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EQUIVARIANT EILENBERG-MACLANE
SPACES OF TYPE 1*

JAN-ALVE SVENSSON

§0. Introduction.

As realized by Bredon, the way to extend non equivariant algebraic topology to
the equivariant setting is through functors with source the orbit category of the
group. In particular this applies to the fundamental groupoid of a space. Thus if
X is a G-space n°X is the contra-variant functor G/H— n(X"), O(G)** —
Groupoids. As is usual in topology, it then becomes important to associate
a classifying G-space to any such functor ¢. The associated G-space is denoted
K(%, 1). 1t is important to know the relation between % and n°K(%, 1).

The spaces K(%, 1) are considered in [3] where some theorems are proved
assuming the existence of a certain map u: n°K(%, 1) - 9. The existence of u is
supposed to follow from [2], but this is not the case.

I prove the existence of a weak equivalence u: n°K (%, 1) - % uniquely deter-
mined up to homotopy by a certain property (Theorem 2.7). The homotopy type
of n°K(%, 1) is also determined in terms of a simple endo-functor L on the
category of O(G)-groupoids. In fact, there is a cannonical homotopy class
n%(K(%, 1) » L% which is a homotopy equivalence (Corollary 2.8).

For recent applications to equivariant surgery theory, see [4] where the map
u plays a vital role.

A slightly different approach to groupoids in equivariant topology is taken in
[1]. I discuss its relation to O(G)-groupoids in (1.10).

For further properties of the K(%, 1) I refer to [3].

§1. The algebra

Let € be a small category an GP the category of small groupoids. A category is
a groupoid if all its morphisms are isomorphisms. Consider the functor category
GP*°", €-GP for short. Its objects will be called €-groupoids. Let J denote the
groupoid with two elements and two non-trivial morphisms (i.e. E(Z/2)).
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A homotopy between two maps (i.e. natural transformations) ¢,y: 4, - %, of
@-groupoidsisamap 6: %, x J — %, such that composition with the two obvious
maps io, iy: % — % x J is ¢ and y respectively. This is an equivalence relation
and defines the homotopy category of €-groupoids denoted h%¢-GP.

The only application in sight is for € = O(G), the orbit category of a discrete
group G. O(G) has objects G/H and a map G/H — G/K is a G-equivariant map of
G-sets. The use of an abstract category € will shorten notation considerably.

The main source (but by far not the only one) is the following. Let X be
a G-space. Let n°X be the O(G)-groupoid which to G/H associates n(X*") =
n(Mapg (G/H, X)), the fundamental groupoid of X¥. n°X acts on maps
G/H - G/K in the obvious way.

A map ¢: % — %, in €-GP is a weak equivalence if ¢(c): %(c) = % (c) is an
equivalence of categories for each object ¢ if ¢ (this amounts to ¢(c) being
a bijection on iso-classes of objects and on hom-sets).

Let % be a ¢-groupoid, c an object of € and x € ob %(c). A pair (f, y) consisting
of f: ¢ — d(in%¥) and y € ob ¥(d) is a generator for x if 4(f)y = x. A generator (f, y)
for x is universal if for any other generator (f": ¢ — d', y’) for x there is a unique
g.d' — d such that %(g)y = y' and for this g we also have gf' = f.

Any x has a generator but in general not a universal one. If (f:c — d, y) and
(f":c —» d’) are universal for x then there is an isomorphism g:d’ — d such that
Yy =Y.

A @-groupoid ¥ is geometric if for each ceob® and xeob%(c) there is
a universal generator for x. The examples 76X are geometric.

