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TOPOLOGICAL FROBENIUS PROPERTIES
FOR NILPOTENT GROUPS. II

EBERHARD KANIUTH

Introduction.

Much work has been done on generalizing the classical Frobenius reciprocity
theorem to non-compact groups. Given a locally compact group G, one can
contemplate the following topological Frobenius property (FP): For every closed
subgroup H of G and each pair of irreducible unitary representations n and t of
G and H, respectively, m is weakly contained in the induced representation ind$ t
if and only if the restriction n | H weakly contains t [ 10]. This is far from holding
in general. Indeed, (FP) to hold for G amounts to G being a group with relatively
compact conjugacy classes [8, 14]. However, for many representations n or for
special classes of locally compact groups (FP) or at least part of it may still be
valid.

To fix terminology let us say that an irreducible representation n of G satisfies
(FP1)(resp. (FP2)) provided that the if (resp. only if) direction of (FP) holds (for all
H, v as above). For connected groups it is also of interest to consider the versions
(FPC1) and (FPC2) of (FP1) and (FP2), repectively, that are obtained by restrict-
ing H to connected subgroups of G. (FP1) has been investigated for discrete
groups [14], for motion groups [15], and for nilpotent groups [2]. This paper
deals with the more intricate property (FP2) for nilpotent groups and can be
regarded as a counterpart to [2].

A brief outline of the paper is as follows. Let Gy denote the subgroup of
G consisting of all elements with relatively compact conjugacy classes, and let
7 be an irreducible representation of G. We first notice that if = is weakly
equivalent to ind§ (z | N) for some closed normal subgroup N of G contained in
Gp, then (FP2) holds for z. The converse turns out to be true if either G is a finitely
generated nilpotent discrete group (Theorem 1.2) or if G is connected nilpotent
and n is square integrable modulo its kernel (Theorem 2.5). In Section 3 we study
nilpotent groups of the form R o< R? and establish necessary and sufficient
conditions for n to satisfy (FP2) (Theorem 3.4). This result shows that (FP2) is not
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as rare a property as expected and seems to indicate that for a simply connected
nilpotent group and a fixed =, (FPC2) implies (FPC1). That this is not the case is
demonstrated in Section 4 by looking at the 3-step nilpotent group of upper
triangular matrices.

1. Preliminaries and Nilpotent Discrete Groups.

Let G be alocally compact group. Our notation for the ascending central series of
G will be standard: Z(G) = Z,(G) < Z,(G) = ..... Also,for A,B = G,[A, B]isthe
set of all commutators [x, y], x€ 4, ye B. In what follows the (not necessarily
closed) normal subgroup Gy of G consisting of all elements with relatively
compact conjugacy classes will play an important role.

We will use the same letter, say =, to denote a unitary representation of G and
the corresponding *-representation of the group C*-algebra C*(G), and ker
n means the kernel of  in C*(G). If S and T are sets of unitary representations of
G, then S is weakly contained in T(S < T) if

(\kero o () kerr,

oeS teT
and S and Tare said to be weakly equivalent (S ~ T if S < T and T < S). For
a closed subgroup H of G and representations n of G and t of H, we denote by
n| H the restriction of n to H and by ind§ t the representation obtained by
inducing 7 up to G. We will use throughout that n < ind§(n | H) if G is amenable
[11]. If H is normal then we have the usual action (x, 6) — ¢* of G on representa-
tions of H, and G(o) will signify the G-orbit of . Moreover, 1; stands for the
trivial 1-dimensional representation of G and n ® p for the tensor product of
n and p. We will frequently use that forming tensor products preserves weak
containment [10]. That is, 7; < 7, and p; < p, implies

T ®p <7, ® p,.

Also if H is a closed subgroup of G and ¢ and 7 are unitary representations of
G and H, respectively, then

o ®ind§t = ind§(c| H® 1)

(see[17, Section 12] and [11, p. 314]). Finally, the dual space G of G is the set of all
equivalence classes of irreducible unitary representations of G, and G carries the
Jacobson topology [6]. Recall now that two subgroup 4 and B of G are regularly
related in G in the sense of Mackey [17, p. 127] if there exists a sequence E,, E,
E,, ... of measurable subsets of G each of which is a union of double cosets Ax B,
x € G, such that E, has Haar measure zero and each double coset not in E is the
intersection of the E; containing it.
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LemMA 1.1. Let G be a second countable locally compact group, N a closed
normal subgroup of G, and H an amenable closed subgroup of G. Suppose that
N < Gpand H and N are regularly related. If n € G satisfies 1 ~ ind%(n | N), then
for any te H,n < ind$ t implies n| H > 1.

ProoF. Note first that t < ind#_,(t| H n N) since H is amenable. Hence
n < ind§ t < ind§ (ind¥ _(t|H A N)) = ind§_n(t|H A N).

