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MODELS OF REPRESENTATIONS OF
SOME CLASSICAL SUPERGROUPS

D. LEITES and V. SERGANOVA

Abstract.

A model of representations of a compact group is a representation of this group which is the direct sum
of all its irreducible representations, each of multiplicity one. For Lie supergroups it is unclear what is
the good definitoon of a model: irreducible representations have parameters which run over a singu-
lar supervariety; in addition to that the representations, even finite-dimensional ones, are not, usually,
completely reducible. The models we give (for the supergroups of series 4.% and Os £) are straightfor-
ward generalizations of Gelfand-Zelevinsky’s models for classical groups; they indicate which
representations are in a sence more natural among other irreducible finite-dimensional representa-
tions. Generalization of this construction to the other series of classical Lie supergroups will be given
elsewhere. Our results can be considered transversal to the description of irreducible representations
of Lie superalgebras a la Borel-Weil-Bott — ... due, mainly, to I. Penkov — a realization of the
representations in cohomology of invertible sheaves on flag supervarieties [P].

Since the concepts of supermanifold and Lie supergroup are so new in Mathe-
matics we append the main text with basics so far poorly, especially as far as
representations of Lie supergroups are concerned, presented in the litterature.

1. Let W be the superspace of the standard (identity) representation of the Lie
supergroup ¥ = Qs 4(2m + 1|2n) with the parity function on W fixed so that Os 4
preserves an even nondegenerate symmetric bilinear form <.,.).

Fix maximal isotropic subspaces V, V' = W and a vector z,€ W, such that
V + V' = W and {zy,z,) = 1. Denote by g, = gl (m|n).

Fix a maximal toral subalgebra h c g, = Lie (%) = g and a standard basis
&1y vy Emy Oy ..,0,) of hasin [OV], fix a Borel subalgebra b* and let b~ be its
opposite.

Lemma ([K], [L1]). a) Any finite-dimensional irreducible representation of
% has a wunique b*-highest vector of weight A= Xae; + 2Zbjd;, where
a; 2...2 a2 lwithle{,...,n},b;2...2b,20.

There are two irreducible representations with b -highest vector v of weight A:
with an even v and with an odd v.

b) ([S]) The irreducible finite-dimensional representation of gl(m|n) with weight
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A is a direct summand in the tensor algebra T(V); i.e. the representation of gl(m!n)
corresponding to A is a polynomial one.

2. Let C be a supercommutative superalgebra, # = 4/%,. Then the set of
C-points (for definition see [L2, #30, 31]) of # is #(C) = {(V,V",z). V,V" are
maximal isotropic direct modules of the C-module W, ze W, and (z,z) = 1}.

There is a natural ¥-module structure on a sheaf O, of regular algebraic
functions on .#.

THEOREM. O, is a model of representations of 4.

REMARK. Both 4 and .# have two connected components. Denote by
4% = S0s4(2m + 1|2n) the connected component of the unit and by .#° either
of the connected components of .#. Then, clearly, #° = %°/%, and a statement
equivalent to that of Theorem is

THEOREM®. O 0 is a model of representations of %,.

3. EXAMPLE. ¥ = 0s4(1]2), dim W = (1, 2). Fix a basis { f,e;,e,) = W such
that {f, f> =1, {ey,e;)> = 1. Then.

M°(C) = {(X, Y,2): X, Y are direct submodules of W® C and ze W(C) =
(W ® C), such that (z,z) = 1}.

In the above basis of W, on an open subsuperdomain % of .#° containing
atriple (X, Y, z) such that X is transversal to, say, e, and Y is transversal to e,, we
can take for local coordinates the patrameters x, y, &, # in the following express-
ions:

X =Cle, +e;), Y=Cles + yer), z=(1 = {n)f + {ey + ne,.

Let us express in these coordinates vector fields on % that correspond to the
%-action in O. Let us express a basis of 0sp(1]2) in the nonstandard format:

000 000 10 0
X =10 0 0|J,vo={1 0 O0),H=[0 0 0],
1 00 010 00 -1
01 0 0 0 1
Vr={0 0 —-1],X*={0 0 O
00 0 0 00O
Then the corresponding vector fields are:
X~ = &0/on + 0/ox — y*0/dy
V™ = 0/on — &nd/on + (n — Ex)/0x + (ny* — £y)/dy
H =nd/on — £0/0E + 2x0/0x — 2yd/dy
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V' = —0/0% + &nd/0& + (nx — &x*)0/0x + (& — ny)d/dy
X* =nd/0¢ + 0/dy — x*0/0x

The b*-highest vectors are:
ny +x )" ™and (1 — mén)(y + x~ ) ™ for any meZ,.

