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TRANSPOSITIONS OF UHF ALGEBRAS

JOSEPH F. CONRAD

Introduction.

This paper deals with the conjugacy of period two *-antiautomorphisms. Two
such maps, a and f, usually called transpositions, are conjugate if there is an
automorphism 0, such that « = 8o fo 0~ !. The conjugacy classes of transposi-
tions of certain algebras have been classified. For example, B(H), the bounded
linear operators on the Hilbert space H, has exactly one conjugacy class of
transpositions if the dimension of the Hilbert space is odd. If the dimension of
H is even or infinite, then there is exactly two such classes [5]. One class is
determined by the usual matrix transpose, t,, n = dim (H). When the dimension
is even, the other class comes from o5, = Ad V,,01,, = 15,0Ad V,,, where

0 I,
Vln = [—In O:I

When n = oo, the obvious generalizations produce the desired maps.

Since the matrix algebra case is well-understood, it is reasonable to study
*.algebras which are the direct limit of matrix algebras. Suppose {4,};% is an
increasing sequence of full matrix algebras, i.e., each A4, is isomorphic to M(k(n),

C)where lim k(n) = oo and k(n) divides k(n + 1)foreachn. Let 4 = () A,.Such

n—ow n=1

an algebra will be called a matricial algebra. Stacey [11] has shown that if a(p) =
sup{a: p* divides some k(n)}, then A has exactly one conjugacy class of transposi-

n

tions when a(2) = 0 or co. Otherwise, A has exactly two conjugacy classes.

With {4,}2, as above, if 4 is the von Neumann algebra generated by () 4,,
n=1

via the standard trace, Stermer [12] and Giordano [3] have independently

shown that A4 has exactly one conjugacy class of transpositions. In this paper, we

investigate the case where A is the C*-algebra generated by {A4,}> ;. This type of

Received October 3, 1989; in revised form February 27, 1990.



260 JOSEPH F. CONRAD

C*-algebra is usually called a uniformly hyperfinite (UHF) C*-algebra and was
first studied by Glimm [4].

Using standard density arguments, one can extend Stacey’s result to prove the
corresponding statement for transpositions of UHF C*-algebras as long as the

©
transpositionleaves () A4,invariant. Gdsemyr [2] has independently shown this
n=1 :
using the Jordan algebra techniques developed by Stermer. Consequently, this

paper deals with transpositions which do not necessarily fix |J A4,. Wealso limit
n=1

ourselves to 2° UHF algebras, i.e. where each A, is isomorphic to M(2", C). In

this setting, 7, and o, will induce transpositions t, and o,. It can be shown that 7,

and o, are conjugate [1]. Refer to [7] for basic properties of C*- and UHF

algebras.

A major tool in our study of transpositions of UHF algebras is the central
sequence algebra. This algebra, introduced by McDuff [9], was used by Herman
and Jones [6] to study automorphisms of UHF algebras. Many of their tech-
niques are used here.

Let A be a C*-algebra. Consider 1°(4) = {{a,} ,: a,€ Aandsup {||a,|} < co}.

Here co(A) = {{a,}>-: a,€ 4 and lim ||a,|| = 0} is an ideal of I°(4). Let A®

denote the C*-algebra given by 1*(4)/co(A). A sequence {a,}>-, of elements in
A is called a central sequence if lim |[a,,a]|| = O for each a in 4. The central
sequence algebra A, is the collection of all central sequences of A modulo c,(A)
and is a C*-subalgebra of 4°. Note that A naturally imbeds in A® as constant
sequences and under this identification A, = A® () A’, where A’ is the commu-
tant of A. Mappings in A naturally induce mappings in A® via a({a,},)
= {a(a,)}>- . It should be noted that the use of the central sequence algebra in
this paper can be circumvented; however, it adds clarity and ease of calculation.

1. Conjugacy of Transpositions.

ConNJEcTURE. There is only one conjugacy class of transpositions of 2* UHF
algebras.

Unfortunately, this conjecture is still open. At this time, it is still necessary to
have some information about the structure of a transposition in order to deter-
mine its conjugacy class. The following property will help us meet this need.