H being second countable there exists g € H A Nsuchthatt |HN N ~ H(o). This
showsn < ind§_y 0,and therefore n| H N N > o by [14, Theorem 2.5]. As H and
N are regularly related, [10, Theorem 5.3] yields

| H ~ ind$(r| N)| H > ind® (x| H A N)
>indf yo ~ indf y(t|HAN) >

THEOREM 1.2. Let G be a finitely generated nilpotent discrete group. For ne G
the following conditions are equivalent:
(i) (FP2) holds for =, i.e. for every subgroup H of G and 1€ H, n < ind$ t implies
n|H > .
(i) For each cyclic subgroup H of G and teH, n <ind$t implies n|H > 1.
(iii) 7 ~ ind§ _(n|Gp)

ProOF. By Lemma 1.1 it suffices to prove (ii) = (iii). Recall first that there exists
a character (in the sense of [5,22]) a on G such that = is weakly equivalent to 7,
the cyclic representation associated to a (see [5, Theorem 2.1]). G being finitely
generated, there exist normal subgroups L and N of G and a G-invariant linear
character A of L with the following properties [13, Corollary 1]:

) Lc Nand[N:L] < o;
2) |L = Aand a(x) = O for all x¢ N.

We claim that L < Gg. To this end notice that G/Gp is torsion free (compare
[13, p. 98, (ii)]). Thus if L ¢ G, we can choose an infinite cyclic subgroup H of
L such that H N G = {e}. Now by [12, Proposition 2.3] ind§ x ~ G for every
character y € A. By assumption (ii) this implies 7| H ~ A, contradicting n | H ~
Al H. Finally, since L = Grand [N : L] < oo, we get N  Gp. Hence we have seen
so far that « vanishes outside Gy. This shows that

n, = ind¢_ (6 ,)-
Moreover, it is well known that 7| G ~ . Therefore we obtain
n ~ 7, ~ ind§_(n| Gp).

We don’t know whether the above theorems remains true for non-finitely
generated nilpotent discrete groups G. This seems to be a very difficult problem
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even insituations where some informations about characters are available [5]. In
fact, we don’t even know the answer when G is 2-step nilpotent.

REMARKS 1.3. a) Let G be a countable amenable discrete group. Then there is
a dense subset D in G such that every n e D is weakly equivalent to ind¢_ (n| Gp)
and hence has property (FP2). This can be deduced from a result of Thoma [22,
Satz 4]. To see this let « be a character on G vanishing off Gz. Then
n, ~ ind§_(n, | Gr), and , is a factor representation. Now, since C*(G) is separ-
able, kernels of factor representations of C*(G) are primitive ideals [6,(3.9.1) and
(5.7.6)]. Thus n, ~ p, for some p,€G.

b) Suppose that G is a finitely generated torsion free nilpotent discrete group,
and let 7eG. If 7| Z(G) is faithful, then 7= satisfies (FP2). Indeed, there is
a character « on G with = ~ 7,, and it suffices to notice that a vanishes off Z(G).
As G is torsion free, Gy = Z(G), and since a | Z(G) is faithful, a | Z,(G)\ Z,(G) =0
(see [5, 13]). These two facts imply «| G\ Z(G) = 0[13, Lemma 1].

c) As an example, consider the group G of all integer upper triangular d x d-
matrices. Using b) it is easily seen that (FP2) holds for n € G ifand only if 7 | Z(G)is
faithful.

2. Connected Nilpotent Groups.

Let G be a connected nilpotent group and ne G. In general, 7 need not share
property (FP1), yet it does provided that it is square integrable modulo its kernel
[2]. The purpose of this section is to give, under the same assumption on 7,
a criterion for 7 to satisfy (FP2).

Nielsen’s papers [19] and [20] are concerned with the extent to which (FPC2)
fails to hold for a connected and simply connected nilpotent Lie group. The
following Theorem 2.1 is due to him and will substantially be used in the sequel.
As Nielsen does not give a proof but only points out that his methods can be used
toshow it [19, p. 309], we include a fairly short proof for the readers convenience.

THEOREM 2.1 [19]. If G is a simply connected m'lpc/){ent Lie group, then for every
non-normal 1-dimensional subgroup H of G and o€ H,

ind§ o > 1.

Proor. We first assume H < Z,(G)and dim Z(G) = 1. N = HZ(G)is a closed
[2, Lemma 1.1] abelian normal subgroup of G. Now,

indja ~ {a} x Z(G),

and it suffices to show that 1 is weakly contained in the G-orbit of ind} a, since
then

ind§ a > ind$ 1 > 1.
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Thus we have to find y, € Z/(\G) and x,,;@ ne N, such that (« x y,)* — 1yin N.
Now, for xe G, ye H, ze Z(G), and y € Z(G),

(@ x y)*(z) = a(y)y(y~ ' x "' Dy(2).
1

y - y([y~*,x~!])defines a character y, of H,and infact &: x — y, isa continuous
homomorphism of G into H=R If Y % lz¢), then y, + 1 for some xeG
because otherwise the connected set [ H, G] would be contained in the discrete
kernel of y, and hence H = Z(G) It follows that ¢(G), being a connegtgi
subgroup of H coincides with H. Therefore, if we choose any sequence y, € Z(G)
with y, = 1z, and y, F 1z, then for every n there exists x,e€ G such that
(Yn)x, = &. Hence

(o0 X pa)™ =1y X > 1.