4. Proor oF THEOREM. Thanks to Remark 2, it suffices to prove Theorem®.
Let #,, be the linear supermanifold associated with the superspace E?
(id*) @ id*, where id is the identity gl(m|n)}-module. Naturally, &, , = 4/2*,
where the parabolic subsupergroup corresponds to the standard Z-grading of
osp(2m + 1|n) of the form

g-2 g-1 1) 91 92

E?(id*) id* gl(m|n) id E?(id)

4.1. THEOREM. Os = Og,  isamodel of polynomial representations of 4 £ (m|n).

Proor. Thanks to Sergeev’s results [S], since Oz = S®EX(V)DV)c
T(V) for V = id*, then Oy is a completely reducible gl(m|n)-module.

Let us show that for any polynomial weight 4 e h* there exists a vector highest
with respect to by = b* N go.

Indeed, let A = o, + X f;0;. In V, select a basis {ey,...,em f1,..., o) of
eigenvectors with respect to by

h(e;) = ei(h)es, h(f;) = é;(h)fifor any heh, 1 Si=m 1 =j<n
Set
Wy =€1,W) =€1 N €3,ec.;Wpy=8€1 N ... \Ep,
Ops1 =€ A.c.hem® f1,Oms2=€ A... Nen® fZ,...
Then, clearly,
w; € E\(V) c SU(EX(V)) @ V&2

and therefore w; € Oy and w; is the highest vector at that.

Let (a%,...,a) be the dual partition to the partition (ay,...,an), 4 = af + b;.
Then i, =2...242...24,>0.

Setv, =w; ®... @ w,,.

4.2. EXERCISE. Prove the simplicity of the spectrum.

4.3. LEMMA. There is a regular morphism M® — %, , given by the formula
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p(X, Y, z) = (wx,y,$.) [shortly denoted in what follows by (w, ¢)],

where

(v, ;) = {Pry,x(v1), 02> + {v1,2) {v3,2)/2
and pry x is the projection of W onto Y along X + Cz, ¢,(v) = {v,2).

PrOOF. Let us verify that w is superskewsymmetric. Let vy, = ax + by + cz,
vy, =ab + by +c'z,wherex,x'eX,y,yeY,a,a,bb,c ceC.
Then
{pry, xv1, 02> = ba'{(y, xH(— 1)PPP@% {pry xvz,0,) = b'aly’, x)(—1)PPP@

(v, 01) = ba'{(y,x"H(— )PP + cc'/2; vy, v;) = baly, x)(— 1P + cc'/2

Co1,02) = ab'(x, y (= PP 4 bal (y, x'H(= PO 4 ¢’ =
- ab’(x, y,>(__ l)p(x)p(b’) + ba’(y, x')(— l)p(y)p(a') + cc'/2
+(— l)p(vn)pi"z)c'c/z
= ba'{y,x'Y(— l)p(y)p(a') +cc'/2 +
bady', x>(— 1)PEr®)+p®Ip@+pe0p( | (_ 1)pwopeec/2

Since
P(v)p(v2) = (P(¥) + p(B))p(a) + p(x)),
then
bady’, x)(— 1)PEp®)+peIpa) +p0p(x) | (_ 1)pE0pec /D
= (= 1)PEIPC((— [YPOP@Y xS + ¢'cf2 = (— 1)PPIPCg(, v,)
implying

{v1,02) = (v, 03) + (= 1P (v,,0) = 0.

4.4. LEMMA. The superdomain & = {(X,Y,zf VnY =0} is an open dense
subsuperdomain in #° and & = U x F,,, where U is the normal unipotent sub-
supergroup in # = Stab(V).

PRrROOF. Select V, V' and zy asin n. 1. Clearly, V' is canonically isomorphic to V*
and we can (and will) identify w € E*(V*) with an operator w: ¥ — V' and ¢ with
a vector from V'

Determine a morphism s: &, , —» # by the formula

s(w,¢) = (X, Y,z), where Y= V', z =z + f
and

X ={v— ) — (D, vDP/2 — {P,v)zo for all ve V).
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It is subject to a direct verification that p-s = id and that s is an embedding,

Since (V) = V, then & id Z-invariant.

If ue and u(V') = V' then, as is easy to see, u = 1.

For any maximal isotropic V" < W such that V" n V = 0 there exists ue %
such that V' = uV”. Therefore the %-action on % is free; hence,
L 2U x F(F)=UxF.

4.5. Let V, be the irreducible go-module with highest weight A and W, the
irreducible g-module with highest weight 1; £’ = Stab(V’), p = Lie(£),
p’ = Lie(#'), u and u' the maximal nilpotent ideals in p and p’ respectively; let
% and %' be their respective Lie supergroups; U(:) the functor of universal
envelope.

LEMMA. Oy = Homy,(U(g), O)
PROOF. Let (ry,...,r,> be a basis of u. Any ye & is of the form
y=e“'" ... e""x, where x € S(F).
Let geg. Then
ey = gmilridlgflguarz | guirix —
implying Oy = (U)* ® Oy = Homy(U(g), O5).
4.6. Denote
I(p") = Homy,(U(g), V2); 1:(8) = Homy,,(U(g), V3)
LEMMA. Oy = @ poiynomiat 112(P')
Proof follows immediately from Theorem 4.1 and Lemma 4.5.