DEFINITION. An antiautomorphism a of a C*-algebra A is said to have the
Rokhlin property of there is a projection E in A, with o(E) =1 — E.

The following theorem can be proved with spectral theory and polar decompo-
sition techniques. (See [1] for the proof).
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THEOREM 1.1. Let A be a unital C*-algebra with central sequence algebra A .

(@) If E is a projection in A, then there is a sequence {e,}-, of projections in
A which represents E.

(b) If Ais a unital C*-algebra and {E,;;: 1 <i,j < m} is an m x m system of
matrix units in A, then there are sequences {e{")}*_, representing E, ; for each i,

Jj such that for each n, {e{"}:1 < i, j < m} is anm x m system of matrix units in A.
Let A be a 2° UHF algebra. Denote by 7, the transposition of 4 generated by

the transpose map. The following proposition is necessary for there to be any
hope of using the Rohklin property to solve the conjecture.

ProPOSITION 1.2. (i) If a is a transposition with the Rokhlin property and B is
conjugate to a, then B has the Rokhlin property.
(i) 7o has the Rokhlin property on UHF algebras with a(2) = oo.

ProOF. (i) If B = Boao @™, then O(E) is a projection in A,, and B(A(E)) =
I — 6(E).

(i1) Since a(2) = o, A can be written as 4 = ® M(2k(n), C). Define f;(, in
M(2k(n), C) as n=1
1 i
Elk(n) 5Ik(n)
ﬁr(n) = i 1 s
- ilk(n) EIk(n)

where Iy, is the identity matrix in M((k(n),C). Let e, = ;1) ® ... ® Ln-1, ®
Suwm- Easy calculations show that {e,};% , is the desired element of 4.

The next series of results give the structure of a transposition on a UHF
algebra which has the Rohklin property.

LEMMA 1.3. If A is a unital C*-algebra and a is a transposition of A with
a(E) = I — E for some projection E in A, then there is a sequence {e,}> , in
A which represents E with a(e,) = I — e, for all n.

Proor. By Theorem 1.1 (a), there is a sequence of projections { f,}>, repre-

senting E. Since a(E) = I — E, lim [la(f,) — (I — )|l = 0. Setting ¢, = ||a(f,) —

(I — £, thereisan N such thatn = N implies thate, < 1. Forn < N, lete, = ey,
where ey will be determined later. Assume n = N. Set u, = 2f, — I. Then u, is
a self-adjoint unitary element of A and

o) + tall = 2lja(fy) — (I — f)Il = 2e.
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Define v, = (u, — a(u,))/2. Note that v, = v}, a(v,) = —v, and
it — vall = Zllot(n) + ]l = €.

Since u, is unitary and ||u, — v,| < 1, v, is invertible. Since v, is invertible, its
polar decomposition can be formed. Let v, = w,|v,| where w, is unitary. As v, is
self-adjoint, v, = w,|v,| = v} = w¥(w,|v,| w}) and by the uniqueness of the polar
decomposition, it follows that w, = w¥. Also, a(v,) = —v,, SO a(w,|v,]) =
afva) (W) = —v, = —w,lv,| and —w,|v,| = a(w,)(@(wy)a(val)x(w,)), so using
the uniqueness of the polar decomposition again yields a(w,) = —w,. Now, let

= (w, + I)/2. Easy calculations show that e, is a projection and a(e,) = I — e,.
To conclude the proof, it has to be shown that {e,} < , represents E. To that end,

"en - j;l" = Inwn - un" é 7("Wn - U,,” + ”vn - un”) § 28n'
Since &, approaches 0 as n approaches oo, {e,} 2, represents E.

