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TERNARY ADDITIVE PROBLEMS OF WARING’S TYPE

JORG BRUDERN

Abstract.

New upper bounds are obtained for the numbers of integers not exceeding X and not being the sum of
a square, a cube and a kth power of natural numbers. An important ingredient is a certain fourth
power moment estimate for a weighed cubic exponential sum.

1. Introduction.

In this paper we shall be concerned with representations of natural numbers as
the sum of a square, a cube and a kth power of natural numbers. If we write r,(n)
for the number of representations of an integer in the proposed manner, then one
expects an asymptotic formula of the shape

r(n) ~ C,S(mn'/* -1/

to hold whenever 2 < k £ 5. Here C, is a positive constant, and S(n) is the
standard singular series which, however, is more difficult than usual but can be
shown to be > n™* In particular it would follow that r,(n) > 0 for all sufficiently
large n.

Of course a proof of these asymptotic formulae is out of the scope of existing
methods. But it can be shown that almost all natural numbers can be written as
the sum of a square, a cube and a kth power. To be more precise let E,(X) be the
number of all n £ X which are not so representable. Then E,(X) = o(X) when
2 £ k < 5. This has been shown by various writers, see Vaughan [11], §8.1, and
Hooley [7] for an account. More recently Vaughan [10] found E,(X) < X' ~?for
some é = J, > 0, and in chapter 4 of [3] the author obtained explicit values for
donamelyd, =3 —¢03=5—60s=15—60s=2&—¢

Here we shall describe an approach which is rather different from [3], much
simpler, and produces better results.

THEOREM 1. Let E,(X) be the number of natural numbers not exceeding X and
not being representable as the sum of a square, a cube and a kth power of integers.
Then E5(X) < X7+, E(X) <€ X'¥/14+ Eg(X) < X9/%0%.
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The improvement comes from the new application of a Kloosterman refine-
ment to a certain fourth moment of a cubic exponential sum. Since this mean
value result might have other applications in the additive theory of numbers we
shall now formulate it precisely. Introduce the weights

(1) y(t) = exp (—1/(1 — t?))
and I'(t) = y(t — 1). Then, using the abbreviation e(x) = exp (2nia), we let

Q) f@= Y F(%)e(cxx:’).

x<2N
Nowlet1 £ P £ N*2 and let M(q, a) denote theinterval |gx — a| < P/N3. Write

M for the union of all Wi(g, a) subjectto 1 £ g < Pand (a,q) = 1. In this notation
we can enunciate

THEOREM 2. In the above notation,
J.|f(a)|4doz < NN + P72N73 4 P2N7Y,
mn

It is easy to see that

1 4
x.
3) f f@lde= Y ]I r(—‘) < N2,
0 0Sx1,..., x4S2N i=1 N
xf+x§=x§+xi
and with little more care it is possible to show that this integral is of order N2.
Therefore, Theorem 2 gives non-trivial results whenever P < N7 It is also not

difficult to show that

~[‘If(az)l“dcx > N1~e
m

Hence Theorem 2 is essentially best possible when P < N. A further discussion of
the Theorem, as well as an outline of the proof is postponed to the later sections.

2. A cubic exponential sum.

Our proof of Theorem 2 will follow the pattern established by Hooley [8]. The
crucial aspect is that we are able to sum nontrivially the contribution arising from
different M(q, a) with q fixed. This approach nowadays is called a Kloosterman
refinement, and we shall be able to give an unconditional treatment. In contrast,
Hooley applies a double Kloosterman refinement, that is, summing nontrivially
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over g also, and it is here where Hooley assumes the truth of the Riemann
hypothesis for Hasse-Weil L-functions of certain cubic threefolds.

At the very beginning we follow Hooley quite closely. By (1), (2) and the
Poisson summation formula,

a i ax? X
@ A5+r)-2 Z f"*"”e(ﬂ’"(W)

=q'Y Sga m)J(ﬂ,—'qﬁ>

meZ

where
) S@ab) =Y e(M)
x=1 q
2N
© 76,9 = f r(ﬁ) e(Be® + yt)dt.