4.7. LemMmA. 1) O, = @c;, where c,(p')
2) 0, = @c;, where ¢, = I,»(p) and A* is the highest weight of the representa-
tion dual to V.

PrOOF. 1) follows from 4.6; 2) follows from 1) under the replacements p’ — p,
u - u.

4.8. LEMMA. O, = @, W,.

PROOF. Let us show that ¢; = W.. By 4.7 we have ¢; = @, ;% 4c,.. Butsince
the c; are indecomposable, k = 1 arid c; = ¢, for some u. This implies irreducibil-
ity of ¢;. Hence, c; = W,.
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Appendix. Supergroups and their representations.

In this Appendix we will also describe some classical supergroups whose models
we will describe in a continuation of this paper.

A.1. Superspaces and supermanifolds.

A) Superspaces. A space V (over a field k) endowed with a Z/2-grading, i.e.
adecomposition V = V5 @ 14, is called a superspace and the Z/2-grading is called
parrity and is denoted by p. (We bar the elements of Z/2 to distinguish them from
the elements of Z). The non-zero elements of V5 and V4 are called homogeneous
(even and odd, respectively) elements of V and we write p(v) = i, i€ {0, 1}, if and
only if v 4 0 and veV,. A subsuperspace is a Z/2-graded subspace W of the
superspace V such that W, = Wn V.

Let V and W be superspaces. The superspace structure in the spaces V @ W,
V® W and Hom(V, W) is naturally introduced, e.g. (V@ W), = @,+4=;
V, ® W, etc. The even homomorphisms of superspaces are called morphisms. Put
n(V) for the superspace defined by the formula (n(V)); = V;,1; its elements will be
denoted by n(v), where ve V.

A superalgebra is a superspace A with a morphism m: 4 ® A —» A. An algebra
homomorphism ¢: 4 — B, where A and B are superalgebras, is called a superal-
gebra homomorphism if p((¢) = 0.

CONVENTIONS. 1) Sign Rule: We put (— 1)6 =1, (- 1)T = —1; the formulas
which at first glance are only defined on homogeneous elements are actually defined
everywhere by linearity; if something of parity p moves past something of parity q the
sign (— 1)P? accrues.

2) Inwhatfollows, classifying bilinear forms, etc. we will only confine ourselves to
homogeneous objects since the study of nonhomogeneous objects takes us beyond
the limits of the investigated part of science.

The first convention makes it possible to superize without hesitation notions
like commutator, Leibniz rule, Lie algebra, (co)homology, etc., e.g. the supercom-
mutator is the map

[, ):a,br>ab — (—1)P@P®pgq,

Usually the term superalgebra is used for an associative superalgebra with unit.
Let us give several examples of associative superalgebras. The superalgebra 4 is
called supercommutative if [a,b] = 0 for any a,be A. An example of a com-
mutative superalgebra is the Grassmann superalgebra /\¢(n) in indeterminates
Eye v &n, where p(&) =1 for 1 <i<n, over a commutative algebra C (we
assume p(c) = 0 for ce C).

The tensor algebra T(V) of the superspace V is naturally defined,
TV) = @n20T"(V), where T/(V) =k and T"(V) =V ®...® V (n factors) for
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n > 0. The symmetric algebra of the superspace V is S(V) = T(V)/I, where I is the
two-sided ideal generated by v; ® v, — (— 1)P*P¥2y, @ v, for vy,v,€ V. The
exterior algebra of the superspace V is E(V) = S(n(V)). Evidently, both the
exterior and symmetric algebras of the superspace V are commutative superal-
gebras. Itis worthwhile to mention that if V5 % 0, V5 # 0 then both E(V)and S(V)
are infinite-dimensional.

A Lie superalgebra is a superalgebra g (defined over a field or, more generally,
a supercommutative superalgebra k) with the multiplication called bracket and
usually denoted by [.,.] or {.,.} which satisfies the following conditions:
[X,X]=0and [Y,[Y, Y]] =0 for any Xe(C ® g)g and Ye(C ® g)7 and any.
supercommutative superalgebra C (we assume that the bracket in C® g is
defined via Sign Rule).

The condition on the bracket may be rewritten in an equivalent and more
familiar form via Sign Rule (as superskewcommutativity and super Jacobi
identity). In section A.2 below we give a more adequate definition of a Lie
superalgebra which is a must in applications, like ours.

From a (super)algebra A construct a new (super)algebra A, with the same
(super)space and the multiplication (a, b)+— [a, b]. Another method to get a Lie
superalgebra from an associative superalgebra A is to consider der4, the deriva-
tion algebra of A4, defined via Sign Rule.

