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THE CONVERSE TO ALEXANDRE FRODA'’S
IRRATIONALITY CRITERION

DAVID SANKER

Abstract.

Let x1,...,%p, .., V15-+ -5V . .. DE positive integers with x,., > x, for all n. In 1910 Viggo Brun
proved that if y,/x, is a monotone increasing sequence converging to «, and (V4 ; — yu)/(Xn+1 — X,)is
monotone decreasing, then the number a is irrational [1]. This was considerably generalized in 1963
by Alexandre Froda by including a sequence of positive integer parameters g,: Let Y, = y,/q, and
X, = x,/q,. Then apply Brun’s criterion to Y,/X,. Because ¥, and X, are no longer integers, some
modifications have to be made. The most significant change is that we are now required to find
a decreasing subsequence of “fractional parts”. See [3].

Froda proved that if we can find an allowable set of parameters g, and a decreasing subsequence of
fractional parts, then the number « is irrational. In this paper we will prove the converse: if « is
irrational (and written as a convergent monotone sequence) then we can always choose an allowable
set of parameters and a subsequence of fractional parts.

Notation.

We make the following notational changes:

1) Lett, = F_ ~yi1,<tl = —}—)—1-> so that
X, X

r r—1 X1
y, r ©
=Yt and a= Y ¢,
Xy n=1 n=1

2) Define f: N - Rby f(r) = ? With this definition, choosing a sequence of

r

¢’s is equivalent to defining a function f. Because of the requirements on the g’s,
we see that f(r) - co and that f is monotone increasing.

3) Alsolet g, = fe=D forr = 2. Note that 0 < f, < 1. Itis also convenient

f0)
to define §;, = 1.
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6 DAVID SANKER

4) Froda defined p,+; = g9,+1/9,- We now translate Froda’s condition

&
Yr+t1 = Pr+1)r > Yr+2 — Pr+2)r+1
Xp+1 = Pr+1%y Xe+2 — Pr+2Xr+1

Y]

into the new notation. We make one modification. Froda required strict inequal-
ity in (1), but allowed inclusive inequality for the subsequence of fractional parts.
It is actually more natural to switch roles, requiring strict inequality on the
fractional parts, but allowing inclusive inequality in (1). In the new notation
Froda’s condition (1) becomes

L ﬁr(l — Br+1)
Lty (1 - ﬁr)

A function f on the positive integers for which f(r) - oo and has corresponding
B’s satisfying 0 < B, < 1 and (2) will be called a Froda function. With these
definitions, there exists a sequence of parameters g, satisfying Froda’s conditions
if and only if there is a Froda function f.

=21

@

Assume f is a Froda function for the series Z t,. It is shown in [5] that for

n=1
every s > r we have the bounds
Buty £6) _ ais"
© S T
BYtam Xt >
n=r n=r+1 n=s+1

Now let’s look at “fractional parts”. Given an « and a Froda function f, we want
to know if we can find a descending sequence of fractional parts. With our new
notation the fractional parts are the quantities

£, = a([f)] - f@) + frac ({f— f(r)),

where frac(z) = z — [z]. As we can see, this would be considerably simplified if
we could assume that f(r) were an integer because this would eliminate the first
quantity. Our construction, in fact, will produce Froda functions whose images
contain the positive integers; we will then restrict our attention to those r-values
for which f(r) is an integer. This effectively eliminates consideration of the first
quantity.
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Preliminaries.
Our hope would be to prove a strong converse to Froda’s Irrationality theorem:

)
Leta = ) t,,and let f be any Froda function for the series. If a is irrational, can
n=1
we find a descending subsequence of fractional parts? An elementary counter-
example in [5] shows that is strong converse does not hold, so the best we can
hope for is to prove

00

THEOREM. Leto = Y, t,, and assume a is irrational. Then there exists a Froda
n=1

function f for the series which produces a descending sequence of fractional parts.
To prove this, we will prove two other theorems. First, for any convergent

e}
series Y. t, we will construct a Froda function whose image contains the natural
n=1 ©
numbers. Second, if a = . t, is irrational and f is a Froda function of the type
n=1
constructed above, then we will show that f produces a descending sequence of
fractional parts.

With explicit upper and lower bounds on the growth of Froda functions in (3)

L
we now want to reverse our point of view. Given a convergent series Y. t,, we will

n=1
want to construct a Froda function for it. Since the process will be recursive, we
will have “partial” Froda functions which we will extend to full Froda functions
on the positive integers. A function f on a segment {1,2,...,s} of the positive

¢ 2]
integers is a partial Froda function for the series ). t, if
n=1

t
+

nZrtl forr=2,3,...,s.