0

For brevity we also write S(g,a) = S(gq, a,0), J(B) = J(8,0), and define

%) D(2) = D(2,q,a) = f(@) — g~ S(g, ) J(a - g)
— -1 _am
1 mgo S, m)J(a q q >

The final identity follows from (2). The difficult part of the paper is proving the
following estimate.

LeEMMA 1.
le(a)Pda < P72Ne3 4 p2NeT L,
m

Most of the terms in (7) make a relatively small contribution to the sum over m.
Let |B/y| = 24N2. Then the proof of Lemma 1 of Hooley [8] is readily adopted to
show that

» J(B,7) < Ne ¥N'?
for some 6 > 0. Now let W be a parameter given by

©) W = W(q, B, N) = (log N)* max(N*q|Bl,qN ")
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where f = a — -Z—, and split D(a) as

D(aaqaa) = Dl(asq,a) + Dz(a,q,a)

where D, is the part of the sum in (7) where [m| > W, and D, is the part with
0 < |m| < W. By (8), (9), the trivial bound for S(g, a, m) and Lemma 4 of Hooley

(81,

(10) Dy(@g,a) <(N +q) Y, e ImNa"® <,

|m|>w

The measure of M is < P2/N3, so that
(11) JID,(a)I‘da<P2N“3
m

which is acceptable. Note that if P < N (log N)~* then W < 1 by (9). Hence we
also have:

LEMMA 2. Let P < $N(logN) % and ae M. Then D(x) < 1.

The treatment of D, is more interesting. Here we have

P/gN3
(12) IIDz(a)I‘da= Y q* f G(B,q)ap
o qsP g
where
m 4
GB.9) = Y S(q,a,m)J<,B,—> )
Sty O ’

Note that W is independent of a. Since S(g, a, b) is real (at once from (5)) we may
rewrite this as

(13) G(B.q) = . IZlSWQ(m,Q)H(ﬁ,Q"m)
15is4

where m = (m;,m,,m5,m,), and

(14 oma= 3 Sg.am)...Saam)

@9=1

(15) H(B, m) = J(B,m,)J(B,m)J (B, m3)J (B, m,).
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Further progress on the mean value (12) will therefore depend on estimates for
Q(m,q) and H(B, m) which we shall deduce in the next two sections.

3. The properties of Q(m, g).

We shall first state a lemma giving bounds for Q(m, q) we can prove by traditional
methods.

LEMMA 3. As an arithmetical function of q, Q(m, q) is multiplicative. Let w(q)
denote the number of different prime divisors of q, and let é3(q) denote the multiplica-
tive function defined by &(p) = 1, and &(p®) = p“* if a > 1.

Then

Q(m,q) < A°@¢> ] (g, m)"*

15is4
and

Q(m,q) < A°@¢*> [] @(m)

15is4
where A > 0 is an absolute constant.

PrOOF. See lemmata $, 8, and 9 of Hooley [8].
We now introduce the cubic form

g(x) = x3 + x3 + x3 + x3

and let v(g) denote the number of incongruent solutions of the congruence of the
congruence g(x) = (mod g). Furthermore, writing mx for the scalar product
m;x, + ...+ myx,, we let v(g, m) denote the number of incongruent solutions of
the simultaneous congruences g(x) = mx = 0(mod g). We shall make use also of
the discriminant

(16) A(m) = 3[T(m}? £ my”* £ m3* + m3?)
where the product is over all choices of the ambigious signs.
LemMaA 4. If A(m) % 0 (mod p), then