From a Lie superalgebra g we construct the associative superalgebra
U(g) = T(g)/I, where I is the two-sided ideal generated by the elements
X®y— (—1PPPy ® x ® x — [x, y] for x, y € g, called the universal enveloping
algebra of the Lie superalgebra g. The Poincaré-Birkhoff-Witt theorem extends to
Lie superalgebras with the same proof (beware Sign Rule) and reads as follows:

if {X;} is a basis in g5 and {Y;} is a basis in gy then the monomials
XX YL Y, where n,eZ* and ¢; = 0,1, constitute a basis in U(g).

A superspace M is called a left module over a superalgebra A (or left A-module)
if there is given an even map act. A ® M — M such that (ab)m = a(bm) and
Im=m if A is an associative superalgebra with unit (or [a,b]lm = a(bm) —
(—1)P@P®p(am) if A is a Lie superalgebra), where a,b e 4 and me M. The defini-
tion of a right A-module is similar. A module M over a commutative superalgebra
C is supposed to be two-sided and the left module structure is obtained from the
right one and vice versa according to the formula cm = (— 1)*™?“mc, where
me M, c € C: such modules will be called C-modules. There are two ways to apply
the functor  to C-modules; to get n(M) and (M), so to say; the two-sided module
structures on n(M) and (M)r are given via Sign Rule. (Actually, there are two
canonical ways to do this, see [L1]; the meaning of such an abundance is
obscure.)

Sometimes instead of the map act a morphism p: 4 - End M is defined if 4 is
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an associative superalgebra (or p: A — (End M),) if A is a Lie superalgebra): p is
called a representation of A in M.

The simplest (in a sense) modules are those which are irreducible of general type
(or irreducible of G-type); these do not contain invariant subspaces different from
0 and the whole module; and their “odd” counterparts, irreducible modules of
Q-type, which do contain an invariant subspace that, however, is not a subsuper-
space. Consequently, Schur’s lemma states that over C the centralizer of a set of
irreducible operators is either C or C® C* = Q(1; C), see the definition of the
superalgebras Q below.

The next in terms of complexity are indecomposable modules which cannot be
represented as direct sum of invariant submodules.

A C-module is called free if it is isomorphic to a module of the form
CH...CoOMO)D ... nC(C occurs r times, t(C) occurs s times). The rank of
a free C-module M is the element rkM = r + se from the ring Z[¢]/(e? — 1) (over
a field we usually write just dim M = (r,s) or r|s and call this number the
dimension of M).

The module M* = Hom¢(M, C) is called dual to a C-module M. If(.,.) is the
pairing of modules M* and M then to each operator F €e Hom¢(M, N), where
M and N are C-modules, there corresponds the dual operator
F*e Hom¢(N*, M*) defined by the formula

(F(m), n*) = (— 1)P'OPM(m F*(n*)) for any me M, n* e N*.

A supermatrix is a matrix with entries from a superspace (sic!) and a parity
assigned to each row and column. Usually, the even rows and columns are
written first followed by the odd ones giving rise to a block expression of matrices

A B .
in the form < c D); the elements of matrices usually belong to a supercom-

mutative superalgebra. Such an expression of matrices is called the standard
format.

Put Mat(n|m; C) for the set of all (n,m) x (n, m) matrices in the standard format
with entries from a supercommutative superalgebra C.

To each operator F € End:M assign (in a fixed standard (the even vectors first)
basis {m;} of a free module M of rank n|m over a supercommutative superalgebra
C) the matrix "F = (F};) putting Fm; = X m;F;. Thus we obtain a one-to-one
correspondence between End(M) and Mat(n|m; C). Now it is evident that the
space Mat(n|m; C) is endowed with the natural superspace structure.

(The parity of (g g) equals O (resp. 1) if and only if p(4;;) = p(D,;) =0
(resp. 1), p(B;) = p(C,;) =1 (resp. 0)) and with an associative superalgebra
structure.)
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0n;C) = {XeMat(nln; O): [X’(-—(l) :)"):I = }

The Lie superalgebras of series Q,, or rather their traceless projectivizations,
discovered by Gell-Mann, Mitchell and Radicatti, are examples of what V. Kac
dubbed as “strange” series, Pe and Q, which stands, perhaps, for queer and
peculiar. This one is a “queer” analogue of the matrix algebra Mat(n; k). The
elements of Q(n; C) preserve the complex structure given by an odd operator, cf.
the definition of C* and Schur’s lemma.