THEOREM 1.4. Suppose A is a UHF algebra and o is a transposition of A with the
Rokhlin property. If there exists anm x m system of matrix units {F; ;:1 < i,j < m}
in A, with a(F; ;) = F;; for each i, j, then there is an m x m system of matrix units
{E; ;1 £i,j < m}in A, withrepresenting sequences of matrix units {e{")} . | such
that a(e"”) = e\ for alln, 1 < i, j < m. (Note that this implies that «(E; ;) = E; ;,
1<i,j<m)

Proor. By Theorem 1.1(b), there are sequences of matrix units {f7:1 <
i,j £ m}>_, which represent each F; ;. Since {a(f?): 1 <i,j <m}isanm x m
system of matrix units for any n, given any ¢, Lemma 1.8 in Glimm [4] yields a d(¢)
and a partial isometry w, in' A such that w*w, =", w,w¥ = a(f{"])) and if
1AM — (/") < 6(e), then |lw, — /]| < &. Here, d(¢) does not depend on the
matrix units, but only on ¢ Let n(k) be such that [la(£5*”) — f4*|| < min
(6(1/48mk), 1/48mk). Now, by Glimm’s lemma, |w,q, — f7 (""‘”II < 1/48mk. Let

U = Z a(f D) Wpg /. Straightforward calculations show that v, ;4 v} =

a(f; "'"‘”), v, is unitary and that ||y, — I|| < 1/24k. The sequences { f;7*}° , are
central and represent a (possibly) new m x m system of matrix units {E; ; 1 < i,
jSm}in A,.

The goal is to construct new sequences of matrix units {e"} ., representing

E; jsuch that a(e{”) = /. This will be accomplished if, for each k,m x m matrix
units {¢{*): 1 < i,j < m} are constructed with a(e)) = ¢!} and ||ef*) — f45®|| < 1/k.
For clarity, fix k and omit it from subscripts and superscripts. So thatanm x m
system of matrix units {f;;; 1 <i,j <m} and a unitary v are given with
I fij — a(fi)ll < 1/48mk, of; jv* = a(fj;) and [[v — I|| < 1/24k. What is needed is
a system of matrix units {e; ;; 1 <i,j < m} with a(e;;) = e;; and | f;; —e; ;| <
1/k.
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Let z = (v + a(v))/2, then ||z — I|| < 1/12k and a(z) = z. Also,
2fj = 3(fj; + V) ;) = (i, ;)v + a(x(f.)v))
= 3(fi.)v + a(fi;) = Halfi, ) + a(fi )oa@) = «(f;))z.
Using the fact that a(z) = z,
2% = z*a(fi )z = a( f;;2%)z = al(zf;,:)*)z
= al(( f;.7)2)*)z = a(z*a(f;:))z = f;.z*z.

Thus, z*z is in A() B’ where B is the algebra generated by {f;;: 1 < i,j < m}.
Thus, |z| is in 4 () B'. Since |z — I|| < 1/24k < 1, z is invertible and has a polar
decomposition z = w|z| with w unitary. Now,

wlz| = z = a(z) = a(|z[)o(w) = a(w)(a(W*) a(|z]) (w)),
and the uniqueness of the polar decomposition gives a(w) = w. Since

a(fiwlzl = ol fi )z = 2f; = wlzl fj. = wfjilzl,
multiplication by |z| ™! yields a( f; ;)w = wf;,. Note that |I — jz|| < ||I — z*z|| £
II—z|(1 + |z])) < 2/ — z|. Thus, [w —I|| S I —jzll| + |z = I|| < 1/4k.
Thus, ﬁ can be formed in the C*-algebra generated by w. Also, a(ﬂ) = \/»;

since a(w) = w. Let y = ﬁ Then y is a unitary with a(y)y = w. Finally, define
j = ¥fi.;y* Then,
ales;) = ay*)alfi)aly) = yy*a(y*)alf; ) aly) yy*
= yw*a(f))wy* = yf;iy* = e;;.
Since y is unitary and {f;;: 1 i, j < m} is an m x m system of matrix units,
{e;: 1 <i,j < m} will be one as well.
All that remains to be checked is that | f; ; — e; ;|| < 1/k. Indeed,
”ﬂ, —ell = Iufiiy* = fiill = Wyfii— fisyl
S fis = Y2Hisll + 12 fos = Sy + W foiy? = fiiyl
S 20 =yl + Iwfi; — figwl
1 1
a8mk

LEMMA 1.5. Suppose Aisa UHF algebraand {E; ;:i,j = 1,2} and {F; ;:i,j = 1,2}
are two 2 x 2 systems of matrix units in A, with representing sequences {e{"} .,
and { £} |, respectively. In this case, there exists 2 x 2 systems of matrix units
{Ei; i,j = 1,2} and {F, i,j = 1,2} with representing sequences which are sub-
sequences of {e{"}2., and {fP}>., and a unitary V in A,, with VE,;V* = F; ;.

