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THE LEVI PROBLEM IN NON-LOCALLY CONVEX
SEPARABLE TOPOLOGICAL VECTOR SPACES*

ABOUBAKR BAYOUMI

1. Introduction.

In the last 15 years some efforts have been devoted towards developing the
field of complex Analysis in non-locally convex topological vector spaces. Al-
though the results obtained are very few compared with those obtained for the
locally convex spaces, we may say that some progress has been achieved (see
Lelong [19, 20], Bochnak & Siciak [6, 7] and the author [1, 2, 3, 4, 5]).

In this paper we consider one of the interesting problems in complex Analysis,
that is, the Levi problem. We shall prove that, every pseudoconvex domain is
a domain of holomorphy provided that our spaces have the bounded approxi-
mation property. It has been assumed that the Levi problem is as useful to the
field as the Hahn-Banach theorem to Functional Analysis. In fact there is some
analogy in the sense that the Levi problem tells us about the richness of the space
H(E) of holomorphic functions on a given topological space E, while the
Hahn-Banach theorem tells us about the richness of the dual space of continuous
linear functionals E'.

A topological vector space E will simply be called a Levi space if the Levi
problem has a solution for E. Several mathematicians have solved the Levi
problem for domain spread over finite and infinite dimensional locally convex
spaces E (see for example Gruman [14], Gruman & Kiselman [15], Dineen,
Noverraz & Schottenloher [13], Colombeaux & Mujica [9], Dineen [11] and
Schottenloher [26]. As for a counterexample, see Josefson [17]). We point out
that the solution given by Gruman & Kiselman [15] represents one of the
fundamental results in this field.

The author [1, 2] has solved the Levi problem for different classes of
non-locally convex spaces. In [2] the radius of convergence technique was used
to solve the radius of convergence problem and to obtain as well the Levi
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problem solution for certain classes of metrizable topological vector spaces. In
[1] the solution of the Levi problem was extended to cover the following classes
of spaces: (i) all metrizable spaces with finite-dimensional Schauder decomposi-
tion, (f.d. decomposition), (ii) all locally pseudoconvex Fréchet spaces with the
bounded approximation property (b.a.p.).

In this paper we propose and prove theorems concerning the following:

(1) The Levi problem for domains spead over locally pseudoconvex topologi-
cal vector spaces (Lps) (not necessarily metrizable or locally convex) with the
b.a.p.

(2) The Levi problem in some separable p-Banach spaces (0 <p < 1) in
particular, some separable Banach spaces (when p = 1).

(3) The well-known non-locally convex spaces:

19, l:o O<po=1),l,,0<p, 1), U I,, s(E) and some complemented
1>p>0
subspaces of H? (0 < p < 1) are examples of Levi spaces.

ACKNOWLEDGEMENT. The author would like to thank Prof. Sean Dineen for
his kind interest in this work and for fruitful discussions. He is also much
indebted to the referee for her useful comments.

2. Surjective Limits In Locally Pseudoconvex Spaces.

The concept of surjective limit in a locally pseudoconvex space Lps can be
formulated conveniently, as for locally convex spaces, as follows: a Lps E is
a surjective limit of the Lps (E;);c4, and we write E = lim,_, E,, if there exists
a continuus linear surjection ©;' E — E;, for each i€ 4, and the inverse images of
the neigthbourhood of 0 in E;, as i ranges over A, form a subbase for the
neighbourhoods system at 0 in E. This means that for each neighbourhood W of
0 in E, there exists an ie A and a neighbourhood V of 0 in E; such that
n; '(V) € W.Now E = lim_, E, is called an open surjective limit if ; is an open
mapping for each ie 4.

ExampLE 2.1. Let CP(E) denote the collection of all continuous pseudonorms
(i.e. p,-seminorm for some 0 < p, < 1) on a Lps E. For each ge CP(E) let E,
denote the vector space E equipped with the topology generated by ¢, and also let
n, denote the canonical map from E onto E,/q~(0). (E,/q~'(0),m,) is called the

canonical pseudo-normed surjective representation of E.

In what follows we show that a Lps E with the approximation property (a.p.) is
closed under the operation of surjective limit.

LeMMA 2.1. The collection of locally pseudoconvex spaces with the approxi-
mation property is closed under the operation of surjective limit.
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ProoF. The a.p. of a topological vector space E does not depend on whether
E is locally convex or not. It does depend on the existence of a family (r;);. 4 of
finite-rank continuous linear functionals n;: E — E which can be used to approxi-
mate the identity mapping I. In connection with this, we may follow here
Dineen’s method [11, Example 2.3] of a locally convex case.