Analogues of the trace tr: gl(n)—>gl(1) are the supertrace str:
gl(n|m) — gl(1]0) = gl(1) and defined on C-points only, see sec. 1.3 belo) the
queertrace qtr: gl(n) —— (1), where gl = Mat, and q = Q,, by the formulas,
cf. [L1]:

Put

A B A B
= — (= 1)PX) —
str ( D E) trA — (—1)P"trE for X <D E)

A B 01
qtr(B A>=(trB)<1 O)

Both str and qtr are (under definitions from 1.3) Lie superalgebra morphisms.
The even invertible elements from Mat(n|m; C) constitute the general linear
group GL(n|m; C) Put GQ(nn; C) = Q(n; C) n GL(n|n; C).
On the group GL(n|m; C) an analogue of the determinant is defined; it is called
the Berezinian (in honour of F.A. Berezin who discovered it):

A B -1 -1
= — E
Ber ( D E) det(A — BE™ 'D)det

For the matrices from GL (n|m; C) the identity Ber XY = Ber X Ber Y holds,
i.e. Ber: GL(n|m; C) - GL(1|0;C) is a group homomorphism.

As is well known, the determinant is connected with the trace by the formula
det X = exp trlog X that holds when both parts of the formula are defined. We
also have Ber X = expstrlog X whenever the right hand side is defined. (This
formula extends the domain of Ber onto nonhomogeneous matrices).

On the group GQ(n; C) the Berezinian is identically equal to 1. However, on
this “queer” analogue of GL the “queer” determinant is defined by the formula

A B\ _ " 1, A'B
qet B A = expqtriog A__IB 1"

satisfying qetXY =qetX-qetY for X,YeGQ(nC). Put SL(nlmC =
{X e GL(n|m; C): Ber X = 1}, SQ(n;C) = {X e GQ(n; C): get X = 1}. These are
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special linear groups, and, as we will see, the functors G— GQ(n; C), etc. are
represented by supergroups.

A bilinear form is an additive in each variable map B: M x N — C such that
B(mc,n) = B(m, cn), B(m,nc) = B(m,n)c, whereme M,ne N, ce C and p(B(m, n) —
p(m) — p(n)). The superspace of bilinear forms is denoted by Bilc(M, N) or
Bilc(M) if M = N. The upsetting of forms uf: Bilo(M, N) — Bilc(N, M), is defined
by the formula

B“f(n, m) = (_ l)p(n)(p(B) + p(m)) + p(B)p(m) B(m, n).

(The adequate way to express bilinear forms in supercase would be (m|B|n).)
A form B e Bil¢(M) is called (skew) symmetric if B*f = (—)B.

Given bases {m;} and {n;} of C-modules and N and a bilinear form
B:M ® N — C, we assign to B the matrix

("B)y = (— )™ ® B(om;, .

If X e GLc(M), Y € GL((N) then with respect to the bases {Xm;} and {Yn;} an
operator F: M — N and a bilinear form form B are given by the matrices
(mF)/ = (mX) - l(mF)(m Y), (me)r — (mx)sl(me)(m Y),
where ™X and ™Y are the matrices of the operators X and Y with respect to the

bases {m;} and {n;} (and similarly with ™F and "G) and where st denotes the
supratransposition defined by the formula

A Y\ . -
Yo = (A B)st _ (___Bt Dl> if p(X) =0
C D A —CY . -
< B D‘) if p(X)=1.
ReMARK. The order of the supertransposition is equal to 4.

LEMMA. A non-degenerate homogeneous symmetric bilinear form B over C can
be reduced to the canonical form with the matrix diag(1,,J,,) or, if we wish to
consider a split form (for which the maximal torus in the Lie superalgebra that
preserves B is situated on the main diagonal), to the form

diag(ant(1,), J,m) if p(B) =0
or to the form
Jonif p(B) = 1.

Respectively, the skewsymmetric bilinear form can be reduced to the canonical
form with the matrix

diag(J,m, 1,) or diag(Jzm,0,)) if p(B) =0
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or to the form
P,,if p(B) = 1.

The orthosympletic group is the group Osp(n|2m; C) of automorphisms of the
bilinear form with the even canonical matrix and the peculiar, or as A. Weil
suggested periplectic, group Pe(n; C) is the group of automorphisms of the odd
canonical form. The special peculiar (periplectic) group is SPe(n;C) =
Pe(n; C) n SL(n|n; C). (As noted by A. Sergeev, the square root of the Berezinian,
Ser(X) = /Ber(X) is multiplicative on SPe(n), see [L2,n. 30].)

If G(C) = GL(n|m; C)is a subgroup containing the subgroup Scal(C) of scalar
matrices, then put PG(C) for the group G(C)/Scal(C). It is called the projective
group of type G (unitary, special, etc.), e.g. PGL(n|n), PSQ(n).

B) Supermanifolds. Recall that a sheaf of groups (algebras, superalgebras, mod-
ules, etc.) on a topological space X is a law F that to any open set U < X assigns
a group (algebra, superalgebra, module, etc.) #(U) and to each inclusion
U = V < X of open subsets # assignes a restriction morphism of groups (alge-
bras, superalgebras, modules, etc.) r}: # (V) — #(U) (we often write s|y instead of
ri(s), where se #(V), and I'(U, # ) instead of #(U) so that the following condi-
tions of presheaf (psh) and sheaf (sh) are satisfied:

(psh) FO)=0;rY =id;if U c V< Wthenr} =rpr);
Let U = U U, be an open covering of an open set U < X. If se #(U)

(sh) is an element such that s|,, = O for all « then s = 0 and if the set
{s.€ #(U,)} is such that s,| v, = sglu,~u, for all a, § then
there exists s€ #(U) such that s|y = s,.