4
p—1

Q(m, p) = (pv(p, m) — v(p))

and, whenever a > 1,

Q(m,p°) =0.
Proor. This again can be shown as lemmata 6 and 7 of Hooley [8].
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We may use the first equality in Lemma 4 to apply the theory of local
L-functions to the study of Q(im, p), at least when A(m) % 0 (mod p). Let ¥~ and
¥'(m) denote the projective varieties over Q, defined by g(¢) =0, and
g(&) = m& = 0, respectively. Here & = (¢,,&,,&5,&,4) is a point in threedimen-
sional projective space over Q. If p| A(m), so that p & 3, we may interpret these
equations as equations in the field F, of p elements. This leads to the nonsingular
varieties ¥"(p) and ¥"(m, p) that are defined over F,. Now ¥"(p) is a surface, and
¥ (m, p) is an imbedding in three-space of a curve lying in the plane m¢ = 0. We
let o(p") and o(m, p") be the number of points on ¥"(p) and ¥ (m, p) respectively,
having coordinates in F,.. Then

v(p)=(p — Do) + 1; v(p,m) = (p — 1)e(m,p) + 1,
and by Lemma 4, Q(m, p) = p(pe(m, p) — o(p) + 1). This we rewrite as
(17 Q(m, p) = p(pE(m, p) — E(p))

where

3Ir 2r__1

N oy P 1 " - n_P
E(@P") = o(p') p,ﬁl,E(m,p)—e(m,p) o1

Next, we consider the L-functions

(18) L(p;n=exp< 3 22 )
(19) L(m,p;T) = exp<—— i MT').
r=1

Here (18) is the quotient of the zeta functions of three-space and of ¥"(p), and (19)
is the quotient of the zeta functions of the projective plane, and of ¥"(m, p). By
Weil’s theory ([12], [9], see also [6]), the Riemann hypothesis for the L-functions
(19) holds, a fact which at once implies the important inequality

E(m,p) < p'/*

Similarly, Weil’s theory gives E(p) < p/?, a relatively weak bound which, how-

ever, suffices for this paper, and avoids reference to even deeper results in
algebraic geometry. We now deduce from (17) the important

LEMMA 5. If A(m) % 0 (mod p) then
Q(m,p) < p*?
Given m with A(m) # 0, write g = q;9, where (¢;, A(m)) = 1 and all prime
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factors of q, divide A(m). Then (q,,q,) = 1, and by Lemmas 3, 4, and 5

4

Z |QEIS/,2‘1)| < Xel-[ @(m;) Z q1/2 < X! +sI-[ @(my) Z 42_1/2-

qsX 91925 X i=1 q:5X

Thus, supposing further that |m|| £ W, this estimation shows

LEMMA 6. If ||m| < W and A(m) # 0,

4
5 I < wext+ ] atm),

gsX i=1

4. The integrals J(B, 7).
The object of this section is the following bound.
LEMMA 7. Whenever By % 0, then J(B,7) < |By| 1'%, and J(B,0) < |8~ /.

ProoF. This is by the same method as Lemma 2 of Hooley [8]. We first split
the integral (6) as

N 2N

J(B,y) = JI’(%) e(ft® + yt)dt + JF(T:I—) e(Bt® + yt)dt
0 N

= Jl(ﬁ’y) + JZ(ﬁ’y)’ say.

This has the advantage.that I'(t/N) is monotone in the range of integration in
both integrals. In view of the mean value theorem it is now advisable to consider
the integrals

n

JB.y;En) = JCOS @n(Br® + yr))dt,

4
n

1B, v; &m) = ijsin @r(Bt> + yt))dt
4
in the range 0 < ¢ < #. Then, on pp. 57-58, Hooley [8] shows that

J(B,y, &) < |Byl~ /4, and J(B,0,&,m) < |BI7 /3

hold for any such choice of ¢, ﬁ, and remarks on p. 59 that the same bounds do
hold as well for the integrals I(8, 7; £, 7). Now, by the second mean value theorem,

for some 9, and similarly, Im J,(8,y) is reduced to I(8,7;¢&,n). Since I'(t) is
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bounded, this gives an acceptable bound for J;, and J, can be treated in the same
way. This proves the Lemma.