The following proposition allows to reduce our study of the Levi problem in
Lps to spaces which have continuous p,-norms (0 < p, < 1).

PROPOSITION 2.2. Let E be a Hausdorff locally pseudoconvex space with an
equicontinuous f.d. decomposition (n;). Then E is a surjective limit of spaces E;, i€ A,
where E; has a continuous p;-norm and an equicontinuous f.d. decomposition.

This can be established in a manner similar to that of Dineen [11, Example 2.4]
noticing Example 2.1.

The next result is equivalent to show that: if n: E — E/q~!(0) is the quotient
mapping on a Lps E where g is a continuous p-seminorm, then U = 1~ }(n(U)) for
every pseudoconvex domain U containing a closed ball B,(0, 6), 6 > 0.

LeEMMA 2.3. Let U be a pseudoconvex domain of a locally pseudoconvex space E.
Let q be a continuous p-seminorm on E (0 < p < 1) such that B,(0,6) = U for
6> 0, then

U=U+ {x;q(x) = 0}

The proof is essentially the same as for locally convex spaces with Schauder
basis which was given by Dineen [11, lemma 1.1].

The following lemma has applications when the Levi problem is considered.

LEMMA 2.4. Let U be a pseudoconvex domain of an open surjective limit
lim (E;, m;) of locally pseudoconvex spaces E;i€ A. Then U is n;-open for some i€ A.
(i.e. for every x € U, there exists V, open in E; such that xen; *(V,) c U).

The proof is analogous to that for a locally convex space E given by Dineen
[12, lemma 1.8] and using lemma 2.3 instead of the corresponding result in
normed case.

3. Levi Problem In Separable Topological Vector Spaces.

Let E be a locally pseudoconvex topological vector space Lps. That is, the
topology of E is defined by a fundamental family of absolutely pseudoconvex
neighbourhoods of the origin, see Waelbroeck [27, Def. 7]. A subset A of a vector
space E is absolutely pseudoconvex if it is absolutely p-convex forsome1 = p > 0
Here A is absolutely p-convex if ax + by e A whenever x,y€ A4, |al’ + |b]P < 1. (It
was proved that a topological vector space is Lps if we can find a fundamental
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system (¥)) of neighbourhoods of the origin, and for each ¥; some /;in such a way
that V; + V; = 4;V,, see Waelbroeck [27, cor. 2]. For locally p-convex spaces we
have 4; = 21/P),

In fact, the topology of a Lps E can be determined by a family of p;-seminorms

[ee]

Ix|l;» i€ A. (Of course E is metrizable by the F-norm, | x| = Z 2—-'.1_ +_" x———llll" " if
i=1 X i

the index set A is countable, cf. Waelbroeck [27, p. 2]).

In this section we solve the Levi problem for domains spread over Lps E with
the b.a.p. and in particular over certain separable locally bounded spaces with
the b.a.p. For metrizable Lps E the Levi problem is solved by the author in [2].
(Examples of these Levi spaces are given in section 4).

The method we are going to use here is different from oursin [1]. It depends on
Hirschwitz’s result [16] of the domain of holomorphy of C", on a technique
similar to that used by Dineen [11], and on the author’s result [1].

3a. The Levi in Lps with b.a.p.

In this section we solve the Levi problem in Lps. This class of topological
vector spaces contains non-metrizables non-locally convex ones. Thus we pro-
ved for instance that the class of holomorphic functions H(E) has a certain type of
richness. This will naturally clear many questionmarks concerning the holomor-
phic properties of this class of spaces.

THEOREM 3.1. The collection of Hausdorff locally pseudoconvex spaces with the
bounded approximation property in which the pseudoconvex domains are domains
of holomorphy is closed under the open surjective limit. That is, an open surjective
limit of Levi spaces with the b.a.p. is a Levi space.

Proor. Assume U is pseudoconvex domain of the surjective limit,
E = lim,_,E, Then there exists an i€ A such that U = n;” Yn(U)) and ny(U) is
pseudoconvex domain in E; (see Lemma 2.3).

Now =i(U) is a domain of holomorphy. If there exist open connected sets U,
U, in E such that U, =« U, U nU; o U, and for each feH(U), there is an
fie H{U,) with fiy, = fi)v,- Then, and as a consequence of that x; is open, we get
that 7;(U,) < ny(U). Hence U, < =, 'ny(U) = U and consequently U is a domain
of holomorphy. This completes the proof of theorem.