(4) ﬂr—l(tr-l + tr) — 1 g ﬁ' —2- n
In

ﬂr—ltr—l

itMslitMs

r

In order to extend partial Froda functions we need
ProPOSITION (Growth Lemma). Let f be a partial Froda function on

{1,2,...,1} for the series Y t,. Then for any s > r we have

n=1
0
Y ¢
(5) ﬂrtr < n=r+1 ",
s s = @
Br Z ty — Ly z In
n=r n=r+1 n=s+1
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and for any real number y with

s s =f()-§
r
Z

n=r n=r+1 n

)
(6) Brtr < y n=;+1

we can extend f to a partial Froda function on {1,2,...,s} with f(s) =
PrOOF. Let’s first establish inequality (5). Since f is a partial Froda function
on {1,2,...,r}, we know that B, = Y 1,/ t, and thus B, + (B, — 1)

n=r+1 n=r
)

Z t,, 2 0. Multiply by ¢, and then add B,t, Y ¢, to get

n=r+2

[ﬂrtr + tr+l(ﬁr - 1)] i tn g ﬁrtr i tn'

n=r+1 n=r+2

This immediately yields inequality (5) with s = r + 1. Now, using induction,
suppose that (5) holds for a given value of s. We will pass to the next inequality if
we can show that

=r n=r+1 < n=s+1
s+1 s+1 = )
Br Z tn - Z tn Z tu
n=r n=r+1 n=s+2
That is, it suffices to show that
(1 - ﬂr)ts+1 Ls+1
1 + s+1 s+1 é 1 + c::
B, Z th— Y I Yo,
n=r+1 n=s+2
or
1-8, 1
s+1 s+1 = @© ‘
B Z = Xt Xt
n=r+1 n=s+2

9

This inequality also follows from 8, 2 Y ¢, / Y t, by multiplying by ¥ t,:

n=r

s+1 ) s+1 ©
ﬁ,(Zt..+ > t..); Xttt

n=r n=s+2 =
Then

s+1 s+1

ﬂrzt'_ Z tZ(l—ﬁr) z tp.

n=r+1 n=s+2
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[<9] s+1 s+1
Dividing by ( Z t,,)(ﬂ, Z t, — Z t,,) yields the desired inequality and

n=s+2 n=r+1
completes the induction.
Since we have established (5), there exist y values satisfying (6). Choose an s and
a y value in the range given by (6). We will now show how to extend f.
Surprisingly, we can choose to make the extension in a rather simple way. (And
we shall always choose to extend in this way!) We take minimal growth for

Br+25---,Bs [see (3)] so that
= ﬂs—l(ts—-l + ts) — 1
ﬂs—lts—l

™ Bs

_ Brsaltres Htv2) =ty
r+2 —
ﬂr+ltr+l

and we will solve for f,,,. We want to choose B, ,, with

)

Bty + t,h1) — thsy 8
ﬂ,tr = Fr+1 =

and such that

ﬂr+1ﬁr+2"‘ﬁs=%'

To compute B,,, we need a formula for B,,,8,+,... B, in terms of §,.,. Use
induction, starting with (7) above to get

_ ﬂ:—l(ts——l + ts) — s

ﬂs—lﬁs -
ts-—l
—a(ts— to—q1) — ts—
[ﬂs 2(s 2+ s 1) s IJ(t1—1+ts)_ts

B ﬁs—Zts—Z
ts—l

_ (ﬁs-—zts—Z + ﬁs—zts—l - ts—l)(ts—l + ts) - Bs—2t5~2ts
Bs—zt:—Zts—-l

= ﬁs—Z(ts—z + -y + ts) - (ts-l + t:)
ﬂs—zts—z
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Therefore
Bs-2 Z t, — Z t,
Bs-2Bs-1Bs = ”_h: n=s-1
s—2
ﬂr+1 Z tn_ z t"
(8) ﬂr+1ﬁy+2...ﬂs= n=r+1 n=r+2
tr+1
. 1) , .
We want this to equal V" so we must have B,.; Y t,— Y t,=
n=r+1 n=r+2
M'trﬂ, or
y