Let g%-GP be the full subcategory of ¥-GP consisting of geometric objects.
hg%-GP is the associated homotopy category. I am going to construct a functor,
called geometrisation

L:4-GP - g¥-GP
such that L is right adjoint to the forgetful functor (/) on homotopy categories.
Let ¢ be in ¥-GP. Define L¥ as follows. For ceob % set

obL¥(c) = [] %l(c,d) x ob¥(d).

deob¥

A morphism w in L%(c)
%(c,d) x ob¥9(d)e(f,x) -2 (g,y)e¥(c,d’) x ob¥%(d')

is a map w: 9(f)x — %(g)y in %(c). L%(c) is a groupoid. The functor
L%(h): L%(c) - L¥(c’) associated to a h: ¢’ — ¢ (in %) is

Lg(h)(@:(f,x) > (9, ) = (9(Ww: (fh, x) - (gh, y)).
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L% is geometric since (f, (14, x)) is a universal generator for (f:¢ — d, x). For
¢: % — % and ce ob ¥ define Lo(c): L%(c) — L% (c) by

L(c)(@: (£, x) = (9, y)) = (d()w:(f, $(d)x) — (9, §(d)y)).

It is straight forward to check that L is a functor.
There is a natural transformation &: L — id given for 4 and ce ob® by

eg(c): L%(c) - 9(c)

eg(c)(: (f, x)) = (9,y)) = (w: 9(f)x — %(g)y)
and Leg ~ ¢;4: LLY - LY.

PROPOSITION 1.1 Any €-groupoid % is weakly equivalent to a geometric
@-groupoid. In fact, eg: L% — % is a weak equivalence.

PrOOF. A homotopy inverse to gg(c) is given by (w:x — y)—(w: (1., x) =

(1e, y))-

To prove that &4 is a homotopy equivalence when % is geometric I will have to
put some restrains on the indexing category €.

DEFINITION 1.2. Let ¢ be geometric. A choice of universal generators

{(fe:22)} xesic). e 18 cOherent if (f, f,2.) = (fa(s)xs Za(s)x) for any f:d — d'in € and
xeob¥(d).

DEerINITION 1.3. The indexing category % is amenable if any geometric
%-groupoid has a conherent choice of universal generators.

LEMMA 1.4. O(G) is amenable.

PRrROOF. Let gy4: G/1 = G/H be qy(g) = gH. For eachge G and H £ G there is
a G-map c,;: G/H —» G/H?" ', c,(aH) = agH*"". In particular G acts on the objects
of 4(G/1) by gx = %(c,)x. Choose an object in each orbit of ob %(G/1) under this
action, i.e. a function ¢: ob %(G/1) — ob %(G/1) such that a(gx) = a(x) and for
each x there is g€ G such that x = go(x). Choose for each x g(x)e G such that
x = g(x)o(x) and g(a(x)) = 1. Choose a universal generator (fy, Zs(x) for each
0(x). Then (f,x)Coex)> Zax)) 18 universal for x. Let ye%(G/H). Then %(qy)y =
9(9(qu)y)a(%(qn)y). Let (£, 2) be short for

(fo@@rm © Co@@mmm» Zo@@mmn)

the universal generator for 9(qy)y already chosen. In particular 4(f)z = %(qy)y.
Hence there is a unique map a,: G/H — G/H,(z€o0b%(G/H,)) such that
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%(ay)z = y. I also have f = a,qy. A straight forward verification shows that
(ay, ) is a universal generator for y. I claim that

{(aw Z,,(g(q,,)y))}
is a coherent choice. Suppose f: G/K — G/L and y € 9(G/L). Notice that there is
a g € G such that

Gl = G/

qxl lu

G/K -1 G/L

commutes. Thus a(%(qx)%(f)y) = o6(g%(qL)y) = 6(%(q.)y). Let o be the common
value. Since (ag )y, Z,) is universal, there is a unique map b: G/L — G/H, such that
%(b)z, = y and furthermore bf = ayy),. But %(a,)z, = y. Thusb = g,and a, f =
Ag(s)y-
PROPOSITION 1.5. If ¥ is amenable and 4 a geometric €-groupoid, then
e=¢q: LG Y%
is a homotopy equivalence.