5. Completion of the proof of Lemma 1.

The results of the previous three sections are now put together to prove Lemma 1.
Let G4(B, q) denote the sum in (13) subject to the additional constraint A(m) # 0,
and let G,(f,q) be the sum in (13) restricted to the complementary condition
Am)=0.For1 SR L Plet

P/RN3
(20 o,R= Y q* j Gy(B,q)dp
R<gsS2R
—P/RN3

Since G(B, q) = G,(B,q) + G,(B, q) we find from (12) that

1) '[IDz(a)I‘da < (log P) max (©,(R) + @(R))
1SR<P
m

Before we proceed further it is useful to introduce the notation

N if [fl<N~°

22) a(m) = a(m; B,R) = {R”“Imﬂl_”“ if 1l > N3

for any integer m + 0. By (15) and Lemma 7,
(23) H(B, m) < a(m,)a(m;)a(ms)a(m,)
Thus, by (20),

6.(R)

P/RN3

< Y q* f Y. |Q(m,qg)l a(m,)a(m;) a(ms)a(m,)dp

R<qs2R 0<|lm| <w
—P/RN3 A(m)#+0

P/RN3

<R} f 5y 0Dy atmame) a8
o<|mliswo gs2r 9
~P/RN®  A(m)%0

where W, = max W when q runs over [R,2R]. By Lemma 6,

P/RN3

4
6.(R) < N°R™* Y. I1 &m;)a(m;)dp.
O<|ImlsWoj=1
—P/RN3
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By (22), Lemma 12 of Hooley [8], and (9), this is

N-3 P/RN3
<N‘R'*<J%“N4dﬂ+ f Rw3|ﬁr'dﬁ>
0 N-3
P/RN3

< N*R‘*(R“'N‘3 + j RB~Y(N*Rp)? dﬁ)
0
< N‘R ¥R*N~3 + P?RN7?)
so that if R < P, it follows that
(24) ©(R) < P> N*73,
We now turn our attention to @,(R). At the very beginning, the treatment is

much the same as the one of @, (R). By (20), (23) and Lemma 3,

P/RN3

25 @R <R J ) 2 [1 (g,m)*a(m;)dB,

R<qs=2R 0<Ilm|ISW 15js4
—P/RN3 A(m)=0
and further progress is dependent on a study of the equation A(m) = 0. We follow
Hooley [8], p. 82, but the situation is somewhat simpler.
For any solution of A(m) = 0, let m} = b;c? where b; is squarefree and c; > 0.
We may suppose that 0 < m; < W. By (16) we must have

cl\/~+ .t 4 /bsa=0

for some choice of the ambigious signs. Let d,, . . ., d, be the distinct values of b,,
b,, by, b,. Then

el\/_+ .+ e =0

for some e; € Z. Since the d; are all distinct, the \/dvl are linearly independent over
Q. Thuse ;= 0for 1 < j < I; that is, a certain sum of the ¢; has to vanish. This can
only happen if and only if

(26) bl = bz = b3 = b4 = b, Say
or
@7 my =my, My =my

after renumbering. In case (26), let ¢ = (1, ¢, ¢3,¢4) and m} = bjc} = bc*&? so
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that (¢, ¢,,¢1,¢4) = 1. Hence

(my,my,m3,my)® = bc* = A3 say.
Therefore &; = ri; for some ;e Z which gives
(28) m = A(m?,. .., m}).

Now we have

9) Y IT (gm)*a(m)
02(||::;||=§0W 15j<4

< Z n (9 mj)* a(mj)

O<|misW 1<j<4
m = A(#2,...,M32)

+ ) [T (@mj)*am,).
O<|ml|lsW 15j<4
m;=mz;m3=mgq

First suppose that || < N3 so that W = gN ~! (log N)*. Then the first term
on the right of (29) is, by (22) and [8], Lemma 13,

<N ¥ @ Am’>*)4

0<)._S_W<0<m§(w/)_)x/z
4
<N* 3 A( ) (q,mZ)*)
0<AsW 0<mz (W/A)L/2
< N*+ew?
< N2+25q2.
Similarly, the second term on the right of (29) is
2
< N4< ) (q,m)*) < N?*eg?,
0O<msW

Now suppose that || > N3 so that W = (log N)* q|B|. In this case the first
term on the right of (29) is estimated through the use of (22) and [8], Lemma 13,
and is

1/2\ 4
<RIf™ ¥ @ )