1
<20 = wi + lle(fiw = fiwll < o + 7o
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Proor. Let 4 be the norm closure of () A4, For each n, let ¢'(n) =
n=1

min (6(1/n, 1/n), where d(e, k) is given in Lemma 1.10 of Glimm [4]. Let d(n) =
(5'(n), 2). By induction, central subsequences {€f?} ; and { f5"} 2, of {e{}>
and { f,‘;" 1 can be picked such that the set {e{ ", £ """ :i,j = 1,2} is within (n) of
A, () A since the sequences are central.

By Glimm’s lemma, there are 2 x 2 systems of matrix units {e{”)":i,j = 1,2} and
{90, =1,2}2,in A, A with &) — &P < F(m)and | [ — f5"|| < &'(n).
Since A, is finite d1mens1onal A, Aisa UHF algebra and can be written as the

norm closure of U M,. Thus, there is a My, with {e{”":i,j = 1,2} U {f%":i,j =

1,2} within é(l/n, 2) of M,,,. Applying Glimm’s lemma again, there are 2 x 2
systems of matrix units {e"":i,j = 1,2} and {f7":i,j = 1,2} with ||¢{"" — e{'|| <
I/nand || & — 41l < 1/n. Since {e{"":i,j = 1,2} and {f":i,j = 1,2} are in
M), matrix algebra techniques yield a unitary v, in My, w1th vaeM vk = 9.
Let V be represented by {v,}<, in 4. Since v, is in A, () Aforeachn, Visin 4.
Also,if {E,; i,j = 1,2} and {F, ;. i,j = 1,2} are the elements of A4, represented by
{er'™}e, and {5}, respectively, then VE,; ;V* = F; ;. Indeed,

loaefPox — fE571 < llvnefPox — vael) vl + 1£9" = £
1 4
< 2(— + 5’(n)> <—
n n

PROPOSITION 1.6. If a is a transposition with the Rokhlin property on a UHF
algebra with a(2) = oo, then there exists a 2 x 2 system of matrix units {E, ;.
i,j = 1,2} in A, such that a(E;;) = E; .

This completes the proof.

PROOF. Since A4 has a(2) = oo, there is a 2 x 2 system of matrix units {F’;:
i,j=1,2}in A,. Let F be in A,, with «(F) =1 — F. Since {a(F;): i,j = 1,2}
forms another 2 x 2 system of matrix units in A, Lemma 1.5 can be used to find
systems of matrix units {E; ;:i,j = 1,2} and {F; ;:i,j = 1,2} and a unitary Vin 4,
such that VE; ;V* = F; ;. Since the representing sequences for E; ; and F; ; are
subsequences of those for a(F; ;) and F; ;, E; ; will be equal to a(F; ;). Therefore, it
can be assumed that Va(F, ,,,)V = F;fori,j=1,2 Let {f,};>, and {v,}>-, be
sequences representing F, F; ; and V, respectively. A subsequence { fus)}i%y of
{fa}aZ 1 can be chosen so that || f) /i — £ fawl < 1/k and || fugytx — v fowll <
1/k. Replacing {f,}% with {fos}i%, it may be assumed that [F;;,F] =0 =
[V, Fl,as wellas a(F) =1 — F.

Now, let W = VF + (I — F)a(V). Simple calculations show that [W, F] =0,
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W is unitary and a(W) = W. Observe, also, that
Fi,jW=F,{VF + (I — F)a(V))
=FVV*F,;V + (I — F)a(V)a(Va(F; ;)V*)
= FVo(F;;) + (I — F)a(F;;) = Wa(F},),

so Wa(F;;)W* = F, ;. Let U = WF + I — F. Again, easy calculations show that
Ua(U) = W and U is unitary. Define E;; = U*F; ;U. Then {E;; i,j = 1, 2} is
a 2 x 2 system of matrix units in A, with

*(E; ;) = o(U*F; ;U) = a(U)a(F; j)a(U*)
= U*fo(F,-‘j) W*U = U*Fj_iU = Ej_,'.