Z tn + f(r) tr+l
B = n=r+2 y

r+1 s “‘
DI

n=r+1

In order for this to be an acceptable value of B, ;; it must satisfy

4 S -
ty+—t 41 t
ﬂr(tr + tr+1) — b+ > n=§+2 " y ' > n=§r:+2 "
ﬂt = s = ©
rlr
Y ot Y ot
n=r+1 n=r+1

These two inequalities follow readily from the two inequalities in (6). Thus S, +,
satisfies (4) as required. Next, it is easy to verify that

i 0
©) Bovy 2 n=;+2 - Brotltrsr +triz) —tis2 > n=§+3

Z ﬂr+ltr+l Z

=r+ =r+

ﬁr+l(tr+1 + tr+2) —ts2

But §,+, = , SO substituting this into the second in-
ﬂr +1 tr +1
o [
equalityin(9)wegetf,., 2 Y. tn / Y. t,. Thisshows that B, , , satisfies (4).
n=r+3 n=r+2

Proceeding inductively now using (9) with r + 1 replaced by r + 2,... we estab-
lish inequality (4) for all of the f’s. Therefore, we can extend f to a partial Froda
function on {1,2,...,s} by defining

fe+1)= /{ U

2
r+1

fr+1
ﬁr+2

fe-1)

fr+2)= 2

seees JO) =
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We have satisfied all of the conditions, and the construction certainly makes
f6)=y.
LeMMA (Minimal growth formula). If r 21, and B,, B,_,,..., B, each have

. —(t—y +t,)—¢
minimal growth over the preceeding (i.e., B, = Br-a( /; ! - il
r—14r—1

, etc.), then

(—=Bi-y)
r—1 r—1
ﬁl-l Z t, — Z L
n=1-1 n=l1
ProOOF. The assertion follows by an easy induction. For r = [ we have

= ﬂr—l(tr—l + tr) — I =1 (1 — ﬂr—l) .

ﬂr—ltr—l ﬁr—ltr-l
which is what we wanted. Now suppose inductively that (10) holds for a given r.
Going to f,+,, we have

(10) B =1— t,.

B.

t,

a-5)

Brer =1~ Bit RIFS
From (10), we have
(I—Bi-1)
l_ﬂr= r—1 l r—1 "L
ﬂl—l Z tn_ Ztn
n=1-1 n=1
and
r-1 r—1
Bl—l Z th— Z tn—(l _ﬂl—l)tr
Br= n=l-1 _rl|=l — .
ﬂl—l z ty — Z tn
n=1-1 n=1
Thus
1—-8\t¢t
ﬁr+1=1_< ﬁrﬂ) t+,.1
=1 —#:—ﬂ%“tﬁ.l-

th— Yt
n=1

n=l-1

This completes the induction and the lemma.



12 DAVID SANKER

The Converse, Part 1.
THEOREM (Good Froda functions exist.). If Y t, converges, then there exists
n=1

a Froda function for the series whose image contains the natural numbers.

Refer to the following picture:

r values

IDEA OF PROOF. We take f(1) = 1, then choose r sufficiently large so that by
taking f(r) = 2, minimal growth after this point will be bounded by 3. In the
picture, the lower dotted lines represent continued minimal growth after the
chosen point, and the upper dotted lines represent maximal growth. This puts the
number 3 in the “window” of possible values for f(s) for all s sufficiently large. We
then choose some s with f(s) = 3, and so large that the number 4 is in the
“window” for all sufficiently large numbers. This procedure is continued recur-
sively, giving a full Froda function for the series.

ProorF. Let f(1) = 1, and recall that #; = 1. We proceed inductively. Assume
that we have a partial Froda function on {1,2,...,r} with f(r) = m, and chosen
so that

t m+ 1
— ﬂrr - < ——
ﬁrztn— Z L,
n=r n=r+1

Note that this is true when r = 1, m = 1, so the induction can begin. We need to
show that we can extend this to a partial Froda function on {1,2,. .., s} for some
s > r with f(s) = m + 1 and such that

Bst, <m+2'
i i , m+ 1




THE CONVERSE TO ALEXANDRE FRODA’S IRRATIONALITY CRITERION 13

We first show that for any s sufficiently large we may extend f to a partial Froda
function on {1,2,...,s} with f(s) = m + 1. According to the growth lemma, it
suffices to show that

Ly +1 n
(a1 bt mtl

n=r n=r+1 n

Since ), t,—0ass— oo, the right hand expression approaches oo, and thus
n=s+1
the right hand inequality holds for all large s. For any finite s we certainly have

"tr rtr l
B B < m+

s

Brgtn_ Z ln ﬁrztn_ i ty "

n=r+1 n=r n=r+1

because f, < 1. Therefore the left hand inequality in (11) holds for all s > r.
To complete our recursive construction we must show that for every s suffi-
ciently large we have

(12) _ Bt ;':f
ﬁs z th — Z tn
n=s n=s+1

From formula (8) in the growth lemma we have

s

Br+1 i ty — Z th=trs1(Brs1Brsz... B

n=r+1 n=r+2
o S ¢ < m )
= br+1 f(S) = tr+1 1 .