Let & and ¥ be sheaves of groups (algebras, superalgebras, modules, etc.) on
X. A sheaf morphism @: F — % is a collection of morphisms of groups (algebras,
superalgebras, modules etc.) o(U): #(U) — 4(U) for any open set U such that if
U < V are open sets then the diagram

F) 22 4v)
iry Irg
FU) 2 g(U)

commutes. An isomorphism of sheaves is a morphism with two-sided inverse.
If £ X > Y is a continuous map of topological spaces and & is a sheaf on X,
then the direct itmage or push forward of F is the sheaf f (%) on Y defined by the
formula (f * (#)(U) = #(f ~'(U)) for any open U < Y. Definitions of a sheaf of
modules over a sheaf of (super) algebras, of tensor operations over sheaves of
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modules and also of the restriction of the sheaf, # |, onto the subspace U = X
are straightforward and are left to the reader.

ExamPLES. The sheaf of functions on a manifold, the sheaf of sections of
a vector bundle over a manifold.

Recall also that a ringed space is a pair (X, Ox) consisting of a topological space
X and a sheaf of rings Ox on X. A morphism of ringed spaces is a pair
(f, £*): (X, Ox) — (Y, Oy) consisting of a continuous map f: X — Y and a sheaf
morphism f*: Oy — f x Ox.

If 0, is a sheaf of commutative superalgebras over the structure sheaf of
a smooth manifold M and for sufficiently small open domains U the superalgeb-
ras I'(U,0,) are free over I'(U,0,), then A4 =(M,0,) is called a smooth
supermanifold. The manifold M is called the underlying manifold or the base of the
supermanifold .#.

Supermanifolds can be also defined by means of charts and atlases. In what
follows, defining supergroups, we will give one more, equivalent, definition of
supermanifolds, in terms of the representing functor, also called in algebraic
geometry the functor of points.

IMPORTANT REMARK. There is a one-to-one correspondence between objects
from the category of smooth supermanifolds and objects from the category of
smooth vector bundles (this follows easily from definitions and existence of
a partition of unity), but in the category of supermanifolds there are many more
morphisms (and that was what physicists were strifing for in the first place).

ReMark. There are more analytic supervarieties (even non-singular ones)
than vector bundles. The reason for this is that the grading in the steaf Zgy, by
powers of the steaf of ideals Odd generated by odd elements can (in the category
of analytic supermanifolds) correspond to several filtrations and parameters
describing such deformations can be odd, cf. Vaintrob’s calculations in [L2], n.
24,

EXAMPLE. Let pr: M — B be a smooth vector bundle with fiber V and E(M) the
exterior algebra of M (with fiber E(V)); let v,,...,v,, be a basis in V and x,,..., X,
local coordinates on B; then the formula (where the summation over the repeated
indices is assumed)

Xi ai(xX) + Yoz 1 af I (x) v, .05, 1SiSn

vy bix) o+ Y bl (x) vy, 1SiSm
k21
defines an endomorphism of the supermanifold B = (B, L)), Where Ly, is
the sheaf of sections of the bundle E(M), and the terms that are not in a box define
an endomorphism of the bundle E(M).
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The dimension of a smooth connected supermanifold # = (B, (g) is the pair
(n,m), where n = dim B and m = dim V for V such that Oy = ¥y, where M is
a smooth bundle over B with fiber V.

The linear supermanifold of dimension (n,m) over the field k(= C for us) is
A" = (k", O, ) where O, , = On @ A(m). There is a correspondence which to
a linear supermanifold *V = (V5, 0y, ® A[V3*]) assignes the linear superspace
V = V5 @ V4 and the former is uniquely recovered from the latter.

A superdomain of dimension (n,m) is a subsupermanifold # < ™™ whose
underlying manifold is a domain U in k" and Oy = 0, ,|y. The sections of the
sheaf Oy are called functions on %; if % is a smooth supermanifold then instead of
(U, Oy) we write C*(%).

An element fe C®(#) in a sufficiently small neighbourhood ¥~ = % (i.e. the
undelying V of % is a sufficiently small neighbourhood) is uniquely expressable in
the form f(x) = X f,(u)&*, where f,e C*(V)and a = (ay,. . ., a,) Witho; = 0,1 and
&0 =1,

Let % be a smooth supermanifold, u,,...,u, coordinates on U and ¢{,,...,¢,
generators of A(m), then the set x = (u, &) and also all its images under the action of
the automorphism group of the superalgebra C*(%) are called coordinate systems
of the supermanifold %.