Next we drop the hypothesis dim Z(G) = 1 and argue by inductionond = dim G.
Ifd = 3, the smallest possible dimension for a non-abelian G, then dim Z(G) = 1.
Suppose d = 4 and dim Z(G) = 2, the case dim Z(G) = 1 being dealt with above.
Then, for some connected subgroup V # 0 of Z(G), H is non-central, and hence
non-normal, modulo V. Let ¢: G— G = G/V and H = HV/V. By induction
hypothesis, ind?, o > 1¢ for each a e I/-I\, and hence

1¢ < (ind$ @) o q = ind$, (¢ 0 q) < ind§(@oq| H).

AsHo (qI'H) = H this finishes the proof of the theorem under the assumption
H < Z,(G).

Finally, for the general case, let k be minimal with H < Z, . ,(G), and assume
k=2 Let g:G— G = G/Z,_,(G) and H = q(H). Then H = Z,(G), and H is
non- central in G since H ¢ Z,(G). By what we have shown so far, indy o > 14 for
every ozeH, and this implies 15 < ind§ « for all ae " by the same argument as
above.

We will need in the proofs of Lemma 2.2 and Theorem 2.5 that if G is
a connected nilpotent group and K a compact normal subgroup of G, then K is
contained in the center of G. This is certainly known to experts and can be seen by
fairly standard arguments. We nevertheless include these for the readers conveni-
ence. Let K; = K n Z,(G),j = 1,2,.... It suffices to show that K; = Z(G) implies
K;+y < Z(G). For that, take any a€ K ;, ; and denote by L the closed subgroup of
G generated by K and a. Then L is abelian as K; = Z(G), and L is normal in
Gsince L/K ; is contamed in the center of G/K ;. Now since Lis discrete and G is
connected, for every A e L. the G-orbit G(4) consists only of . Thus each character
of L is G-invariant, and this proves L < Z(G).

LEMMA 2.2. The center of a connected nilpotent group is connected.
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PRrROOF. We first consider a connected nilpotent Lie group G. Let G be a simply
connected covering group of G and p: G — G a covering homomorphism. Then
Z(G) = p~(Z(G)), and Z(G) is a . Thus Z(G) is connected.

Now let G be a connected nilpotent group. G is a projective limit of Lie groups
G, = G/K,,1€1. Fix a compact normal subgroup K of G such that G/K is Lie. By
what we noticed above, K is contained in the center of G. We are going to show
that for any such K, Z(G)/K is connected. From this it follows readily that Z(G)is
connected. Of course, we can assume K, c K for all ieI. Let Z = Z(G) and

Z,={xeG:xK,eZ(G/K)}.

Then Z,/K is connected by the first paragraph of the proof. For any locally
compact group F denote by & (F) the set of all closed subgroups of F. Recall Fell’s
topology [9] which makes &(F) a compact Hausdorff space. A subbasis is given
by the sets

UC,V)={AcFF;AnC=/ ANV |

where C is compact and Vis openin F. We can assume that Z, —» Z, in £(G). Itis
easily verified that Z, = Z. Since K is compact, we conclude that Z,/K — Z/K in
&(G/K). Now, all these groups are contained in Z(G/K), and Z(G/K) is a connec-
ted Lie group, hence of the form V x C where V is a vector group and C a com-
pact connected Lie group. Since Z,/K is connected, Z,/K = V, x C,, where C, is
a closed connected subgroup of C and V, a vector subgroup of Z(G/K). But notice
that V, need not be contained in V. Next, we can moreover assume that C, - Cyin
&(C). Notice that necessarily C, = C,, for every i€ l. Indeed, if K,, < K, , then
Z,,< Z, and hence C,, = C,, and xe C, if and only if there exists a net x,, 1€,
such that x, - x and x,€ C,. It follows that C,/C, — {C,} in #(C/C,). Now the
Lie group C/C, does not contain arbitrarily small subgroups. Therefore we can
assume C, = C, for all 1€ 1. Moreover, C, is the maximal compact subgroup of
Z = Z/K. It remains to show that Z/C, is connected.

Let p denote the projection Z(G/K) = V x C — V. Then p maps V,, 1€, and
Z/C, homeomorphically onto p(V,) and p(Z/C,), respectively. Since C is com-
pact, p(V,) = p(Z/C,) in & (V). Finally, V and p(V), 1€1, are s, and the limit of
a convergent net of s must be a . In particular, p(Z/C,) is connected.