We also have from formula (10) in the minimal growth formula that

1 - r ts
13) Bs=1-— (3—1 rsd) s—1
Br+1 Z th — Z t
n=r+1 n=r+2
t '( m >
m+2 m tAm+1)
Let = =t - . 3>0,
— 1+¢andletd=t,,, (m+1) 112 Since § >

we will have Y t, < § for all large s. Then
n=s+1

i ¥ ti— 3 t,=<ﬁ.+, Y - ¥ tn)—(l—ﬁ,ﬂ) T

n=r+1 n=r+2 n=r+1 n=r+2 n=s+1
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><ﬂ,+1 Z th— Z t..)—é

n=r+1 n=r+2

s s m
B (ﬁr+1n=‘r£‘+lt" _n=;+2t"> B '+l<m + 1)

+ A\m
1+¢ - 1+¢
ﬂ,u Z ty — Z tn
n=r+1 n=r+2
1+e¢

Multiply this inequality by 1 + ¢ and rearrange terms to get

) s o] s

A+eBsr Y tat Y >+ Y tat+Bsyr Y tn

n=r+1 n=r+2 n=r+2 n=r+1

s—1 s—1

Nowsubtract(l + &)B,41 3, ta+ Brs1 9. ta+t,+(1+e Y t,fromboth

n=s n=r+1 n=r+2

sides to get

s—1 s—1 s—1 s—1
(1+8)ﬂr+l Z tn+ Z tn_ﬂr+l z tn_(1+8) Z

n=r+1 n=r+2 n=r+1 n=r+2
© ©
>A+8Y tat Brsrts—ti— (1 +8Bsy 3 L
n=s n=s

Combining terms, we get

s—1

Brrr Y, ta—¢ Z t, >(1+e)Zt ~t, —-(1+s)ﬁ,+12t + By 1ty

n=r+1 n=r+2
Now, factor to get
s—1 s—1 ©
6(ﬂr+l Z by — Z tn)>(l "ﬁr-!-l)'((l +8) Z tn_ts)'
n=r+1 n=r+2 n=1

Dividing, we get the appropriate fractions:

€ 1"‘5,4.1
> s—1

<) s—1 *
T+ Y ta—ts Bsr 3 ta— 3 t

n=r+1 n=r+2
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If we multiply this by t; and subtract the quantities from 1 we get

1 - r ls L

1 - (s—l ﬂ+l)s-—l >1 - suo
Bivi X ta— X I+ Y ta—t,

n=r+1 n=r+2 n=s

By (13), the left expression is f;, so
et

Bs>1— = .
1+9Y tn—t,

Then
(l+e)ﬂsit,,—ﬁ,ts>(l+s)§t,,~t,~e'ts=(l+e) i th.

n=s+1

Therefore (1 + z»:)(,lfs Y- Y t,.) > Bit,, 5O
n=s =5+

2
_ Bsts _ <1+8=2:1.
ﬂsztn_ Z Ly
n=s n=s+1

This establishes (12) for all large s, and completes the recursive construction.
Finally, we should note that the heights are proceeding in integer steps so that we
do have f(r) - co. This completes the proof.

The Converse, Part I1.

To show that these Froda finctions produce decreasing fractional parts when a is
irrational, we will need the following lemma:

LEMMA. If & is irrational, then the sequence &, 2€, 3¢, . . . is uniformly distributed
modulo 1.

PROOF. See Niven [4].

0
THEOREM. Let o = Y. t,, and assume a is irrational. Let f be a Froda function
n=1

Jor the series whose image contains N. Then there exists a descending subsequence
of fractional parts.

