MATH. SCAND. 68 (1991), 115-130

RELATIVE COMMUTANT ALGEBRAS OF
POWERS’ BINARY SHIFTS ON THE
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MASATOSHI ENOMOTO, MASARU NAGISA, YASUO WATATANI
and HIROAKI YOSHIDA

Abstract.

In this paper, we determine the structure of relative commutant algebras for binary shifts whose
signature sequences have finite supports and we see that most binary shifts are classified by relative
commutant algebras up to outer conjugacy.

Also, we show that there exist two different signature sequences a, and a, such that the Bratteli
diagrams of the relative commutant algebras for binary shifts obtained from a, and a, respectively are
the same.

1. Introduction.

V. Jones initiated his famous index theory in [8] and M. Pimsner and S. Popa
studied it deeply in [10]. Subsequently A. Ocneanu developed a classification
theory for embedding subfactors in the hyperfinite II, factor R by studying
relative commutant algebras. The aim of this paper is to give the structure of the
relative commutant algebras associated with a shift considered by Powers. Recall
that R. T. Powers [11] studied certain *-endomorphisms on the hyperfinite II,
factor using Jones’ index. He defined a shift ¢ on the hyperfinite II, factor R to be
an identity preserving *-endomorphism of R such that N2 ,6*(R) = CI and
called the index of o the Jones index [R:a(R)]. Several other authors have also
studied shifts on the hyperfinite I, factor R ([2], [4], [5], [12]). A shift g is called
a Powers’ binary shift if there is a sequence {u;i=0,1,2,...} of self-adjoint
unitaries which pairwise either commute or anticommute and generate R such
that o(;) = u;+ . G. Price [12] determined a condition that the von Neumann
algebra generated by {u;} becomes a factor. Shifts @ and f are called conjugate if
there exists an automorphism 6 on R such that f = 6xf~'. They are outer
conjugate if there is an automorphism 6 on R and a unitary u in R such that
B = Adufaf~!. R. T. Powers [11] classified binary shifts completely up to
conjugacy. He also considered an outer conjugacy invariant
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g(6) = min {keN; ¢*(R) "R % CI}

for a binary shift o and he raised the problem whether or not the numbers g(o) are
a complete outer conjugacy invariant for binary shifts 6. In our previous paper
[5], we gave a negative answer to the problem by giving examples of suitable
relative commutant algebras C,(d) = ¢*(R) N R with generators {y;} fork = 0, 1,
2,....

In this paper we shall determine the structure of the relative commutant
algebras C,(o) for binary shifts whose signature sequences have finite supports.
In particular, we find the following interesting results:

(1) The relative commutant algebras have a finite depth, i.e. the sequence
{dim (the center of C,(0))}+y is bounded.

(2) The sequence of inclusion matrices of the Bratteli diagram [1] of relative
commutant algebras is periodic.

(3) Each relative commutant algebra is of the form M,, ® C** for some
natural numbers p and q.

(4) Most binary shifts are classified by relative commutant algebras up to
outer conjugacy.

On the other hand D. Bures and H. S. Yin [3] independently succeeded in
classifying certain shifts up to outer conjugacy using the notion of derived shifts.
In particular, they get the following beautiful result as a corollary:

THEOREM (Bures and Yin). Let o and f be binary shifts on R whose signature
sequences have finite support. Then o and 8 are outer conjugate if and only if they
are conjugate.

Combining their results with ours, we get the following peculiar example:

There exist two binary shifts which are not outer conjugate but their relative
commutant algebras are all isomorphic with the same Bratteli diagrams.

Finally we shall determine a condition for the relative commutant algebras
Ci(o) to be trivial for allk =0, 1, 2, .. ..
2. Relative commutant algebras.