Let 7 be a representation of the locally compact group G in the Hilbert space
#,, and denote by I, the identity operator on s#,. The kernel K and the
projective kernel P of n are defined as

K = {xeG;n(x) = I,} and P = {xe G; n(x) = A(x)], for some A(x)e T},

respectively. Suppose now that = is irreducible. Then P/K coincides with the
center of G/K. In particular, 4 is a G-invariant character on P.
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COROLLARY 2.3. Let G be a connected nilpotent group and n an irreducible
representation of G. Then the projective kernel P of m is connected.

ProoF. Let K, be the connected component of the kernel K of n. By passing
over to G/K,, we can assume that K is totally disconnected. We claim that
P = Z(G). For xe P and yeG,

n([x,y]) = n(x)n(y)n(x) " n(y) ™" = I,

so that [x,G] = {[x,y]; yeG} = K. Since [x,G] is connected, we obtain
[x, G] = {e}. This shows P = Z(G) which is connected by Lemma 2.2.

Retain the notations used above, and let n be irreducible. Then = is called
square integrable modulo its kernel if every coordinate function

x = Ln(x)E, ), &, ne Hy,

(being constant on cosets of K) is square integrable on G/K.

Let us briefly review Kirillov’s theory. Suppose that G is a connected and
simply connected nilpotent Lie group with Lie algebra g. Denote by Ad* the
coadjoint representation of G on g*, the dual vector space of g. Kirillov [16]
established a mapping f — n, from g* onto G such that for f,g e g*, © = mgifand
only ifg € Ad*(G) f. The Kirillov correspondence g*/Ad*(G) — G is ahomeomor-
phism provided that the orbit space g*/Ad*(G) is endowed with the quotient
topology [4]. The coadjpint orbits are closed in g*, and 7€ G is square integr-
able modulo its kernel if and only if Ad*(G)fis a linear variety [3, Theorem 1.1].

It is worth calling attention to the following facts which, for instance, can be
found in [7, p. 284]. These facts reduce weak containment questions to orbit
geometry and certainly make our arguments in Sections 3 and 4 more transpar-
ent.

Let b be a subalgebra g and H = exph, and let p: g* — h* be the natural map.
Let e G and te H with coadjoint orbits O, and O, in g* and h*, respectively.
Then
(i) n|H > ifand only O, = p(0,);

(ii) = < ind§ 7 if and only if 0, = Ad*(G)(p~ 1(0,)).

LEMMA 2.4. Let G be a connected nilpotent group and n.€ G, and suppose that mis
Square integrable modulo its kernel. Then

n ~ ind§(n| P).

PROOF. Let :G - G = G/K,and let te G be defined by #toq = m. 7t is square
integrable, hence an open point in ¢ by [1, Theorem_3]. Suppose that we have
shown #t ~ ind§ ¢, (1| Z(G)). Then, since P = g~ *(Z(G)),

1 ~ indg (| Z(G)) 0 g = ind§(1t| Z(G)) 0 ) = ind§ (m | P).
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Thus we can assume that = is faithful. It follows that G is a Lie group. In fact,
G is a projective limit of Lie groups G/K,, 1€, and

~ s
G = U, G/K, [18, Proposition 2.2].

Let p: G — G be a simply covering of G. Then Z(G) = p~'(Z(G)), and no pe G
is an open point in

R = {peG; p|Z(G) ~ nop|Z(G)).

From this we have to conclude no indf@ (no p| Z(G)). Therefore, in terms of
Kirillov’s theory, we are reduced to the following observation. If G = exp g is
simply connected nilpotent, and 3 the center of gand f € g* is such that Ad*(G) fis
open in f + 3, then Ad*(G)f = f + 3'. But this is clear since Ad*(G)f is also
closed.

The statement of Lemma 2.4 is equivalent to saying that indS(rn|P) is
a multiple of . This is due to the fact that connected nilpotent groups are CCR,
that is, points in G are closed. Indeed, if 7€ G, then ne H for some Lie quotient
H = G/K (compare the proof of Lemma 2.4), and H is CCR since its simply
connected covering group is.

Continue to consider a connected nilpotent group G, and denote by G the set
of all compact elements in G. That is, x € G¢ if and only if the closed subgroup of
G generated by x is compact. We claim that G° is a compact and connected
normal subgroup of G. Once this is shown, G° is the unique maximal compact
subgroup of G. In particular, by the remark preceding Lemma 2.2, G is contained
in the center of G. The above claim being true for connected abelian groups, we
now proceed to verify it by induction on the length of nilpotency of G. Thus
assume that (G/Z(G)) is a compact and connected (normal) subgroup of G/Z(G),
and let

H = {xeG;xZ(G)e(G/Z(G)}

Then H¢ = G, and H is connected since H/Z(G) and Z(G) are connected
(Lemma 2.2). By the Freudenthal-Weil theorem [6,(16.4.6)], H = V x K where
K is compact connected and V is a. Obviously K = H® = G*, and this gives the
desired result.