COROLLARY 1.7. If Aisa UHF algebra with a(2) = oo and o is a transposition of
A which satisfies the Rokhlin property, then there isa 2 x 2 system of matrix units
in A, {E; i,j = 1,2}, with representing sequences {e{™: i,j = 1,2}, of 2 x 2
systems of matrix units such that a(E; ;) = E;; and a(e{")) = e for all n and i,
i=1,2.

Proor. This follows from Proposition 1.6 and Theorem 1.4.

The following theorem gives a description of the behavior of « on a 2* UHF
algebra. It can be generalized to other types of UHF algebras since much of the
preliminary work is done for arbitrarily sized matrix units. However, we will use
the 2 case and will state the theorem in that form. The proofis nearly identical to
one used in Herman and Jones [6], where they deal with automorphisms.

THEOREM 1.8. If A is a UHF algebra with a(2) = oo and a is a transposition of
A which satisfies the Rokhlin property, then there is a 2° UHF subalgebra F of
A such that A is isomorphic to F ® (F' () A) and « is conjugate to 1o ® a|p 4 With
respect to this decomposition.

Proor. Let {a;}{>, be a dense sequence in A. A sequence of mutually commut-
ing 2 x 2 matrix units {e}f‘}: i, j =1, 2}, will be constructed by induction on
k such that:

1
@) Ilef),a]l S Sforl ssskandij=1,2

(i) a(e)) = e} fori,j=1,2.

By Corollary 1.7, there is a 2 x 2 system of matrix units {E; ;: i,j = 1,2} in 4,
such that «(E; ;) = E;; and here are representing sequences for the E; ; s, namely
{f®}=.,, which form systems of matrix units and which satisfy «(f;}) = f7.
Since the sequences are central, an integer N(1) can be chosen guch that



266 JOSEPH F. CONRAD

ILAGY,a,]ll < 1/2 for i,j = 1, 2. To start the induction, set e} = f'). This
clearly satisfies the required conditions.

Now assume that {¢{"}:i, j = 1, 2}k,_} has been found satisfying the conditions
above. Let B be the C*-algebra generated by {e{: i, j = 1, 2}},_}. Since B is
a finite dimensional subalgebra of 4 and invariant under a, o restricted to 4 () B’
will have the Rokhlin property. Since 4 had a(2) = oo, so will 4() B". Therefore,
Corollary 1.7 yields central sequences of matrix units {f%" i,j =1, 2}, in
AN B with a(f7) = f{%.

Choose matrix units {f; ;: 1 <i,j < m} for B and use Lemma 1-6 in Powers
[10] to write each a,for 1 < s < k as

m
a,= Y af;
i,j=1
where af®) is in A() B'. Since each sequence {f#": i,j =1, 2};>, is central in
A() B, there is an integer N(k) with |[f®”,af)]|| < 1/2*m*forall 1 <5 <k,
1 < t,u<m Letel) = f'®”. These elements commute with B and hence with
e", 1 <n<k— 1. Also,a(elt)) = i) for i, j = 1, 2, thus condition (ii) is satisfied.
To check condition (i), let 1 < s < kand i,j = 1 or 2, then since f; , is in B

m m
e, a,]] = uesf;( $ ) —( 5 aﬁ?&ﬂ,u> |

tu=1 tu=1
m
=1l ¥ fiulef)al — allef ‘
tu=1
< T k) () 21 1
= .,.,2;'1 " [ei,j, at.u] " <m 2 = ?{

by the choice of ef). Thus condition (i) is satisfied.

The conditions show that the hypotheses of Theorem A.1 in Herman and
Jones [6] can be satisfied. Consequently, 4 is isomorphic to F @ (F' () A) where
F is the UHF algebra generated by the sequence { M, };°,. Since each My is 2 x 2,
F has generalized integer 2. Condition (ii) now says that a acts as the transpose
on each M,, thus a is 75 on F.

We want to use Theorem 1.8 to show that all transpositions which are
conjugate via a unitary to t, are conjugate as transpositions. We first fix some
terminology.