Let R be the hyperfinite factor of type II,. A shift o on R is called a Powers’ binary
shift if there is a sequence {u,;n = 0,1,2,...} of unitaries satisfying the require-
ments:

M) ug =1,
(2) UplUm = ("’ l)a(n-—m) UmUp,
(3) R = {uO,ula Uz,.. '}”,

(4) o(un) = tp+
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forn,m =0,1,2,...,where ais a function Z to the set {0, 1}. Powers’ binary shifts
are realized as follows [5]. Let Z, = {0,1} be the group of order 2 and
G =] IZ, G: be the restricted direct product of G; where each G; is isomorphic to
Z,. A function a:Z—-2Z, is called a signature sequence if a(0) =0 and
a(n) = a(—n) for ne Z. Define a multiplier m = m,e Z*(G, T) by

m(x, y) = (— 1)F>seC=xiyd),
for x = (x(i)), y = (y(i)) € G. We define unitary operators 4,,(x) on I*(G) by

(Am()E)(y) = mx, x ™ y)&(x~"y)

for x,ye G and £el?(G). Let R,,(G) be the von Neumann algebra generated by
{Am(x); x € G}. A signature sequence a is periodic if there exists a positive integer
k such that a(k + n) = a(n) for neZ. G. Price ([12], [13]) showed that R,,(G) is
a factor if and only if a is not periodic. Define the canonical shift o on the group
G as follows:

(6(x))(i) = x(i — 1) for i = 1 and (a(x))(0) = O for x = (x(i))€G.

Then the shift ¢ on G can be extended to a shift ¢ on R,,(G), which is exactly
a Powers’ binary shift with the signature sequence a. In fact put
eo =(1,0,0,0,...)eG and e, = ¢"(eg)€G. Let u, = A,(e,). Then R,(G) = {u,;
n=0,1,2,...}"

Define the kth relative commutant algebra Ci(c) by ¢*(R) n R. Then we see
that (the isomorphism classes of) relative commutant algebras with inclusion
matrices are an outer conjugacy invariant, which was independently observed by
D. Bures and H. S. Yin [3]. We described the relative commutant algebras C, (o)
in terms of generators ug, U5, U, . .. as follows:

THEOREM ([5]). Let a be a signature whose support {i€ Z; a(i) % 0} is finite. Put
d =max {ieN; a(i) £ 0}. Let o be the Powers’ binary shift with a signature
sequence a. Then

Cuio) =& f0Sk<d,
MO =Vus0<isk—d—1) fd+1sk

In the following we shall determine the structure of the C*-algebras P, gener-
ated by unitaries {u;;0 < i < n} associated with a fixed signature sequence a. The
C*-algebra P, is the universal C*-algebra generated‘ by unitaries ug, uy, U,,. .., U,
with the following relations:

(1) ui2 =1,

() wu; = (— 1" Duu; for i,j=0,1,2,...,n
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From now on, we assume that the support of a signature function a is finite and
we put the degree d = max {i e N; a(i) + 0} < co. We denote the center of P, by Q,,
and define the (n + 1) x (n + 1) matrix A(n) by A(n);; = a(i — j), that is,

a(0) a(l) a(2) .. a(n)

a(l) a(0) a(l) ... an—=1)
An) =| a2 a(1) a(0) ... an-=2)

an) am—1) an-2 ... a()

LEMMA 2.1,
dim(Q,) = Qdim (Ker A(n))

Proor. Note that Q, is generated by elements of the form u@uf®) .. 4*™ in

On

However

ug@ i wWeqQ,,
ifand only if Y a(i — k)x(k) =0 for 0 <i < n,
k=0

if and only if A(n)X = 0 over the finite field F, = {0, 1},

where X = (x(0),x(1),...,x(n)) and x(i)eF, for i =0,1,2,.... Therefore the
number of elements u5®u?) ... 4*™ in Q, equals the number of solutions X of
the equation A(n) X = 0over F,. Hence dim (Q,,) is the number of the solutions of
the equation A(n)X = 0 over F,. Thus dim (Q,) = 2¢im(Ker(n),

PROPOSITION 2.2. The C*-algebra P, is isomorphic to My« ® C* for some
k,1=0.

Proor. We shall prove this by induction on n. We assume that
P, = M, ® C? for some k,! = 0. Let o, ; be an automorphism of P, such that
On+1 =Adu,,,. Then P, = P, >, . Z,. Let E be the set of central minimal
projections e in P, such that a,,,(e) =e. Put e =) e and s = *E, then
0 < s < 2". Using this projection ey, we have P, = P,e, @ P,e} and

P, >a 22 = (Pneo > 22)®(Pne$ ><¢,.+|Zz)-

An+1 An+1t

Since a, . is inner on P,e,, we have

P,,eo><l ZZE'P"e()@CZ.