Proor. Let {(fs,z,)} beacoherent choice of universal generators for 4. Define
n: % — L% for ceob¥ by

n(c): %(c) = L%(c)
r](c)(w: X = y) = (CD: (fxa zx) - (f;vs zy))-

Using coherence, it is easy to check that # is well-defined. A natural equivalence
ne — 1.4, is given by lg,),, (f, x)€ ob LY(c).

Let 7: hgé-GP — h%-GP be the forgetful functor and let e5! denote
a homotopy inverse to &y if ¢ is geometric and 4 amenable. Notice that the
n constructed above is not natural, however its homotopy class is since ¢ is. Also,
observe that L preserves the homotopy relation.

Theorem 1.6. If¥ is amenable then L: h€-GP — hg¥-GP is aright adjoint to £.
That is

(%, L% )¢ = [¢%, %)«
and the bijection is natural.
ProoF. By (1.1), [e4 '] and [eg] is the unit and counit respectively.

PROPOSITION. Suppose € amenable and that ¢: 9, — %, is a weak equivalence.
Then L¢ is a homotopy equivalence.
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PROOF. For each d e ob € choose y(d): %,(d) = %(d) and n(d): 14,4 — PY(d).
(Such choices exist by assumption). Define . L%, — L%, as follows. For ceob @
and (w: (f, x) = (g,y)) in L%, (c) there is a diagram

F1(SMdx)

G()x L, g (pwldy)x = He) G N(dy)x
°| s
G(g)y —2"), 4 (9)pu(d,)y = Pc)%(g)V(d,)y

(all maps are isomorphisms and 3 is the unique map determined by com-
mutativity). Notice that the source and target of 3 are in the image of ¢(c). Hence
there is a unique ": %(f)Y(d.)x = %(g)¥(d,)y such that § = ¢(c)w'. Let

Y(O)(@:(f, %) = (g, ) = (@ (f, ¥(d)x) — (9, ¥(d,)y).

¥(c) is a functor L% (c) - L%(c). It is easy to see that  is in fact a map
L%, — L%,. It remains to find v: L¢oy —» 1 and u: 1 - Yo L. v is given by
V.0 = % (fIn(d,). To construct u, consider

S(Nndy): (N n(ds): Su(F)(@(dx)x) - G, (f)P(P(d;)x).
Rewriting gives
S Mdx): §e)(Go(f)x) = Se)(Go(f W P(d)x).
Since the source and target are in the image of ¢(c), there is a unique map
g0 %) = Go(SWe(d)x.

COROLLARY 1.8. Let € be amenable. If ¢.%, —» %, is a weak equivalence
between geometric objects, then ¢ is in fact a homotopy equivalence.
Proor. Consider

L% = L3,

eol 1:.

% ‘L’gl

By (1.5) and (1.7) &, &; and L¢ are homotopy equivalences. Hence so is ¢.

COROLLARY 1.9. Let € be amenable. A map ¢: 4, — %, is a weak equivalence if
and only if

04 [9. %]~ [9, %]
is a bijection for all geometric €-groupoids 4.

PROOF. Suppose ¢ is a weak equivalence. By (1.7) L¢ is a homotopy equival-
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ence, by (1.6) the following diagram commutes

(%, L% ~2.[% L%,

ﬂ 1;

[9.G —2 [4,9,]

Suppose on the other hand that ¢, is a bijection. Setting &4 = L%, there is a map
Y. L%, — %, such that ¢y ~ &4, . By (1.1) &g (c) is bijective on iso-classes objects
and hom-sets. Hence y(c) is injective in the same way. Letting ¥ = L%,, I get
deg, = €9, Lp ~ ¢y L. Hence since ¢, is injective ey, ~ Y L. Thus y(c) is
surjective on iso-classes of objects and hom-sets. From ¢y ~ g4 I deduce that
¢(c) is bijective on iso-classes of objects and hom-sets since  and ¢ are so.