1/2
o<agw<o<m§<wmm m"/
<R|pI " gW'*

< RN2+eq’
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and the second term on the right of (29) contributes

,m1/2 2
<Rlﬁl“< Y (quZ ) < RN**tq

O<m=<W

by a similar estimation.
Collecting together we find via (25) and (29) that

N-3 P/RN3

(30)  O,R) <R Y <N“2‘q2Jdﬂ+RN“‘q f dﬁ)
R<q=2R
0 N-3

«PRNB—I < PZNs-l

whenever R < P. Lemma 1 now follows from (11), (21), (24) and (30).
Theorem 2 is now available. From Lemma 7,and Lemma 4.9 of Vaughan [11],

4

q
(31) X X qu“’S(q,a)J<a—£> da < N**e,
4sP a=1 q

(a,9) =1 M(q,a)

Hence, Theorem 2 follows from (7), (31), and Lemma 1.

6. The approach to Theorem 1.

We shall concentrate on the case k = 3 in Theorem 1, that is, the exceptional set
for sums of a square and two cubes. Later on we shall describe the modifications
needed when k = 4 or 5.

Let f(o) be given by (2) where

N = X',
and let
(32) gl@)= Y eax').
xéxl/l

For any measurable set o/ < [0, 1] put

(33) o(n, X; of) = fgz(a)f(a)ze(—an) da.
o
Ifn < X, then o(n, X; [0, 1]) equals the number of solutions of n = x* + y* + 2°
}vhere any solution is counted with weight I'(y/N)I'(z/N). In particular, r3(n) > 0
if and only if g(n, X; [0, 1]) % 0.
The result on E,(X) is now deduced by a traditional method which goes back
to Davenport and Heilbronn [4]. It is based on Bessel’s inequality and a version
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of the Hardy-Littewood method. Let It = IR(P) be the set defined in the
introduction. Now put

(34) Y=Y,=N(logN)™*

and define m = [0, 1]\M(Y) (mod 1). One key step is the estimate

(35) Ilgz(m)f(f:t)zl2 do < X2%217,

the other one is hidden in
LEMMA 8. For all but O(X%7*¢) values of n < X, the estimate
o(n, X; M(Y)) > X~
holds.
The proof of Theorem 1 is now readily completed. We have
(36) o(n, X;[0,1]) = e(n, X;M(Y)) + o(n, X;m).
By Bessel’s inequality, (33) and (35),

nsX

Z le(n, X; m)|2 =< j|g2(a)f(a)2|2 do < X25/21+e

Hence, the number of n < X for which |o(n, X;m)| > X'/¢~¢is < X®7*4 Thus
Theorem 1 in case k = 3 follows from Lemma 8 and (36).

We shall prove (35) and Lemma 8 in the final section, but shall now proceed to
reduce the other cases to similar estimates. In these cases we consider

(37 o(n, X; ) = I 92(@)g(@) f(@) e(—an)da (k = 4,5).
o

We now redefine

(38) Y=Y =X

and put again m = [0, 1]\T(Y,) (mod 1). Then, we shall show that

(39) floz(am,,(a)f(a)lz da < XE+3-oete
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where 0, = 1/14, 65 = 1/30. With the same values of §, we have:

LEMMA 9. For all but O(X!~%*%) values of n < X,

1_

0u(n, X; M(Y,)) > X567,

A bound for E,(X)is then deduced from (39) and Lemma 9 in the same manner
as a bound for E;(X) was deduced from (35) and Lemma 8.

7. The minor arc estimates.

We prove (35) first. Again let 9% = M(P) be given as in Theorem 2, and
N(P) = M2P)\M(P). We note that M(P>?) = M(X'/?) = [0,1] (mod 1), and
that therefore m can be covered by O(log X) sets R(P) with Y < P < X'/2, By
Weyl’s inequality ([11], Lemma 2.4),

(40) sup |g,(@) < X'/2Te P2
aeR(P)

Let X'%2! < P < X''/2, Then, by (4) and (40),

(41) _[ g2(0)gi (@) f(@)* dar < (X' 2P~ Y)(X23+e) < X221 %2,
RN(P)
Now let X'/7 < P < X'921, By (40) and Theorem 2,

(42) I 192(2) gi(o) f ()] dex
R(P)
« (Xl +eP— 1)(X1/3 + P7/2x— 1 + P2x~ 1/3) < X25/21 +e
This already proves (35) since Y> X'/7.

