integers n,,...,n, with
9) x(nyxy + ...+ nyx,) = 0(mod 1) for xeG,
also
na; + ...+ nya, =0(mod 1)
If, in particular, G is maximally almost periodic, (9) means

nxy +...+nx,=0

3. The second direction.

In the following we deal with continuous additive characters x of the topological
abelian group G, i.e. ;: G — R/Z, but we prefer to let y be multi-valued with
values in R, only determined modulo 1. We build on a generalized form of
Theorem 3, but since its proof goes in nearly the same way, we omit it. By H we
understand the interval 0 < y < 1.

Let exactly t,0 < t < p, of the continuous additive characters x;(x),. . ., xp(x)
be non-dense on R. We know the structure of the closed subgroups of R? and

K = {(XI(x)""’Xp(x)):XEG} = {(XI(x)s'-'aXp(x»:xeBG}

is such a subgroup, and it contains the subgroup Z?.
Except when K = RP?, by eventually rearranging the characters, we get

K=R®F

where R is a vector space of the form

Vs+1 = I(yla”"ys)’---’})p = rn(ylv--’ys)
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with linear forms [,...,m which have rational coefficients, and F is a discrete
infinite subgroup of the y,,..., y,~space for which F/Z?~" is finite, with, say,
N elements.

This follows from Theorem 1 by which when

J={ny,....,n,):ny,..,n,eZ,ngxy(x) + ... + n, x,(x) = 0(mod 1) for x € G} then
K ={(ay,...,a,):ay,...,a,€ R,nya; + ... + nya, = 0(mod 1)for (ny,...,n,)eJ}

and since the dimension of J is <p, the largest vector space contained in K has
dimension s = 1, i.e. it is not the O-space. The rationality of the coefficients of
I,...,m stems from the fact that J is a subgroup of Z*.

When K # RP we denote by P the set of points (y;,...,y,) given by

yl9~-~:.VseH
l(ylf'“’ys) _S.-.Vs+l < l(.Vn---,.Vs) + 1

When K = R? we let P = H?. Obviously it is no restriction on x € BG to demand
that

(x1(x),..., 2p(x)) € P

because the values of the characters are only determined modulo 1.
We shall prove the following

THEOREM 5. Let E be a subset of P,and if K = RP, let E be Jordan-measurable.
If K % RP, let the projection on the y,,..., ys-space

projENn(R + f;) for j=1,...,N

be Jordan-measurable, where
{fis--s Jn}=FnHP®

In both cases the set

B = {x:x€G,(x1(X),..., xp(x)) € E}
is W-ap. If K = R? then

MB = mE

If K + RP then

1 X .
=N Z mproj EN (R + f;)
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(We shall express the theorem by the phrase:
O1(x), .. xp(x), xEG
is W-ap equi-distributed from G into its closure K modulo 1.)
PrROOF. Let
fi=aen V) =150 0p)

where for instance f; =(0,...,0). It is understood that they lie in the
Vs+15---» Yp-space. Obviously Nf; has integral coordinates.
For a positive integer g we divide H® in g° congruent cubes of the type

1 1 1 _.
al-—-z’q—é)ﬁ <al+§q—,---,as—3é‘§ys<as+

1
2q
In each cube we choose the center (ay,...,a,) € H® and consider the points
(@ys.. 0@y, sa) + Viey,..,mlay,....a) + yi) =
gy 0584 q,...,a0)ePA (R + f) c PnK

We note that for two different j and k at least one of the numbers

j i . 1
@iy, —atyql,...la) —al) is 2 N
We also note that for a fixed j and a fixed Y = (y;+1,...,¥,)€ F\ HP™* at least

. . . 1
one of the numbers [yl ; — Ys+1l,...,|¥p — yplis 2 N

1 ..
Let £ = min (W,e,) In generalization of Theorem 3 the N¢° sets

1 1 1
C=C;= {x:xeBG,a, —2—q§x1(x) <a +—2—;1—,...,as—2—q§ 1s(x)

1)

3

l . i 0 j
— J =
<as+.___,a.§ 1= <Xs l(x)<a£ l+ 3,...,0,, _S

X(x) S al + —:l(mod 1)} for q large

are Wi-ap and since
nay + ...+ na, + nge @y + ...+ n,a, =0(mod 1)

for (n,,...,n,)e J, this generalization tells us that the Ng* sets C all have the same
W,-mean value M9.
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Since I,...,m are uniformly continuous on H* the Ng* sets C will, for g suffi-
ciently large have a disjoint union which is equal to

{x:xeBG,(xl(x),...,x,,(x))ePn O R+f)= Pr\K} = BG

ji=1
Thus
* Ng*M$ = M, BG = 1
Now
N
EnK = |) En(R + f)) (disjoint union)
ji=1
where

projENn(R+ f), j=1,...,N

is Jordan-measurable. Let
U’ C;= B} and U" C;=Bj
)

where U’ denotes union over those centers (a,,...,a,) whose A4’ cubes

1 1 1 1
al-z§h <a +Z’m’a3_2_q§y8<a5+—2;l_

are contained in
projEn(R + f)

while U” denotes union over those centers(a,, . . ., a;) whose A} cubes have points
in common with this projection.
Since the projection is Jordan-measurable, both

% and —g;j’-—w»mprojEn(R + f;) for g - o0
The set
By = {x:x€BG,(xs(x), ..., xp(x)) € E}
satisfies
By> Byu...uUBy (disjoint union)
and

By = Biu...UBy (disjoint union)
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Here B_’, and B}’ are Wl-ap and by ( )
B’ = A’Mq = -——-’L
Ml P = j 1= S

and

A4
M, B = A;M{ =k

Hence B, is Wi-ap and

1 X .
MIBO=W mpl'O_]Ef\(R'i’fj)
=1

J

From this follows that the “restriction” of B, to G, viz.
B = {x:xeG,(x1(x),..., x,(x) € E}
is W-ap on G and

1
MB= MlBO =—‘N‘

J

Nl mproj En(R + f;)
The case K = RP can be treated in a similar, but simpler, way.
For E lying in a fundamental domain modulo 1 of the form

cEn<ca+li, Sy, <c+ 1
instead of P, we assume, for K  R?, that
projENn(R + f)
is Jordan-measurable for feF. Then
B = {x:x€G, (x1(x),..., x,(x) € E}
is W-ap with

1 .
MB=—Y mprojEn(R + f)

N SeF

159

where only a finite number of terms are different from zero. For K = R? we

assume that E is Jordan-measurable. Then B is W-ap and

MB = mE
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Ift = p, and the set E is contained in a fundamental domain modulo 1, then the
set B is almost periodic, and

|[En K|
MB=—r—
|HP n K|

where | | denotes “number of elements in”. This follows from the proof of
Theorem 3..
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