An+1

If a minimal central projection f is notin E, then we obtain a(f)¢ Eand f + a(f).
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So we can decompose P, e as follows:

Pneé = Z @(Pnf; @ Pnan+l (fl))
Hence

PneJO- ><Ia,,+122 = Z(Pnfl ('B Pnan+l(fi))><]a"+122'

By the assumption, we obtain
Pofi = Pytty s 1 (f}) = Mok
and
(Pufi ® Pyoty 4 1(f) >, , L2 = My,

Hence we have

2 —>s)

(*) dim(Q,+4) = 25 + )

So
271 < dim(Qy4y) £ 2'1N
By Lemma 2.1, dim (Q, + ) = 2™ for some me N. This implies
dim(Q,+,) =2'"1, 2" or 2!*1,

) . . 2=y
Ifdim (Q,+,) = 2' then we have 2' = 25 + 3

by (*). This is a contradiction

since 3s = 2'. Thus dim (Q,+,) = 2'*!. In the case that dim (Q, . ) = 2' !, by the
above argument, we have

Poii = My ® C¥70
Furthermore, in the case that dim(Q,,,) = 2'**, we have
P = My ®C,
So by induction on n, we get the proposition.
LEMMA 2.3. Let t be an indefinite element satisfying the identity
"+xn—1)" L+ x(Dt+1=0,

where the coefficients x(1),...,x(n — 1) are elements of F,. Then there exists
a positive integer m such that t™ + 1 = 0.
PrROOF. We put

po®) =t"+ x(n— D" + ...+ x(1)t + 1.
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If one of the x(i) is 1, then we put i; = min {i; x(i) = 1} and
pr() = tpo(t) + pot) = "1 + xy(n — DT 4+ x (DT 4 L

If one of the x,(i) is 1, then we repeat the same procedure, that is, we put
i, = min {i; x,(i)) = 1} and

pa(t) = " T2po(t) + py(t) = T 4 xy(n — DR
+oF xp(D)fr it L]

If we can repeat this procedure infinitely, then we can find two positive integers
k and I(k < I) such that

x@=x@ (=1,...,n-1).

Then we get py(t) + pe(t)t' ™% = t'* + 1. Therefore ¢! * + 1 = 0. If x,,(i) = 0 for
all i, after m times repetitions, then

Pm(®) = (E1 5% Him 1 4 1) (1)
= tn+i1+...+i,,. + 1 — 0

By the method of the above proof, we can find a positive integer m such that
t" + 1 = 0,and we set D = min {m;t™ + 1 = 0}. We call the number D the order
of the sequence {1, x(1),...,x(n — 1), 1}. Then we can get the following lemma by
the same method as in the proof of Lemma 2.3.

LEmMMA 2.4. Let {y(i);i =0,...,D} be a sequence in F, which satisfies the
Sollowing equations,

y@)+xOyi+D+...+xn—Dy(i+n—1)+y(j+n=0 (=0,..,D—n),
where D is the order of {1,a(1),...,x(n — 1),1}. Then y(0) = y(D).

For the determination of the structure of Q,,, we introduce some notation. For
any vector X = ‘(x(0),...,x(n)) in (F,)"*! and any positive integer k,

u(X) = u(x(O), ey x(n)) = uz(O) . u:(u),

u(X) if u(X)?=1,
\/__—1 u(X) otherwise,
vk(X) = U(O,. ..,O,x(O),...,x(n)) in Pn+k’

v(X) = v(x(0),...,x(n) = {

and

v(x(k), x(k + 1),...,x(n) in P,_, if n 2k,

”“‘(X)={1 if n<k.
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Then v(X) is a self-adjoint unitary operator. We have seen in the above that the
algebra Q, is the linear span of {v(X); A(n)X = 0}.