REMARK 1.10. Some authors (e.g. [1]) have considered the notion of groupoids
over €. These are closely related to ¥-groupoids. Following [1] p.9 a groupoid
over ¥ is a functor ¢: 2 — € such that

i) for each b e ob &, the (honest) fibre 2(b) over b is a groupoid.

ii) for ye 2 and f: ¢ — ¢(y) in €, there is a w: x — y in D such that ¢(w) = f

iii) for w: x » yand 0" x’ —» y in 2 and f: ¢(x) = ¢(x’) in € there is a unique
d: x — x’ in 2 such that ¢(6) = f and @' = w.

Now, iii) is stronger than the axiom used in [ 1] (the weaker version ofiii) relates to
the study of actions of compact Lie-groups). Groupoids over € and ¢-groupoids
are related as follows. Let ¢: 2 — € be a groupoid over €. Define a €-groupoid

d¢ e €-GP:
An object of d¢(c) is a functor n: €/c - 2 such that
€lc — 2
N\
€

commutes. A morphism n — #, is a natural transformation w: # — 5, such that
¢w = id. It is easy to complete the definition.

Given 4 e ¢-GP let j % be the category with objects all pairs (c, x) where ce €
and xe %(c). A morphism (c, x) —(d,y) is a pair (f,w) where f: ¢ »d and w:
%(f)y — x. There is a functor p: [% — € defined as p((f,w): (c,x) = (d,y)) =
(fic—ad).

Now there is a weak equivalence of ¢-groupoids & — d | 4 and an equivalence
of groupoids over €, [d¢ ~ ¢.
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§2. The topology.

Recall that there is a functor B: Cat — Spaces, which to a small category
9 associates its classifying space BZ. Objects of 2 determine points in B2 and
morphisms determine paths in 2. In fact this determines a natural functor

2.1) o9 —nBY
from 2 to the fundamental groupoid of BZ.
LEMMA 2.2. If @ is a groupoid, then a is an equivalence of categories.

ProoF. Since n( ) and B( ) preserves disjoint unions on reduces to the case
when 2 has only one iso-class of objects, but then 2 is equivalent to the
automorphism group of any object of 2. Thus it suffices to prove 2.2 for
2 a group. This is well known.

For an O(G)-groupoid ¥, let B denote the functor O(G)°* — Groupoids =
Cat — Spaces. Thus (B%)(G/H) is the classifying space for 4(G/H). Notice that
B% is an O(G)-Space, i.e. a functor O(G)°® — Spaces. To any such functor T, there
is an O(G)-groupoid =T defined by

! TF,
(= T)(G/H — G/K) = (n(T(G/H)) «—— (T(G/K))).
Since the map in (2.1) is natural, I have a map of O(G)-groupoids
(2.3) 4 ——nBY

which is a weak equivalence by (2.2). Recall [2], [5] that for a OG-space T thereis
an associated G-space B(i, OG, T) where . OG ¢ G-Top and a map (natural
transformation) of OG-spaces B: Bi, OG, T)") —» T which is a pointwise
homotopy equivalence. Hence, nB(1OG, T)\~) —» =T is a weak equivalence of
OG-groupoids. For an OG-groupoid ¥4, K(%,1) is defined als B(,OG, BY).
(Alternatively, K(%,1) ~ G “°°‘I";"' 1p (cf. 1.10)).

THEOREM 2.7. There is a weak equivalence of O(G)-groupoids
wnK@,1)-%
determined up to homotopy by au ~ np.
Proor. By (2.3) there is a a: 4 — nB%. By (1.9) it induces bijection
o,: [1°K(%, 1), 9] =— [2°K(%, 1),nB%]

since n€X is geometric for any G-space. Hence there is a unique homotopy class
(4] p: n°K(%, 1) > & such that au ~ . By (2.2) and (2.5) a and 7B, respectively,
are weak equivalences. Thus u is a weak equivalence.
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COROLLARY 2.8. n°K(%, 1) is homotopy equivalent to LY.

PrOOF. By(1.1)thereis a weak equivalence &: L% — 4. By (1.9) the map u of (2.7)
factors up to homotopy u ~ ex, some weak equivalence a: n°K(4,1) - L%. By
(1.8) a is a homotopy equivalence.
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