In what follows we give the solution of the Levi problem in Lps having the
b.a.p. This extends the results of the locally convex spaces which were considered
by [11, 14, 15, 25, 26].

COROLLARY 3.2. (Levi problem in Lps). Let E be a Hausdorff locally pseudocon-
vex space with the bounded approximation property then every pseudoconvex
domain U over E is a domain of holomorphy.
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Proor. Every Lps E can be expressed as a surjective limit of p,-normed spaces
E, with continuous p,-norms q,, see Example 2.1. Hence we apply theorem 3.1 to
obtain the solution of the Levi problem.

3b. The Levi problem in separable p-Banach spaces.

In this section we solve the Levi problem in certain separable p-Banach spaces
(0 < p = 1),i.e. in a complete locally bounded space with p-homogeneous norm,
(the case p = 1 gives Banach spaces).

Since every separable Banach space E is isomorphic to a quotient space of

lo = () 1,, (see Stiles [23]), and since I, is a Levi space (see corollary 3.2 or the
p>0
author’s result [ 1, Th. 3.1]), we can obtain the following interesting partial result

for the Levi problem.

THEOREM 3.3. (Levi problem over certain separable Banach space). Let U be
a pseudoconvex domain spread over a Banach space E. Suppose that E is isomorphic
to a quotient space of l, which has the bounded approximation property. Then U is
a domain of holomorphy.

PRrOOF. Since , is a Fréchet space, its quotient space l,/M is a Fréchet space.
Now the space /M is assumed to have the b.a.p. Hence a direct application of
corollary 3.2 will imply the required result.

Let E, be a p-Banach space. The fact that every separable locally bounded space
isisomorphic to a quotient space of [, (0 < p < 1) will help us to get the following
consequence which is of special interest.

THEOREM 3.4. (Levi problem over separable p-Banach space). Let E, be a separ-
able p-Banach space which is isomorphic to a quotient space l,/M. Suppose that
I,/M has the bounded approximation property. Then every pseudoconvex domain
over E, is a domain of homorphy.

PROOF. E, is isomorphic to [,/M for some closed subspace M of [,-1,/M is
a Frechet space, and by assumption it has the b.a.p. Then by applying Corollary
3.2, or [1, cor 3.2], we achieve the solution.

REMARK 3.5. The assumption that /,/M has the b.a.p. can not be dropped in-
the above theorem. We note that [0, 1], (0 < p < 1) does not admit holomor-
phic functions other than 0, and so each domain (pseudoconvex or not) is not
a domain of holomorphy.

ProOBLEM. What is the class of separable p-Banach spaces such that each of its
elements is isomorphic to a quotient space /,/M having the b.a.p.? Could Hardy
space H? (0 < p < 1) be element of this class? We note that [, (0 < p < 1) is an
element of this class since it has a basis and hence this class is not empty.
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4. Examples.

In this section we give examples of non-locally convex spaces which have either
a Schauder basis or the bounded approximation property. In fact, by the results
of section 3 and of the author [1], all pseudoconvex domains in these spaces are
domain of holomorphy, that is, they are Levi spaces.

4.1. The inductive space ) I,.

1>p>0

We define the g-topologyon () [, to be the strongest vector topology such
1>p>0

that each injection i,: I, - ()1, is cc’;ntinuous. The space | )1, with this g-topology
is complete separable non-locally convex Lps and has the unit vectors (e,) as its
symmetric Schauder basis. A sequence converges in | )1, iff it is contained in and
converges in some [,. A set is compact in | 1, iff the set is contained and compact
in some l,; no closed infinite dimensional subspace of ( )1, is contained in [,; and
no infinite dimensional subspace of ( JI, is metrizable. Hence | )i, itself is not
metrizable, see Stiles [23].

Since E is Lps with Schauder basis, then corollary 3.2 implies that E is a Levi
space.

4.2. The Hardy spaces H? (1 > p > 0).
The Hardy space H? of all analytic functions f on the unit disc of C is
separabile, locally bounded, non-locally convex space with respect to the p-norm,

2n
£l = lim JI f(re’®)|? db, f e H. The Banach envelope H? of HP is isomorphic to
r—+1
V]

I,, (see by Kalton [18]). This implies that H? has the b.a.p. Moreover HP contains
a non-locally convex closed subspace M of E isomorphic to I, (0 < p < 1), (cf.
Shapiro [24]).