Recall next that, for any locally compact group G, G denotes the normal
subgroup of G consisting of all elements in G with relatively compact conjugacy
classes. Tits [23] has shown that G is closed provided that G is connected.
Suppose again that G is connected and nilpotent. For such G, Gy is easy to
describe. In fact, denoting by C the maximal compact subgroup of G, we have
(G/C)r = Gg/C, and G/C is simply connected nilpotent. Hence (G/C) coincides
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with the center of G/C. Thus
Gr = q" '(2(G/0)),

where ¢: G — G/C denotes the quotient homomorphism.

THEOREM 2.5. Let G be a connected nilpotent group and n € G, and suppose that
7 is square integrable modulo its kernel. Then the following conditions are equival-
ent:

(i) = satisfies (FP2).

(i) = satisfies (FPC2).

(i) © ~ ind§_(n|Gp).

Proor. The implication (iii) = (i) is an immediate consequence of Lemma 1.1
as soon as we know that for any closed subgroup H of G, H and G are regularly
related. Since H xGr = H Ggx, x € G, it suffices to observe that H Gis closed in G.
To verify this, let C be as above. Then

HGg/C = HC/C-Gy/C = HC/C- Z(G/C),

which is closed in G/C by [2, Lemma 1.1]. Hence H Gy is closed in G.
To prove (ii) = (iii), we consider the projective kernel P of n. By Lemma 2.4,

7 ~ ind§ (| P).
Suppose that we already know P = Gg. Then
7| Gg < ind§* (n| P),

since Gy, being a closed subgroup of a nilpotent group, is amenable. Hence, by
induction in stages and since inducing preserves weak containment,

ind¢_(n| Gy) < ind¢,_(indg (r | P)) = ind§(x| P) ~ .

On the other hand = < ind§_(n | G¢) again by amenability of G. Thus it remains
to show P = Gy.

Clearly, the maximal compact subgroup C of G is contained in P as C is central
in G. We are going to show that P/C < Z(G/C). Otherwise, since P/C is connec-
ted (Corollary 2.3) and G/C is simply connected, there exists a 1-dimensional
connected subgroup H of P/C which is non-central in G/C, and hence
non-normal. By Theorem 2.1,

lgc <ind§Ca
for every a e A. Therefore, with q: G - G/C,

1 < (ind§ a) o q = indS- g (20q).
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Now g~ !(H) = P and | P ~ A for some G-invariant character A of P. Thus
< @ind{- iy (@og) =indS-, 4 (n|q” '(H) ® aoq)
~indf- 1) (A1q~'(H) ® 20 ).
Since (FPC2) holds for n and g~ !(H) is connected as H and C are, we obtain
nlg ' (H)>1lq" ' (H)® aogq
for all «e H, a contradiction.

COROLLARY 2.6. Let G be a simply connected nilpotent Lie group and Z its
center. Let m e G, and suppose that the Kirillov orbit corresponding to = is a linear
variety. Then the following are equivalent:

(i) 7 has the Frobenius property (FP2).

(i) For each 1-dimensional connected subgroup H of G and te H, n < ind$
implies m| H > 7.

(iii) © ~ ind§(n| Z).

PROOF. (ii) = (iii) is obvious from the proof of Theorem 2.5 since C is trivial.

It is worth pointing out that in the Lie algebra context (iii) of Corollary 2.6
reads as Ad*(G)f = f + 3*, where n = =, fe g*. Recall also that all the coadjoint
orbits in g* are linear varieties if G is 2-step nilpotent. However, the implication
(i) = (iii) doesn’t remain true in general once we drop the assumption on . In fact,
in Section 3 we will exhibit a series of simply connected nilpotent Lie groups each
of which possesses sufficiently many irreducible representations to carry Plan-
cherel measure which share property (FP2) and nevertheless violate (iii). These
representations will even be induced from characters of abelian normal sub-
groups. We conclude this section with the following lemma which in special
situations considerably simplifies verifying (FP2) or (FPC2) for a given represen-
tation.

LEMMA 2.7. Let G be a simply connected nilpotent Lie group and H a closed
subgroup of G. Let neG such that © ~ ind$ A, where N is a connected normal
subgroup of G and J.€ H. Suppose that for every o € Im, n < ind§, y o implies
n|H A N > o. Then, for each t€ H, n < ind$ © implies n| H > 1.

ProoOF. As H is second countable, 1| H " N ~ H(o) for some g€ m, and
hence

n < ind§ t < ind§, y(t|H N N) ~ ind§ .y 0.
Therefore, 7| H n N > o, and this shows
n|HAN > H(6) ~t|HNN.
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Ontheotherhand,n|H N N ~ G(A)| H n N and H and N are regularly related in
G (compare the proof of Theorem 2.5). Thus [9, Theorem 5.3] yields

n|H ~ {indfj ,x(2*| H "\ N); xe G} ~ ind¥_y(n|H A N)
>ind? y(|HAN)>1.

3. Nilpotent Groups of the Form R < R™,

Among all simply connected nilpotent Lie groups those which are in addition
semi-direct products of R with R™ form a fairly accessible subclass. In [2] the
Frobenius properties (FP1) and (FPC1) have been studied for such G, and our
concern here is to investigate (FP2) and (FPC2).