DEerFINITIONS. If A is a C*-algebra and « and f are antiautomorphisms of 4,
then

(i) « is inner conjugate to B if there is a unitary u in A withao f = Adu,

(ii) « is positive (resp. negative) inner conjugate to f if there is a unitary u in
Awithaof = Adu and a(u) = f(u) = u (resp. —u).
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If A is any C*-algebra with trivial center and « and f are inner conjugate
transpositions, then id = Ad uf(u*). Thus, there is a complex number A with
up(u*) = Al. Now, u = AB(u) = AB(AB(1)) = A%u,s0 A> = 1 and B(u) = +u. Also,
o(u) = Aduo f(u) = +u, with the same polarity as f(u). Thus, a(u) = f(u) = +u.
Since UHF algebras have trivial centers, any inner conjugate transpositions on
UHF algebras are either positive or negative inner conjugate. Finally, if u has
a square root v in the C*-algebra generated by u and a(u) = u, then a(v) = v and
o is conjugate to f§ via Ad v.

The goal of the following is to show that any transposition of a 2* UHF
algebra which is inner conjugate to 7, is, in fact, conjugate to 7o. In light of
Proposition 1.2, it is necessary that such transpositions have the Rokhlin prop-
erty. Lemma 1.9 gives the assurance that the goal will not be denied on this
account.

LEMMA 1.9. Ifa is an antiautomorphism of a C*-algebra A and o has the Rokhlin
property, then so does any antiautomorphism inner conjugate to a.

PrOOF. Since o has the Rokhlin property, there is a projection E in 4, such
that a(E) = I — E. ObservethatI — E = o~ }(a(I — E)) = o~ }(E). Now, suppose
B is inner conjugate to «, so § = Advoa ! for some unitary v in A. Letting V be
the element in A® generated by v, = Ad Voa~!in A, Since Eisin 4, and V is
a constant sequence, EV = VE. Now, B(E) = AdVoa '(E) = Va Y(E)V* =
I — E. Thus, f has the Rokhlin property.

We saw that a sufficient condition for the conjugacy of two positive inner
conjugate transpositions is the existence of the square root of the unitary which
implements the inner conjugacy. Of course, this is not always assured in
a C*-algebra. Theorem 1.10 shows that this difficulty can be eliminated when the
transpositions have the Rokhlin property.

THEOREM 1.10. Let A be a unital C*-algebra and o and B transpositions of
A with o possessing the Rokhlin property. If a is positive inner conjugate to B, then
a is conjugate to f.

ProoF. Since « has the Rokhlin property, Lemma 1.9 guarantees that  does
also. Let u be a unitary withao f = Ad u and a(u) = u = f(u). Applying Lemma
1.3, there is a projection e in 4 with f(e¢) =1 —e and |[[u,e]| < 1/8. Let
v =ue + (I — e). Then

dlo*o — 1) = llew*(I — &) + (I — eJue|| < 2||[uelll <3

and [jov* — I|| < 1/8. So, both vv* and v*v are invertible and v is invertible. Thus,
v has a polar decomposition, namely, v = t|v| with ¢ unitary. Also note that

loB@) — ull = llue + (I — e)u — ull = |[u,e]ll <3
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Now, sp(v*v) < B(1/4, 1), so sp(jv]) = B(1/4,1) and |1 — jv| ||, < 1/4. Also,
It —ovll = llt —twill = I — il = I = lllyp < 3
Additionally,
1B@I = lloll = lv*o]'? = (lv*vlly,)"* < )2
Thus,
1T — upE*)e*|| = tB(e) — ull

= 1tB@®) — B + lItB(®) — v + [[vB(v) — u|

<i+i@+z<l.
Let y = AdtB(t)o f. Then aoy = Aduofoy = Adup(t*)t*. Thus, « is inner
conjugate to y and easy calculations show that, in fact, a is positive inner
conjugate to y and y is a transposition. Since ||[I — uf(t*)t*|| < 1, uf(t*)t* has

asquarerootin 4 and y is conjugate toa. Buty = Adtf(t)of = Adto fo Adt*,
so y is conjugate to f and « is conjugate to f.