Now every pseudoconvex domain over this complemented subspace M of H”,
or over H? is a domain of holomorphy, by the author [1, Th. 3.1, cor. 3.2] or by
corollary 3.2.

4.3. The spaces of mappings with rapidly decreasing numbers s(E).

Let E be a locally convex space and L(E) be the space of all continuous linear
mappings on E equipped with the linear mapping norm. For T € L(E) one defines
the rth approximation numbers by

o(T) = inf {| T — S|; S € L(E), dim S(E) < r}
If
P(E) = {TeL(E); Y. [a(T)]* < oo}
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then on the intersection

SE) = ) PE)

p>0

a locally pseudoconvex vector topology is generated by the sets

U,,(T) = {SeS(E); 3. [a(S — T))” <¢}

We note that s(E) is not a Fréchet space if E is not a Banach space. Now if s(E) has
the b.a.p. then the pseudoconvex domain U of E will be a domain of holmorphy
by corollary 3.2.

REMARK 4.1. When E is a normed space, s(E) will be a Fréchet space with the
b.a.p., see Pietsch [21, p. 139], and the solution of the Levi problem for such
a case has been giyen by the author [1, example 3].

4.4. The spaces I°.
Let @ be a continuous, unbounded, subadditive, increasing function on [0, c0]
with &(t) = 0iff t = 0. We define [® as

19 = {x = (5 %,€C, T @s) < o}

I? is an F-space with basis in the norm ||x|| = Y &(|x,|), x = (x,)e!®.
n=1

Shapiro proved in [24] that if the function f(t) = ¢t ~P&(t) is montone decreas-
ing in (0, o) for some (0 < p < 1), then every closed, norm-bounded convex
subset A4 of I® is compact and hence is bounding. That is, || f|, < co for all
f e H(I®) the space of holomorphic functions on I?, see the author [3]. By
anormed-bounded set we mean a set which is bounded with respect to the metric
defined by the F-norm |. |, i.e. sup || x|| < co.

xeA

Now and in connection with these topological properties, we can apply
corollary 3.2 to obtain the interesting holomorphic property that [® is a Levi
space. We note that if & is restricted to be a positive homogeneous, that is,
&(at) = ad(t), t > 0 then I® becomes locally convex.

4.5. The spaces I, (1 2 po > 0).
The spaces I, = () I, (1 2 po > 0) are Fréchet Lps whenever it takes the
P> Ppo
natural upper bounded topology defined by the F-norm ||x|| = sup [/x,| where
) P>Ppo
1%l o= le,,!". It is neither locally bounded nor locally convex. A sequence
1

converges to zero in E iff it converges to zero in I? for all p > po. A subset of I\, is
bounded iff it is bounded in I? for each p > p,. It was proved that every convex
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closed bounded subset of [, is compact. Hence no infinite-dimensional subspace
is isomorphic to a normed space. However every infinite-dimensional subspace

of I contains a further infinite dimensional subspace which is locally convex, see

Shapiro [24]. We note that the particular space lg = () I, is an interesting one
>0
since every separable Banach space is isomorphic to pa quotient space of it, see
Stiles [23].
Now, having the fact that [, are Fréchet Lps with basis we obtain that every
pseudoconvex domain U spread over [, is a domain of holomorphy as an
application of Corollary 3.2.

4.6. The spaces |, (1 2 p, > 0).
The spaces I, = {x = (x,); Y. |xs/"» < 00}, (1 2 p, > 0) with the F-norm

|x|| = Z |x,|P" are F-spaces with basis. It was shown in [23, 24] that the linear
1

and topological properties of [;, , depends on the sequence (p,) we are going to
choose. For example [, , is locally bounded if p, — 0, and [, , is (not L, if P, + 0,
see Rolewicz [21]. If I, p, < 1, then no infinite-dimensional subspace of [, ) is
locally convex and this is equivalent to that every convex closed normbounded
subset 4 of [, ) is) compact and hence it is bounding i.e. || f|4 < co or all
feH(l,,). However this is not the case if p, — 1, i.e. every co-dimensional
subspaces of |, ) contains a further one, isomorphic to, a dense subspace of /;, see
Shapiro [24].

Now, regarding to the Levi problem, the solution does not depend on the
choice of (p,). In fact, The difference in linear and topological properties will not
affect this holmorphic property that is, all /, , are Levi spaces, by corollary 3.2,
taking into account that all I, , are F-spaces with bases.
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