We now prove (39). If x e M(g, a) (in the notation of §1) where P < N2, then
by [1], Lemmas 8 and 9, and a partial integration,

il
o0 —— .
q

Hence, by Lemma 2 of Briidern [2], when k =4 or k = 5,

g2(a) < q'*X*“(l +X

“3) f 192(0)294(0)*] doc < X*(PX% + X¥).

R(P)
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The case k = 4 is easy. When X'/* < P < X'/2 the right hand side of (43) is
< X'*¢ Thus, by (41), (42), (43) and Cauchy’s inequality,

192(0) 94() f(0)? dox < (XTT+93(X1+6)2 < X604+,
R(P)

Since m is covered by O(log P) sets (P) where Y, < P < X'/, this proves (39)
when k = 4.

The case k = 5 requires more care. Note that the first bound in (41) holds for
any P> 1. Hence, when X?5 < P < X'? we deduce from (41), (43) and
Schwarz’s inequality that

192(2) g5(@)f(@)? do < X*(X3 P13 (PX3) < xFo+e.
R(P)

But, when X'/* = Y; £ P < X?/*, we find from (42), (43) and Schwarz’s inequal-
ity that

192(0) 95(@) f(@)[? doe < Xe(XFD)3 (X3)F < X.
R(P)

This proves (39) when k = 5.

8. The major arc estimates.

We prove Lemmas 8 and 9 along very traditional patterns. However, due to the
relatively good error terms which are required here, some care is needed. Let J be
given by (6), and put

xmn
(44) Ji(B) = J e(d ) do.

0
Then, we may define
(45) f*0) = f*@4, a) = 4~ S(g, a) J(a - {1‘—)

(46) g*@) = gt q, a) =9~ S(g, a)J;<a - —Z—)
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where

1
@) Siga) = ¥ e<ﬂ).

x=q q

When aeMM(Y) we have f— f* < 1 by Lemma 2, and from Theorem 4.1 of
Vaughan [11] we obtain g, — g < Y2 *¢ whenever [ = 2 and aeM(Y), or I = k
and aeM(Y,). From Lemma 7 and [11], Lemma 2.8, we readily establish

1
a 3
a_—.—
)
_1
a T
q> '

-

48) @) < q-%x%(l L x

(49) g*(0) < q-%x%<1 + X|a—=

The goal is now to approximate to g(n, X; (Y)) and g,(n, X; (Y,)) by numb-
ers now to be defined, at least almost always. Let My(Y) be the union of all
o ——

intervals
{a : <Y~ 2}
q

where 1 £ a < g < Y,(a,q) = 1, and put

a

(50) e*(n, o) = f g3(0) f*(@) e(—an)da,
(51) oi(n, o) = Igi(a) gr()* f*(o)e( —om) do,

where o/ < M(Y).
Note that g(n, X; M(Y)) — o*(n, M(Y)) is the Fourier coeficient of the function
which is g, f2 — g% f*2 on M(Y), and zero elsewhere. By Bessel’s inequality,

(52) ;x le(n, X; M(Y)) — o*(n, M(Y))|* < J. lg2(@) f(@)? — g3(@) f*(@)*|*do.
N ;m(Y)

By (48), (49) and the remarks preceding these equations, we see that

i)
o — — .
q

N

19201 @) — g3 f*@P] < Y3re(x3q 3 + X%q—%)<1 +X
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Therefore,

(53) f lg2(0) f(@)? — g3 (o) f *(@)*|? dot

M(Y)