PROPOSITION 2.5. Let D be the order of the sequence

{a(d),a(d — 1),...,a(1),a(0),a(1),...,a(d — 1),a(d)}

and k (0 < k < D) and | be non-negative integers. Then Q, .,y is isomorphic to Q,.
Moreover the isomorphism By +1p i of Q) +1p to Qy is given by the following relation,

Bic+1p1(0(X)) = v_1p(X),
where v(X) belongs to Qi +1p.

PRrOOF. At first, we consider the cased < k < D. Let X = (x(0), x(1),. . . , x(k))
and Y = ‘((0), y(1),. .., y(k + ID)) be vectors in (F,)**! and (F,)**'°*! respect-
ively. Then v(X) belongs to Q; (i.e. A(k) X = 0) if and only if x(0), x(1),. .., x(k)
satisfy the following relation [R;j], for any j(—d £ j £ k — d),

d

[R;j] Y. a(shx(j+d+s)=0,

s=-d

where we put
x(=d)y=x(—d+1)=...=x(-1)=0,
xk+1)=xtk+2)=...=x(k+d)=0.

Relations [R; —d],...,[R;k — 2d] mean that variables x(d),x(d + 1),...,x(k)
can be represent as linear combinations of variables x(0), x(1),...,x(d — 1), that
is, there exist linear functions {fj;d < j < k} such that

x() = £(x(0), x(1),...,x(d — 1)) foranyj(d <j < k).

Therefore we can regard the relations [R; k — 2d + 1],...,[R; k — d] as binding
conditioning on the variables x(0), x(1),...,x(d — 1).

In a similar way, v(Y) belongs to Q +p (i.e. A(k + ID)Y = 0) if and only if
y(0), ¥(1),...,y(k + ID) satisfy the following same relation [R;j], for any
J(—d=j<k+ID—d),

d

[R;/] Y a(shyG +d+s) =0,

s=—d

where we put
y=d =y—d+1) =..=y-1 =0,
y(k+ID+1)=y(k+ID+2)=---=J’(k+ID+d)=0'
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Relations [R; —d],...,[R;k — 2d + ID] mean that variables y(d), y(d + 1),...,
y(k + ID) can be represented as linear combinations of variables y(0), y(1),...,
y(d — 1), that is, there exist linear functions {g;;d < j < k + ID} such that

y) = g;(y(0),y(1),...,yd — 1)) foranyj (d <j < k + ID),
where the functions g; and f; are the same for any j (d < j < k). Therefore we can

regard the relations [R;k + ID — 2d + 1],...,[R;k + ID — d] as binding condi-
tions on the variables y(0), y(1),..., y(d — 1). By Lemma 2.4, we have

y@i)=y(j+ D) forany —d<j<k+(—-1)D +d.
Then the conditions [R;k +ID — 2d + 1],...,[R;k + ID — d] for variables
¥(0), y(1),...,y(d — 1) are identical to the conditions [R;k — 2d + 1] for vari-
ables x(0), x(1),...,x(d — 1).
For a vector X = '(x(0), x(1), ..., x(k)), we define vectors

X ='(x(0), x(1),...,x(D — 1)),

X ="'(x(0),x(1),...,x(k + ID)),
by the following relations,

x(j) = gj(x(0),...,x(d — 1)) foranyk <j < D,
x(j) = x(j + D) forany0<j<k+ (- 1)D.

By the above observation, the correspondence of X and X induces a bijection
from the set { X; A(k) X = 0} to theset {Y; A(k + ID)Y = 0}. So we can construct
isomorphisms o 4 +;p from Qy to Qy+;p and By.ip, from Q, . p to Oy by the
following relations,

ik +1p(0(X)) = U(f) UD(X) cee V- 1)0()?) vp (X) = U(X),
Bk +1p x(v(Y)) = v_;p(Y),

where v(X), v(Y) belong to Qy, Q. .p respectively.

In the case 0 < k < d, we treat relations [R; —d],...,[R; k — d] as binding
conditions on the variables x(0),...,x(d — 1). By the same argument as above,
we can construct the isomorphism Sy +,p to Q.

COROLLARY 2.6. We use the same notation as in Proposition 2.5. Then,
(1) the sequence {dim Q,;n =0,1,...} has a period D,

(@ dimQ,=2'ifn=1ID—d -1,

(3) max {dim Q,; ne N} = 24

ProoF. (1) This follows immediately from Proposition 2.5.