Theorem 1.10 gives the desired relationship between 7, and those transposi-
tions which are positive inner conjugate to it. The first three corollaries to
Theorem 1.10 gradually expand the conditions on the C*-algebra A in order to
deal with the case of negative inner conjugacy. This results in Corollary 1.13
which deals with this case in the desired way for 2 UHF algebras. Independent-
ly, Stermer [13] proved a statement like Corollary 1.11 with a similar proof.

COROLLARY 1.11. Under the conditions of Theorem 10, if o is negative inner
conjugate to B, then a @ 1, is conjugate to B ® o, on A ® M(2,C).

PrOOF. Let aoff = Adu and a(u) = —u. Define y = («a ® 7;,)0(f ® ;) on
A ® M(2,C). Observe that if ae A and me M(2, C), then
Y@ ®m) = oo f(a)® 1,00,(m) = Adu(a) ® Ad V;(m) = Ad (u ® V2)(a @ m).
Since A @ M(2, C)is the linear span of the elementary tensors,y = Ad (u ® V,)on
A® M(2,C). Also,
@U@ V)=pQc,u® V) =(—uw@(-V)=u®V,,

so a @ T, is positive inner conjugate to f ® 6, on A ® M(2,C). Also, if a(E) =
I -EinA,,a®@1,(EQDN=(—-E)®@I=1®1— E® I Since E® I isclear-
lyin(A ® M(2,C)),,a ® 7, has the Rokhlin property. Theorem 1.10 implies that
o ® 1, is conjugate to f @ 7,.

COROLLARY 1.12. If Ais a2® UHF algebra and a is negative inner conjugate to
10, then o @ 1, is conjugate to 1.
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Proor. Corollary 1.11 says that o ® 1, ~ 7o ® o, but basic facts about UHF
algebras and Stacey’s result show that 1o ® o, ~ 1.

COROLLARY 1.13. If A is a 2° UHF algebra and o is a transposition inner
conjugate to Ty, then a is conjugate to t,.

Proor. We know that a is either positive or negative inner conjugate to 7. In
the first case, Theorem 1.10 applies and « is conjugate to t,. In the second case,
Corollary 1.12 says that « ® t, is conjugate to t,. Now, Theorem 1.8 gives that
o~ alp~q ® 1o With respect to some tensor product decomposition of 4 as
(ANF)® F. Thus,a ® 7, ~ tlpr 4 ® To ® 7. But, since F ® M(2, C)isisomor-
phic to F, 1,® 1, on F® M(2,C) is conjugate to 7, on F. Consequently,
To~A®@ T~ Upaa®To® Ty ~ tlpny @ To ~ 0.

Despite Corollary 1.13, it is still impossible to tell whether a general transposi-
tion is conjugate to 7o. In [13], Stermer shows that two transpositions of a von
Neumann algebra which are “close” to one another are conjugate. The following
corollary proves a similar result in the present setting. The proof uses a result of
E. C. Lance [[12] which states that if 8 is an automorphism of a UHF algebra and
if |@ — id|| < 2, then 6 must be inner.

COROLLARY 1.14. If A is a 2° UHF algebra and « is a transposition with
llto — all < 2, then a is conjugate to t,.

PROOF. Since ||ty — o] < 2, |tooa —id|] < 2 and Lance’s result shows that
7o and a are inner conjugate. An application of Corollary 1.13 completes the
proof.

2. Antiautomorphisms Not of Period Two.

In most of this paper, the antiautomorphisms under consideration are of
period 2. In this section, some information is derived about slightly more general
antiautomorphisms. In particular, antiautomorphisms whose square is an inner
automorphism are examined. Again the Rokhlin property plays a role in the
study of the structure of such maps. The following lemma will aid in this study; it
appears implicitly in the proof of Remarque 1.7 in [3].

LeMMA 2.1. If Ais a C*-algebra with trivial center and o is an antiautomorphism
of A with a?> = Ad w for some unitary w in A, then there is a unitary u in A with
a? = Adu and a(u) = u*.