Clearly, the collection of coordinate systems is in 1-1 correspondence with the
elements of the group of diffeomorphisms of %. How to describe the coordinate
systems that correspond to the supergroup of diffeomorphisms of % will become
clear from A.2. Meanwhile let us give the final answer: a coordinate system on
a supermanifold is a set of (homogeneous) generators of the superalgebra of local
functions with values in a background supercommutative superalgebra C and
the passage to another such set is performed over C by the formulas:

xirai(x) + Y alt M x) v .0, 1SiSh
Kz1

vjbix) + Y, bt Mx) ;.0 1SiSm
k=1
where the coefficients (belonging to C) of x’s and v's respectively in the power
series expansion in v’s is of the same (opposite) parity as that of the power.

The partial derivatives 8/0x;, derivations of the superalgebra C*(%), are de-
fined by the formula 8/dx;(x;) = J;;, together with the Leibniz and Sign rules. The
sections of the sheaf of the ¢y-module Vect % of derivations of the sheaf (y are
called vector fields.

A closed subsuperdomain in a smooth supermanifold .#™™ is a pair (F,0F),
where F is a closed domain with smooth boundary 0F and 0 is a subsupermani-
fold in # of codimension (1,0) whose manifold coincides with JF. (Attention: To
an open superdomain many closed superdomains may correspond!).
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Bundles (vector, principal, etc.) in the category of supermanifolds are defined
like in that of manifolds,

VERY IMPORTANT REMARK. It is very difficult, psychologically, to become used
to the practice to speak about vector bundles, representations of Lie supergroups
and their orbits (in fibers of a bundle, etc.) having in mind that the fiber is not
a superspace but a linear supermanifold, the space of the representation is tacidly
replaced by the corresponding linear supermanifold (see section A.2 on Lie
supergroups). Tensor operations over superspace generalize in an obvious way
to vector bundles over supermanifolds, for example the fiberwise change of parity
transforms a vector bundle ¥~ — & — . (for brevity we often write just &) into
the bundle ¥~ - & — 4.

It is possible to interpret differential forms as fiberwise polynomial functions
on the bundle T.#. For some unknown reason, unlike differential (skewsym-
metric) forms, fiberwise polynomial functions on T.# do not possess any inter-
esting properties unless they are homogeneous of degree 2, i.e. bilinear forms on
T.#. If a symmetric form is nondegenerate it is called a metric.

A.2. Lie supergroups and homogeneous superspaces in terms of the point functor.
In the 50’s A. Grothendieck invented way to describe spaces ringed by sheaves of
algebras with nilpotents. Such algebras are very natural even in the freshperson’s
course of calculus: when one considers the Taylor series expansion up to the n-th
power and ignores the (n + 1)-th one. Grothendieck showed that instead of
considering one set-theoretical model of the space (which suffices for smooth
manifolds) we ought to consider, simultaneously, many models.

Let # = (#,0,) be a supermanifold. To any supermanifold & = (X, Ox)
assign theset P (%) = Mor (%, #). Clearly, the sets P ,(%Z') for all Z define # (for
a nice manifold it suffices to consider only one & a one-point set).

It is more convenient though to reformulate the problem. If C is a sufficiently
large ring of global functions on & (i.e. & is rather thick, not just a mere point)
then P (%) can be recovered from C, and some functorial in C properties are
satisfied.

Now, the other way around. Let for each supercommutative superalgebra C be
given the set P ,((C), called the set of C-points of .#, and for each morphism of
superalgebras a: C — C’ there corresponds a map of sets a#: P,(C) = P,(C)
such that id*# = id and (af)* = p*#a*. In other words, .# represents a functor
from the category of supercommutative superalgebras into that of sets. To
a morphism of supermanifolds ¢:.# — A" there corresponds a morphism of
functors i.e. for each C a map of sets ¢(C).P,(C)— P,(C) such that
a* 0 ¢(C) = p(C)oa” for all a..

Now we can give another, functorial, definition of a Lie superalgebra and the
definition of a Lie supergroup to match.



MODELS REPRESENTATIONS OF SOME CLASSICAL SUPERGROUPS 145

If each set Py(C)is a group (a Lie algebra) and all morphisms «® are homomor-
phisms of groups (Lie algebras) then the supermanifold ¢ is called a Lie super-
group (superalgebra). An action a of the supergroup ¢ on a supermanifold .# is
a set of actions a(C): Pg(C) x P,(C) — P ,(C) consistent with transformations
wC—-C.

Now, let P(-) be an arbitrary functor assigning to a commutative superalgebra
C a set P(C) so that for any supermanifold .# maps ¢(C): P(C) — P 4(C),
@'(C): P 4(C) - P(C) are defined and to a morphism a: C — C’ there corresponds
a map of: P(C') - P(C) satisfying a”0@(C) = o(C')oa* and a*o0¢'(C) =
@(C)o a®. The functor P(-) is not necessarily representable in the form P ,(-) for
some supermanifold .# and there is no general way to find out if it is representa-
ble. Each case is to be considered ad hoc.