For each deN, d = 2, let g, denote the (d + 1)-dimensional Lie algebra with
generators X, X,, ..., X; and non-trivial Lie products [X,X;]=X,_,,
2 <j £d. These algebras are called threadlike. g, is d-step nilpotent and a semi-
direct product of RX with the abelian ideal ) 4_, RX;. In what follows we will
always identify Y ¢_, RX; with exp(}%., RX;) and with R%. G,=expg, is
a semi-direct product of R with R% Conversely, every nilpotent Lie algebra
g containing an abelian ideal of codimension one can be built up from these g,.
Studying topological Frobenius properties for G = exp g can be reduced to the
case of a direct product of some G, with a vector group.

LEMMA 3.1. Let G = G, x V, where V is a vector group and G, is as above.
Suppose that H is a closed subgroup of R* x V such that H,, the connected
component of H, is contained in RX, x V, the center of G. Then for ne G\G/RX 1s

n|H>{yeH;y|HNZ(G) ~ n|H n Z(G)}.

Proor. For simplicity we write the abelian normal subgroup N = R x V
additively. Since Hy = Z(G) = RX, + V, there exists a lattice

r=ZY, +...+ 2y,
NS
in R~ such that H = I' + Z(G). Let F = I' + Z(G), n| Z(G) ~ A€ Z(G) and

d
Yo=Y a;X;a;eR 25kjsd
j=2
Once we have shown | F ~ I' x {1}, it follows that
n|H ~ {Beh; BIH A Z(G) ~ A|H N Z(G)}.
A A —T
Indeed, for fixed yo e ', ' ® {4} = (y x 4): F/Z(G), and hence

(F x {A}|H = (3o x )| H-FJZ(G)|H,
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and m)lH is a subgroup of (H/H n Z(G))" that separates the points and
therefore is dense in (H/H n Z(G))".

Let f, fi,. .. ,f1 denote the basis of g¥ dual to X, X,,...,X,,and let g = ¢f +
Y4 icifi+ hhe V*, with n, = . Notice that A(sX,) = exp (2mic,s)forse Rand
that ¢, + 0 as 7¢G/RX,. The elements Y € F are of the form

d
Y=sX,+ Y mY+vveV,seRmneZ,2<k<d
k=2
We obtain for teR

m-1 J
y (—l)fcm-jf.;> + h(v)

j:

d
Ad*(exptX)gY) = ¢, fi(Y) = Z_: fm(Y)(

d j d
=c;s+ Y <Z (—Wem-j- '><Z nkakm)+h(v)

m=2 \j=0
=c;s+ Z mpi(t) + h(v),
k=2
where the polynomials p;, 2 < k < d are defined by

d J
no= 3. (z (= en- ,t)

m=2 J!

v
Since the polynomials g,(t) = Y™ o' (— 1) cm- J] 2 < m £ d, are of strictly

increasing degrees and the matrix (ak,,,)eM(d — 1, R) is non-singular, the non-
constant polynomials p,(t),...,ps(t) are linearly independent. By a uniform
distribution theorem of Weyl [24, Satz 8] the set

{(pZ(t)a [ apd(t)); te R}
is dense in [0, 1]~ ! modulo Z¢~*. It follows that n | F ~ I x {4}.

LEMMA 3.2. Let G and  be as in Lemma 3.1. Suppose that H is a closed subgroup
of R+ V such that H, is not contained in RX, + V. Then, for any teH,
n < ind$§, © implies n| H > 1.

Proor. In what follows we use the abbreviation e(x) = exp(2nix) for xeR.
Since Hy ¢ RX, + V we can choose A =Y4_, a X, + veR? + V, ve ¥, with
RA = H and a, # 0 for some k = 2. Let m denote the maximal such k. Next
choose feg* and hebh* such that n, = n and ©(Y) = e(h(Y)) for all Ye H. As
n < ind§ 7, there exist f,eg* and x, € G, ne N, such that

f219€0, = {h} and Ad*(x,)f, > f.
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Now, G being a semi-direct product of exp RX with a vector group N, we can
write

Ad*(x,)fy = Ad*(exp £, X)(Ad*(ya) n)
for certain t,eR and y,e N. Since N is abelian, we obtain with g, = Ad*(y,)/.:
1) Ad*(expt,X)g, — f in g*.
2) e(g,(Y)) =t(Y)forall YeH.

Notice that g,(A4) = h(A). In fact, g,(0) = h(0), e(g.(s A)) = e(h(sA)) for all se R,
and s — g,(sA) — h(sA) is continuous. As before denote by fi,. .., f; the basis of
(R%* dual to X,,...,X,. Let

d d
RO+ V=Y nfi+land g, R + V=3 suifi+ b
k=1 k=1

L1,e V*. (1) now implies equations

(3) Spk =Tk + Eni + Z
i=

(=it
J!