(2) We set x(—d)=x(—d+1)=...=x(—1)=0. For any elements x(0),
x(1),...,x(d — 1) in F,, we inductively define x(d), x(d + 1),...,x(ID — 1) by the
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following relation,

d

[R;j] Y alshx(j +d +5) =0,

s=-d
for any j(—d <j < ID — 2d — 1). Then we have
X(—d)y=x(ID—-d)=0,...,x(—1)=x(ID-1)=0.
The vector X = (x(0), x(1),...,x(ID — d — 1)) becomes a solution of the equa-

tion A(ID —d — 1)X = 0. Therefore dim Q,p_4_, = 2°.
(3) By the proof of Proposition 2.5, it follows that dim Q, < 2¢.

By this corollary, the sequence {dim Q,}, is bounded so we can conclude that
the relative commutant algebras have a finite depth.
For an increasing sequence {iy,...,i} of non-negative integers, we define
a vector X = (x(0),...,x(i)) in (F,)**! by
x(j)=1 if j=i, for some 1 <l <k,
x(j) =0 otherwise,
and we denote v(X) by (iy,. . ., i) or (X). We decompose (X) into the difference of
two projections, and we write,
(X) = (X)+ - (X)- (OI' (il" . ’ik) = (il" .. ,ik)+ - (il" .. ’ik)w)9
that is,

_1+(X) 1 —(X)
T2 2

We remark that the center Q, of P, is the linear span of {v(X); A(n)X = 0}. If
{v(Xy),...,v(Xg)} (K = dim (Ker A(n))) is a generator of {v(X); A(n) X = 0}, then
Q, is the linear span of

{XPOX)°P L (Xg)®; 8(1),6(2), ..., 8(K) = + or —},

and (X)’M(X,). .. (Xk)*® is a minimal projection of Q,,.

Xx)* » (X)” =

THEOREM 2.7. Let D be the order of the sequence
{a(d),a(d — 1),...,a(1),a(0),a(1),...,a(d — 1),a(d)}.

Then the inclusion matrix from P, to P, . , is equal to the inclusion matrix from P, , \p
to P, +1p for any non-negative integers | and n.

ProOOF. By Proposition 2.5, there exists an isomorphism f, + 1p ,from Q, ,;p to
Q,. Then a minimal projection (X,;)*®. .. (Xx)*® in Q, +p is mapped to a mini-
mal projection (v_,;p(X))*?. .. (v _1p(Xx)’® in Q, by this isomorphism B, .ip .,
where K is the corank of A(n).
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The inclusion matrix from P, to P, ., is determined by the orthogonality of
aminimal projection in @, and a minimal projectionin Q,, . . By Proposition 2.2,
the algebra Q, contains the algebra Q, ., or is contained in the algebra Q, . If
Qn = Qn+1 (resp. Qn < Qn+ 1)’ then

ﬂn+m,n|Q,,H+,D = Bn+1+1Dn+1 (T€SP. But 1 +1Dn+ 11Qnsip = Bu+1D.n)-

Therefore the inclusion matrix from Q, to Q, +, is equal to the inclusion matrix
from Q, . p to Q,+1 +1p With respect to the correspondence of a minimal projec-
tion in Q, (resp. Q,+1) and Q,+ip (resp. Qn+y+1p) by the isomorphism B,..p ,
(resp. Bu+1+1Dn+1)-

By this theorem, we can see that the sequence of inclusion matrices of the
Bratteli diagram of relative commutant algebras is periodic.

As we have seen previously, the dimension of the center Q,, of relative commu-
tant algebras equals to 24imker4™) (see Lemma 2.1) and the sequence {dim Q, } is
periodic (see Corollary 2.6). So we can determine the sequence {dimQ,} by
calculating finitely many dim Q,’s.

In the case d < 6, using a computer, we can find that all the sequences {dim Q,,}
except six sequences in the following examples are different.

EXAMPLE 1. (d = 4)

a; =(0,0,1,0,1,0,...),
a;, =(0,0,1,1,1,0,...).