EXAMPLES. 1) The linear supermanifold *V = ¥™" = (V;, Oy, ® A(m)) of di-
mension (n|m), where dimVg=m, dimVy=m for V=V;@ 14 Put
Py(C) = (V® C)5. Note, that the supermanifold ¥~ possesses a natural com-
mutative Lie supergroup structure.

2) A Liesuperalgebra gis usually understood as an object from the category of
linear superspaces. To speak about representations of g or in g, assign to g the
functor C P,y = (3 ® C)g. The associated linear supermanifold % = °g is
endowed with the Lie algebra structure in the category of supermanifolds and the
action of the supergroup 1'% = (K, ¢4) on % is defined.

Exercise: what is a representation of a Lie superalgebra? What does this new
definition add to the naive definition given above? Hint: cf. 4), 5) below and
definition of get.

3) The general linear Lie supergroup 4% (p|q). Put Pg g, ,(C) = GL(plg; C).
More generally, given a linear supermanifold *V of dimension (p,q), the Lie
supergroup 4.%(V) defines the functor of points

PQ.Z’(V)(C) = GL(V; C) = GLC(V ®x C)6

Having chosen a basis in ¥ we may identify 4.#(V) with 4% (dim V).

4) A representation p of a Lie supergroup % in a superspace V is a Lie
supergroup morphism p: % — 4.%£(V) defining a %-action in the linear super-
manifold *V associated with V. In terms of C-points to define a representation p is
the same as to define for any commutative superalgebra C a group homomor-
phism (functorial in C):

p(C): P4(C) = Py o(C) = GL(V; ()

For example, the C- or R-points of qtr and get are 1-dimensional trivial
representations, but if we take into account odd parameters we see that qtr and
get are nontrivial representations of the Lie superalgebras and supergroups on
which they are defined.
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In general, having found the C-points of a representation of G in V we can
describe its odd parameters after calculating (H'(g; End(V)))1. To describe the
supervariety of parameters one has to calculate the Massey powers of the
elements from (H'(g; End (V))).

5) The coadjoint action of the supergroup 4.%(p|q) is the action of 4.#(p|q) on
the superspace gl(p|q)*, i.e. the set of actions of the groups GL(p|q; C) in the
spaces (gl(p|lq) ® C)g)* defined for all commutative superalgebras C in a way
compatible with homomorphhisms C — C'.

6) The homogeneous superspace %/ is defined by the functor
C—> Pyg(C)/Py(C). If H = G is a Lie subgroup then this functor is represented by
a supermanifold.

ReMARK. Defining a supermanifold .# in terms of its C-points, P ,(C), we can
confine ourselves to Grassmann superalgebras C and, moreover, to one suffi-
ciently large superalgebra A(N). For another supermanifold such a defining
superalgebra may be another one, therefore it is convenient not to fix N, but just
consider it “very large” or oco. More precisely, what does it mean that the
A(N))-points define a supermanifold? The answer is given by the following
statement, cf. [L2], n. 31.

LEMMA. 1) Let ¢,y:.# — A" be morphisms of supermanifolds, ¢(n), y(n):
P ,(A(n)) = P,(A(n)) the corresponding maps of sets. If dim # = (p|q)and n = q
then ¢(n) = Y(n) implies ¢ = .

2) Let M, N be supermanifolds, dim .# = (plq). Let a set of maps
@n): P4(A(n)) » P,(A(n)) be defined for n=gq. Let for a homomorphism
@: A(n) » A(n') givenfor n,n’ = q there correspond maps ¢*: P 4(A(n')) = P 4(A(n))
and @ P, (A(n')) = P, (A(n)) such that o* o &(n) = &(n')o ™.

Then there exists a supermanifold morphism a: # — A" such that a(n) = d(n).

Examples 1)-4) illustrate functors represented by supermanifolds. On the
contrary, actions of supergroups (on supermanifolds) supply with examples of
objects that we are tempted to consider as supermanifolds but which are not.
Indeed, they are not ringed spaces, and the functor corresponding to them is not
represented by any supermanifold. Consider for instance GL (n)-orbits in the
standard (identity) n-dimensional representation. There are 2 orbits: the origin
and its complement. Now, assume that the space of the representation is purely
odd. Then, there are, evidently, also 2 orbits, but the one, which is not the origin,
is not a supermanifold and, besides, it has no points over a field (or acommutative
ring without odd elements) at all!

Such examples appear all the time. It is absolutely not clear though how to
describe the category of such objects or whether it is possible to extend differen-
tial or algebraic geometry to this category. (There is a sea of papers where such an
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extension is wrongly declared to be done. To test whether this is so substitute for
C above a plain commutative algebra without odd part.)
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