J
nk ]t

where for each 1 £k < d, ¢,, —» 0 as n— oo. Using (3) it is easily verified by
induction on k that

1 k22 .
PR ot + jgo 'j_!(rk—j + enk—j)tn
From (4) and h(A4) = g,(A) we obtain

h(A) = Y= saafilA) + L(v) = ZL":; A + 1a(0) =
Am

(m— 1)
Z;c"=lak<2§;gji!(rk—j + Enk-j) tf.) + L) =

(4) Sn,k = (

k-1
sn,ltn +Sn12k 1 (k t +

am 21
CES RN R r Rk

where forneNand0<j<m—2,

m

©) Cpj= Aj+1Sn1 + Z alre—j + Eng-j)-
k=j+2

Observe that s, , — f(X;) + 0 and that c, ; remains bounded as n varies.
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Moreover, by (1)
[n(v) = ga(v) = Ad*(exp t,X)gn(v) = f(v) = I(v).

It follows now from (5) and (6) that the sequence t,,, n € N, is bounded. Therefore
we can assume t, — t for some ¢ € R. Finally the continuity of

(5,9) > Ad*(expsX)g,R x g* — g*
and (1) imply

e(Ad*(exp(—tX)) f(Y)) = lim e(Ad*(exp(—t, X)) Ad*(exp,X))ga(Y))

n—o

= lim e(g,(Y))
for all Ye H. In particular, e(h(Y)) = e(Ad*(exp(—tX))f(Y)) for all Y e H. This
proves n,| H > 1.

LEMMA 3.3. Let G be a non-abelian nilpotent group of the form R o< R™. Let
neG and suppose that for every 1-dimensional subgroup H of G and t€H,
< indgt implies t|H > 1. Then G = F x A where A is abelian, F is threadlike
and n| Z(F) is non-trivial.

Proor. The Lie algebra g of G is the form g = RX o< V where V is an
m-dimensional abelian ideal. Looking at the Jordan decomposition of the nil-
potent endomorphism ad(X)| V we see that V decomposes into a direct sum
V=V,@®...® YV, where each V; is an ideal and g; = RX < Vjis either abelian
(with dim ¥; = 1) or threadlike. Of course we can assume that dimV; 2
dim ¥V, = ... 2 dim V,. Thendim V; = 2 as gis non-abelian, and we have to show
that dim V, = 1.

To this end assume dim ¥, = 2 and, forj = 1,2, let X;,, X}, e g; such that RX;;
equals the center of g;and [ X, X;,] = Xj;. Choose f € g* with; = m. Then there
exist (a,, a,) # (0,0) such that f(a; X;; + a;X,;) = 0. Setting

Yo=a; X+ a: X, k= 1,2,

we have [X, Y,] = Y;, so that Y, is central modulo RY;. Now = € m, and
hence n;| RY, must be weakly equivalent to some character 4. Since H = RY, is
non-normal, 15 < ind§ « for every a € A (Theorem 2.1). This implies

n<n® indfa = ind§(n| H ® a) ~ ind§ (A @ a).

Therefore, by hypothesis on n, 7| H ~ H. This contradicts n| H ~ A.
We have seen so far that A = V, + ... + V,is contained in the center of G, and
hence G = F x Awhere F = exp g,. Noticenextthatn = p x o, pe F,ae 4,and
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it is easily verified that p satisfies (FPC2) with respect Q\I-dimensional sub-
groups of F. By the same argument as above, p| RX;, ~ RX;,, and from this we
conclude that p cannot be trivial on RX,,, the center of F.

Lemma 3.1 to 3.3 now combine to give

THEOREM 3.4. Let G be a nilpotent group of the form G = R b< R™. For ne G
the following conditions are equivalent:

() = satisfies (FP2).

(i) For every 1-dimensional subgroup H of R™ and te H,n < ind$ t implies
n|H>r.

(iii) G = F x A where A is abelian, F is threadlike, and nt| Z(F) is non-trivial. In
particular, if G is threadlike, then me G has property (FP2) if and only if n| Z(G) is
non-trivial.

PROOF. (ii) = (iii) is just Lemma 3.3. To prove (iii) = (i) notice that # = p x «
for some pe F and ae A. Let F = expg, = R b< R%. As p| Z(F) is non-trivial,
there exists A€ R? such that p = ind%. A, and hence 7 = indka, , (4 x ). There-
fore, to prove that n has property (FP2), by Lemma 2.7 it suffices to show that for
every closed subgroup H of R? x A and te H, 7 < ind§ t implies x| H > . This
follows from Lemma 3.2 if H, is not contained in the center of G. If Hy = Z(G),
then

n|H > {yeH;y|Z(G)n H ~ n| Z(G) n H}

by Lemma 3.1. But n <ind§t yields =n|H n Z(G) < (ind§1)|H N Z(G) ~
t|Hn Z(G),ie. n|H N Z(G) ~ t| H n Z(G).

4. An Example.

Let G be a connected and simply connected nilpotent Lie group and ne G.
Comparing the results we obtained in Sections 2 and 3 with those on (FPC1) in
[2] leads to the question of whether 7 necessarily has property (FPC1) whenever
it satisfies (FPC2). In this final section we present a counterexample.