PROOF. In the following it will be convenient to define D, 4, = Y. t,. From
n=r+1

(3)wesee that f(s)D, ., < f(r) D, ,. Since this sequence is monotone decreasing,
there is a limit L by the completeness of the real numbers. With this L, let us define
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¢ =1 — frac(L). (Note that 0 < ¢ < 1.) Take Rsolargethatr = R= f(r)D,,, <
L+ % In particular, we note that for r = R we have f(r)D,., <[L] + 1, so

frac(f(r)D,+,) — frac(L) = f(r)D,+, — L.
Here is the picture:

(L] L f(r)D,,, [L]'+ 1

Now choose anr, = Rwith 1 — % <frac(a: f(r)) <land L £ f(ry)D, 4+, <

&
8
integer multiples of any irrational number are uniformly distributed (see lemma).
We now proceed with a recursive construction. (We will be implicitly using the
Axiom of Choice.) We will show at the kth step there exists an r, > r,_, with

L + —. This may be done because the image of f contains N and the fact that

e €
(14) M — 3 <frac(a: f(re)) <M and f(r)D, +, <L+ ST

where M = frac(a: f(r¢-1)) — f(rc-1)D,,_,+1 + L. We have already construc-
ted ry, so we proceed invductively assuming r,,7,,. .., 7, - have been construc-
ted, all satisfying (14). To use Niven’s Lemma and show that an r, exists, we need

to show that I = [M - %, M ] is a subinterval of [0, 1]. That is, we must show
that M — ?'27 > 0 and M < 1. The inequality M < 1 is easy to see:

M = frac(a’ f(rc-1)) — f(rk-1) Dy, +1+
+ L < frac(oe* f(re-4))
<frac(a’ f(re-2)) — f(re-2)Dy,_,+1 + L
< frac(a'f(rk_z))

% frac(a- f(ry))
<1
We also have
€ €

M _Efi’=frac(a.f(rk—l))_f(rk—l)Drk_,+1 + L_?I?

& €
> frac (o f(re-1)) — SW-T T

> frac(a* f(rk-2)) — f(re-2)Dy,_,+1 + L — 2% T 3mT T g
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€ € € €
> frac(a- f(re-2)) — 22k=3 T p%k-2 T 2k-1 52k
£ & €

>frac(oz~f(r1))—?3-——27—— >

€ € €
Plog T T

€ €
st

€

1—=

> > >0

Since f(r)D,+; — L, there exists an R, such that r 2 R, = f(r)D,,, — L <
z—zfﬁ. Then there exists an r, = max {R;,r,_,} with frac(«- f(r,))eI. This r,
satisfies (14).

This completes our recursive construction. Now note that

(15) frac ()yc— f(r)) + frac(f(1)D, + ;) = frac (a- f() + 6,

where 8, = O or 1. From our construction we will show that 6, = Oforr = ry,7,,. ..

Now frac (%f(r)) < 1, and frac(f(r)D,+,) < frac(L) +§ for re{ry,rsy,...}
because each r, = R, so the left hand side of (15) is less than 1 + frac(L) + %for
re{ry,rs,...}. On the other hand we will prove by induction that

(16) frac (- f(n) > 1 = = + 55

The case k = 1 is clear because frac(x- f(r,)) > 1 — —:— Now assume that (16) is

true for k — 1 and proceed. By (14) we have
€
frac(a- f(r)) > frac(@* f(re-1)) = f(re-1) Dy, _,+1 + L — Y
€ € € €
> 1_5*' 220-1) — p2k-DF1 | T P2k

€ € €
>1—E—frac([)+ >

€
=l=g+

This completes the induction. Now back to(15). If §, = 1, then we would have the
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&

right hand side greater than 1 + frac(L) + 2

, which is impossible since the left

side is less than this quantity. Therefore

frac (@ f(ry) = frac ( o f(rk)) + frac(f()Dy, 1)

Tx

for k = 1,2,.... Now show that we have decreasing fractional parts:

frac( s f(rk)) + frac(f(r)D 1) =
‘ = frac(a- f(ry))
<frac(a: f(re-1)) = f(rk-) Dy, _,+1 + L

= frac(i:""l f(rk—l)> + frac(f(rk—l)Drk_,+l) -

Ti-1

— fre-1)D,,_,+1+ L

= frac(i"‘" f(rk‘l)) + frac(f(r«-1)Dy,_,+1) —

Tie-1

— frac(f(rc-1)Dy,_,+1) + frac(L)

= frac ( ;vc"" L f(re- 1)) + frac(L).

Tie-1

Since frac (f(rx) D,, +1) > frac(L), it follows that

frac(;vc"‘ f(r,‘)> <frac(;vc”‘“ f(rk-l)).

T Tr-1

This completes the proof that we have descending fractional parts for this
subsequence.
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