<Y1 Y (x3g 5 + X3q7%) < XV

qsyY

In much the same way as in (52),

49 X le*mB(Y)) — o*(n, My(V)* < J lg%(@).f*(@)?* da,
neX Wo(N\B(Y)

and by (49) and an estimate very similar to (31),

lg3@)f*@**da < sup |g3()? J |f*@]* dot

aeMo(Y)\MM(Y)
Mo(Y)\B(Y) Mo(Y)

< (XY- l)(X%ﬂz) < Xl +e.
This, when combined with (52), (53) and (54), gives

(55) Y, le(m, X;M(Y)) — o*(n, MY < X5+,
nsX
Let & be set of all n £ X for which
(56) lo(n, X; M(Y)) — o*(n, M(Y))| < X1/7
fails to hold. Then
(57) Y1SXFY lotn X;T(Y) — o*(n, M(Y))? < X5,
neX nsX

We give a similar argument when a biquadrate or a fifth power is present.
Imitating the procedure leading to (53) we see that

|92(%)gi(@) f (%) — g3 (@)git () S *(@)l

1.1 1.1 1,1 1
% X 273 X 27k X 37k a 2
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which in turn implies

j 192(0)gi(@) f (@) — g3(2)gi¥ () f *(@0)|* dax

M(Yi)

2.2
X\iti!
< Yk1+c Z <_ < X1+E.
asYi jle2,3.0\ 4
j<i

It is straightforward from (49) and a suitable analogue of (31) that

192(0)ge(@).f (@) — g3 (@) g () f*(@)|* dax

Mo (Y1) \WM(Y i)

< sup |g:=(a)|2( flg;(a)rdaﬂ f |f*((a)|“da)5+x

aeMo(Y 1)\ M(Yi)
DY 1) WY i)

< (X%Y;‘_%)(Xl +a)%(X%+s)% < X%+%-%+E.

As before we deduce

Y le(n, X; ML) — o (n, M(Y))? <

nsX

Let &, be the set of all n < X for which

X25/24+z (k —_ 4),
Xite (k = 5).

(58) leu(n, X; T(Y,) — g (n, Mo(Y,)| < Xk 67100

fails to hold. Then, by the argument used to establish (57), not more than
O(X'~%) numbers are in ;.
We may now concentrate on g*(n, My (Y)), and here we have of course that

e*(n, My(Y)) = S;(n, Y)K5(n)

and
o (n, Mo(Ye) = Si(n, ) Ki(n) (k = 4,5)
where
&) &n2)= ¥ q"sz(q,a)ss(q,a)sk(q,a)e<_.‘_‘qﬁ>
qsZ
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and

2

‘-
K3(n) = I J2(B)J (B)* e(— Bn) dB,
V-

Yy
Ky(n) = j J2(B)Ji(B) J(B)e(— Bn) dB.

—-yY-2
Y

Now define K}¥(n) exactly as K, (n), but with integration taken over the whole real
line. Then one has at once that

(60) Kin) — K}n) < Xk~ $-106  (3<k<5)

A simple change of variable shows

Y

L(B)JI(B)? = J e(Bv)V(v)dv

— O

1/3 1/3
r<‘91fl )r("N )d&ldsz,

and where ¢ = v — 8; — §,. By Fourier’s inversion theorem, K;(n) = V(n), so
that (61) implies

where

o X
o o= | |5

-—o 0

(S
wiN

-2 _
3330

0 < K%(n) < X'/°.

Nowlet3X <n < X. When %X <9, < §Xfori = 1andi = 2, the integrand in
(61) is < X ~*/6, and the set of all these (3,,9,) has measure > X?2. Thus, for
these n,

X% < K3(n) < XIS,
For the singular series we proved in [3], Lemma 4.5:

LemMA 10. Let & (n,Z) be given by (59) where 3 < k < 5. Then, for all but
O(X&~+*%) integers in X < n < X we have §(n, X'*) > X .

The proof of this lemma is based on the large sieve inequality, and follows in
principle the pattern of Vaughan’s argument in [10], but is a more delicate
version thereof. For details the reader is referred to [3]. Lemma 8 now follows
from (56), (57), (59), (62) and Lemma 10, and Lemma 9 is available from (58), (59),
(62) and Lemma 10.
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