We consider the 6-dimensional Lie algebra g with Jordan-Hdlder basis X, ...
Xe and non-vanishing Lie brackets

[Xe, X5]1 = X3,[ X6, X4] = X, [X5, X2]1=X, = [X4, X531
(in the numbering of [21], g = g¢.4)- Let G = R® with multiplication

(xl,. . ,x6)(yl,. . ,y6) =
(%1 + y1 + X4y3 + X5y2 + XaXeYs + XsXeVa T XeYa)s
X + 2 + XeVar X3 + V3 + X6Vs, Xa + Var Xs + Vs X6 + Vo).
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G is a nilpotent group which is isomorphic to the group of upper triangular real
4 x 4-matrices and whose Lie algebra is isomorphic to g. Let f,...,fs be the
basis of g* which is dual to X, .. ., X,. Felix [7,(2.3)] noticed that (FPC1)fails to
holdforn, e G. We are going to show that nevertheless -+, has property (FPC2).
In fact, we believe that n; even satisfies (FP2). However, to verify this seems
much more tedious. Let

3 3
m=RX,+ ¥ RX,n=Y RX;and 3 =RX),
j=1 i=1

J

the center of g. M = exp mis an abelian normal subgroup of G, and n, isinduced
from a character of M. Since the intersection of two connected subgroups of
a simply connected nilpotent Lie group is again connected, in order to establish
(FPC2)for n;, we only have to consider connected subgroups of M (Lemma 2.7).
Thus, let h be a subalgebra of m and H = exp}.

The coadjoint orbits of G in g* are given in [21]. In particular, fory = (y, ...,

yﬁ)EG9
Ad*(Y)fi = fi = ysfo = Yafs + Yafa + V2 fs — VaYsfe.

This formula immediately shows that if either dim ) = 1 or h = n, then
Ad*(G)f11h = {hebXhlbnj3= fiIhn3}.

On the other hand, if 7, < ind§j x, denotes the character of H given by h, then
hlhn3 = fi|hn 3. Therefore, we can henceforth assume that dimb = 2 and
b & n, ie. b has a basis

3
X6 + Al,Az,. . 'aAd, where Al = z a,ijEn,
j=1

2<1<d=dim).
Suppose now that he b* and 7, < ind§ x,. Then there are sequences

6
In = Z énjf;'Eg* aﬂd Xn = (xnla- --’xn6)EGane N>
j=1

J

such that g, | b = h and Ad*(x,)g, — f1. The formula for the coadpoint action of
G on g* yields

(1) énl g 1’
(2) éuz — Xps énl g Oa
3 En3 — Xnan1 — 0,

(4) én6 + xn56n3 + xn4én2 - xn4xn5£nl -0,
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as n — oo. Multiplying (4) and (1) and (2) and (3), respectively, and summing up
gives
(5) Cnﬁénl + €n26n3 i 0'

We have to find y,e G with

Ad*(y,)fi(Xe + Ay) =
(6) —Yna¥ns + Q11 — Yns512 — YnaQ13 + Yn3G14 + Yu2dys
= h(Xs + Ay),

andfor2 <1 <d,

(M Ad*(ya) f1(A) = @11 — Yns@12 — Yna@13 + Yn3G1a + Yu2ays = h(A)).
Suppose first that, in addition to (1) — (4) above,

(8) Cno(l — &a1) = 0.

Then, choosing y,s = — &2, Yna = —&a3s Yn3 = Enas Y2 = as and ype and y,,
arbitrary, we obtain from (1), (5) and (8)

Ad*(ya)f1(Xe + A1)

= Z Enj@1j + Ene + ari(1 = Eny) + Ene(Enr — 1) — (Enelnt + Enzlns) =

=1
h(XG + A,), since h(Xe + A1) = gu(Xes + A1) = Y ;=1 &nja1j + &ne- Similarly, for
122,

5
Ad*(y,) f1(A) = Y, Enjayy + ann (1 — &ny) = h(A).
j=1
Notice that (8) holds if either &,q is bounded or &,; is constant, hence in
particular if X¢ e or X, eb. We are now going to verify this.
b contains elements X + 4 and B # 0, where

3 3
A= Z anj and B = Z ijj'
ji=1 ji=1

Ifb, = by = 0, then X, €h. Thus, let b3 # 0, the case b, F 0 is treated analog-
ously. We can assume a; = 0. We claim that b, = 0 or &y, is bounded. Indeed,

2

2
&y = —<h(B Z )and e = W(Xe + A) — Zx Enitj
2
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and (5) imply

b h(B b
Grab + st = = 288 + (T — (2 02 )

+ h(Xs + A&,y — a &2 - 0.

This proves the claim since £,; —» 1. Now, h(B) = 2132 1 Enjbjand b3 % 0. As
b, ¢&,, is bounded, we obtain that £, is bounded. Hence so is &, in view of (5) and

).
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