Proor. Since Adwoa = a® = xoAdw = Ad a(w*)o a, Ad e(w)w = id. Hence,
a(w)w is a central element, but the center is trivial, so a(w)w = AI for some
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complex number A. Since a(w)w is unitary, || = 1. Let u = A7 Y/2w. Then,
a?=Adw=Ad1"?u =|A/Adu = Adu, and
a(u) = a(A™2w) = A2 q(w) = 172 (Aw*) = AM2w* = u*,

The following proposition states that antiautomorphisms with the Rokhlin
property on a C*-algebra with trivial center which have inner squares can be
perturbed in such a way that they become transpositions. The second conclusion
will not be needed later, but says that the size of the perturbation can be
controlled.

PROPOSITION 2.2. If a is an antiautomorphism with the Rokhlin property on
a C*-algebra A with trivial center and o> = Ad u, then there is a unitary u’ in A with
(Adu oa)? = id. Furthermore, if |u —I|| <e, then u can be chosen so that
lu — I < 2e.

Proor. By Lemma 2.1, it can be assumed that a(u) = u*. Since o has the
Rokhlin property, Lemma 1.3 applies and a projection e can be chosen in 4 such
that ||[u,e]ll < (where ¢ will be specified later) and afe) =1 —e. Let v =
u*e + I — e. Then ||v*v — I|| £ 2||[u,e]l| < 26. If 6 < 1/2, then v*v is invertible.
Similarly, vv* will be invertible and v is invertible. Let v = r|v| be the polar
decomposition of v. Then ris unitary and ||v — r|| = ||jv| — I|| £ |lv*v — I| < 2.
Let B = Adroa. Then f2 = Ad w where w = ra(r*)u. Now,

lw —I|| = llra(r*) — u*|
S llra(r*) — ra@®)|| + lra(@*) — va(*)l + lva@*) — u*||
Slir—ol + lIr —oll ol + llva(@*) — u*|.
But,
ol = llu*e + (I — e)ll < llu*ell < I —e| =2
and
loa(w*) — u*|| < 2 [lu*, I — €]l = 2 ||[x(w), a(e)]ll < 2[|[u, €]l < 26.

So, |w—I|| <26 + 46 + 26 = 84.

Also, easy calculations show that f(w) = w*. So, 2 = Adw with B(w) = w*
and ||w — I|| < 84. Let w be identified with the identity function on sp(w) and let
(B )(x) = f(¥)for each f in the C-algebra C(sp(w)) and x insp(w).Ifé < 1/8, —1is
not in sp(w) and so y can be defined by y(e’®) = e "2, Now, B(y) = y* and
y? = w*, Then (Ad yo f)*> = Ad yB(y*)w = id. Lettingu’ = yrand § < 1/8 yields
the first assertion.



TRANSPOSITIONS OF UHF ALGEBRAS 271

For the second assertion, note that
lu' =1l < \ly =1l + lIr = 1|
Sliw=Il+lr=v|+ llv=1I|| <10 + u—I| < 106 + &.

Thus, the statement is proved if § < &/10.
This section concludes with a theorem which ties together earlier results with
the situation under discussion.

THEOREM 2.3. Let a be an antiautomorphism with a*> = Ad u on a *-algebra A.

(i) If Ais matricial witha(2) = oo or 0, then there is a unitary vin A with Advoa
conjugate to t,.

(i) If Aisa UHF algebra with a(2) = oo and a0ty = Ad wfor some unitary win
A, then there is a unitary v in A with Ad vo a conjugate to 1.

ProoF. (i) Lemma 2.1 says that, without loss of generality, it can be assumed
that a(u) = u*. Let v be a square root of u* picked as y is in the proof of
Proposition 2.2. Then a(v*) = vand u* = va(v*). Now, (Ad vo a)? = Ad va(v*)o

a? = Adu* o Ad u = id. Stacey’s result completes the proof.

(ii) Since « is inner conjugate to 7o, Lemma 1.9 shows that « has the Rokhlin
property. Thus, Proposition 2.2 produces a unitary vin 4 with Advoa a trans-
portation. Then (Advoa)oty = AdvoAd w = Ad vw, so the result follows from
Corollary 1.13.

NoTE. The author would like to express his appreciation to Richard Herman
for his gracious assistance in the production of this paper.
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