The period is 12. The dimension of @, is as follows,
dim(Qo) =2, dim(Q,) =4, dim(Q,)=2, dim(Q;3) =1,
dim(Q,) =2, dim(Qs) =4, dim(Qe¢) =8, dim(Q,) =16,
dim(Qg) =8, dim(Q,) =4, dim(Q) =2, dim(Q,,)=1.
EXAMPLE 3. (d = 6)

a; =(0,1,0,1,0,1,1,0, ...),
a, =(0,1,1,0,1,1,1,0,...).

The period is 24. The dimension of Q, is as follows,
dim(Qo) =2, dim(Q,)=1, dim(Q,)=2, dim(Q;)=4,
dim(Q,) =8, dim(Qs)=16, dim(Q¢)=8, dim(Q,) =4,
dim(Qg) =2, dim(Qo¢)=1, dim(Q,0)=2, dim(Q;,)=1,
dim(Q,,) =2, dim(Q;3)=4, dim(Q;,)=28, dim(Q,;)=16,
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dim(Q,¢) = 32, dim(Q,,) = 64, dim(Q,s) = 32, dim(Q,,) = 16,
dim(Q;0) =8, dim(Q,;)=4, dim(Q,;)=2, dim(Q,3)=1.

By the results of D. Bures and H. S. Yin [3], the two binary shifts in each
example above are not outer conjugate.

In the rest of this section, we determine the inclusion matrices of the sequences
of algebras for a; and a, in Example 1. As the result of this argument, we get the
following theorem.

THEOREM 2.8. There exist two different sequences.{a,(n)} and {a,(n)} such that
the Bratteli diagram of U, P, for a, coincides the Bratteli diagram of U, P, for a,.

PROOF. At first, we shall determine the Bratteli diagram for {0,0,1,0,1,0,...}.
Each of algebras Q,,Q;,. . . , @, has minimal projections, which are expressed in
the following form.

Q (0% 0, O*()*
Q. (% 2 1,
Q. (0297, Qs (024)*(135)%,

Qs (06)*(135)*(246)*, Q, (06)*(17)*(246)* (357)%,
Qs (17)*(246)* (357, Qs (246)*(357)%,
QIO (357)1’ Qll 1.

We calculate the orthogonality of the above minimal projections in the following
way,

024)* = —{1 + (024)}

| =

_ %{1 — (06) + (06) + (06)(246)}

= (06)~ + (06)(246)*
= (06)* (246)* + (06)~ (246)".
By these calculations, we get the following formulae

(014)* = (06)* (246)* + (06)™ (246)",
(024)~ = (06)* (246)™ + (06)~ (246)*,
(135)* = (17)* 357 + (1)~ (357)",
(135)" = (17)* (357)" + (17)~ (357)*,
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Therefore we get the relation of the orthogonality of minimal projections as
Figure 1 and Figure 2, and the Bratteli diagram as Figure 4.

Next, we determine the Bratteli diagram for {0,0, 1,1, 1,0,...}. Each of alge-
bras Qg, Q;,...,Q, has minimal projections, which are expressed in the follow-
ing form.

Q (0%, Q: (),

Q: (D% Qs 1,

Q. (0134)%, Qs (0134)*(1245)%,

Qs (06)*(1245)*(2356)*, Q; (06)*(17)*(2457)* (3467)%,
Qs (17)*(2457)*(3467)%, Qs (2457)*(3467)%,

Q10 (3467)%, Qi L

We calculate the orthogonality of the above minimal projections by the following
way,

1

(0134)* = —{1 + (0134)}

0|

{1 — (06) + (06) — (06)(1245) + (06)(1245) — (06)(1245)(2356)}

N =

= (06)~ + (06)(1245)~ + (06)(1245)(2356)
= (06)* (1245)* (2356)~ + (06)* (1245)~ (2356)*
+ (06) ~(1245)* (2356)* + (06) ~ (1245) (2356)
By these calculations, we get the following formulae

(0134)* = (06)* (1245)* (2356)™ + (06)* (1245)~ (2356)*
+ (06)™ (1245)* (2356)* + (06)™ (1245)™ (2356)"
(0134)* = (06)* (1245)* (2356)* + (06)* (1245)™ (2356)"
+(06)™ (1245)* (2356)~ + (06)~ (1245)™ (2356)*
(1245)* = (17)* (2457)* + (1)~ (2457)"
(1245)" = (17)* (2457)" + (17) (2457)*
(2356)* = (2457)* (3467) + (2457) (3467)*
(2356)" = (2457)* (3467)* + (2457)" (3467)".

Therefore we get the relation of the orthogonality of minimal projections as in
Figure 1 and Figure 3, and the Bratteli diagram as in Figure 4. So, we get the
desired conclusion.
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Figure 1. The orthogonality of minimal projections in Qo, @;, @2, @3 for {0,0,1,0,1,0,...} and

{0,0,1,1,1,0,...}.
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Figure 2. The orthogonality of minimal projections in Q,, Qs, ..., @y, for {0,0,1,0,1,0,...}.
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(0134) + -

(0134) /\+ _/\.
(1245) N [\
" ﬂ /l

(1245) - - - -
(2356) [\ /\ I\
N AN AN AR
1n -+ + -+ - - 4+ -+ + -+ - - +
(2457) -+ + - -+ + - -+ + - - + + -
(3467) + -+ -+ -+ -+ -+ -+ -+ -
an - + + - + = - +
(2457) -+ + - -+ + -
N
(2457) - + + —
(3467) + - + -
s \+><_/

Figure 3. The orthogonality of minimal projections in Q,, Qs, ..., @y, for {0,0,1,1,1,0,...}.

3. Essentially periodic signature sequences.

In the following we shall treat the case of binary shifts ¢ such that C,(o) is trivial
forall k = 0.

DErINITION 3.1. The sequence a is called essentially periodic (or ultimately
periodic if there exist integers k(= 0) and p(> 0) such that, for any n = k,
a(n + p) = a(n).

THEOREM 3.2. Let a be a non-periodic signature sequence and a, be the asso-
ciated shift of the hyperfinite I1, factor R. The sequence a is essentially periodic if
and only if there exists a positive integer r such that ¢(R) N R % CI.

PRrROOF. Ar first we shall assume that there exists a positive integer r such that
C,(0,) # CI. Then there exists an element x(F 1)e G = Hf’: 0Gi» G; = Z, such
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(Po) 1 1
(P) 1/\1 1/\ 1
- \2><2/
- S~
o T

(Ps) 4 4 4 4 4 4 4 4
(P) 4/}4 1\4 4/«\1 L\a 4/1 4[\4 4/1 4[\4

(Pro) \32><32/

(Pu1) 64
Figure 4. The Bratteli diagram of Py, P,,. .., Py, for {0,0,1,0,1,0,...} and {0,0,1,1,1,0,...}.

that

(*) my(x, e,) = my(e,,x) forn =r, where e,€G, e,(i) =0 (i £ n).

For this x, x isexpressed as x = ) ¢-o x(i) ¢;, where d = max {i; x(i) # 0}. Then we
have Y ¥~ a(n — i)x(i) = 0 for n 2 r by (*). Put | = min {i; x(i) # 0}. Let D be the
order of the sequence {x(),x(! + 1),...,x(d)}. By Lemma 2.4, we have
a(m + D) = a(m) for m = r — d. Thus a is essentially periodic. Conversely, as-
sume that a is essentially periodic. So there exist integers k(> 0) and p (> 0) such
that, for any n = k, a(n + p) = a(n). Then we have the following two cases.

(Case D). Y22 1a(i) = 0. Put v = uouy ...u,_; ($ CI). Thenve d***~*(Ry N R.
(CaseII). Y*2F~ta() = 1. Putv = uou, ...us,— (§CI). Then ved**??"!(RY NR,
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which it follows from the fact that a(k + i) = a(k + p+i)for0<i<p— 1. So
Y#25 a(k + i) = 0. Thus we get the necessity of this theorem.

This theorem is also obtained by D. Bures and H. S. Yin [3] independently.

ReEMARK 3.3. There exist two signature sequences a and b such that a has
a finite support, b does not have a finite support and o, and g, are outer
conjugate.

For example, if we put a=(0,100,...) b=(0,111...) and

1-/-1 .
w= ——% where u, is a g,-generator then we have o, = Adwoa,.
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