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POINTWISE MEASURABILITY IN NONSTANDARD
MODELS

DIETER LANDERS and LOTHAR ROGGE

Abstract.

In this paper we present a concept of pointwise measurability of functions. Formally, this concept is
closely related to the concept of pointwise continuity of functions, and we hope that it will become
similarly useful. The concept of pointwise measurability is introduced by nonstandard methods.

Let 2(Z) be the power set of the set Z. A system € < #(Z) is u-closed
(n-closed) if C, De ¥ implies CuDe® (Cn De¥). We denote by J(¥) the
smallest toplogy containing 4. If ¢, < #(Z;), i =1,2 we call a function
h:Z, - Z, €,, €,-measurable iff h~*(C,)e ¥, for all C,€%,. Usually measur-
ability is only defined for o-algebras €, and ¥,. To be more flexible we dropped
this restriction. Thus, if ¢, and %, are topologies, €,, ¥,-measurability is the
same as %;, ¥,-continuity.

In this paper we consider a superstructure containing two given sets X, Yand
the set R of real numbers, and we work with a polysaturated nonstandard model
for this superstructure. (We use the basic terminology and results of nonstandard
analysis as given e.g. in [1], [2] and [6].)

DEFINITION. Let o < P(X), # < 2(Y), and g:*X — *Y be an internal func-
tion. Put °/:= {*4: Ae o/} and °# analogously. The function g is called
7o/ ,°B-measurable in a point x € * X iff for every B e # with g(x) € * B there exists
A e of with xe*A4 such that g(*A) = *B.

The following theorem shows that pointwise measurability for all x e * X is the
same as the usual measurability and is furthermore equivalent to continuity for
appropriate topologies.

1. PROPOSITION. Let o = P(X) be u,Nn-closed with X € o/ and # <= P(Y). For
an internal function g:*X — *Y the following three conditions are equivalent:

(i) g is oA °B-measurable;

(i) g is°s,’B-measurable in x for all xe *X;

(iil) g is 7 (°s#), T (°PB)-continuous.
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PRrOOF. (i) = (iii) follows directly from the definition of the topologies 7 (°.«¢)
and I (°%). X

(iij) = (ii). Let xe*X be fixed Let Be# with g(x)e*B. As g is
T (°A), T (°B))-continuous in x, there exist Te I (°«/) with x € Tand ¢g(T) < *B.
Since ’«/ is N-closed, we obtain T= U, *A; with suitable 4, /. Hence there
exists A€ o/ with xe*4 and g(*4) < *B.

(ii) = (i). Let Be % be given. For each x € *X with g(x) € * B there exists A, € &/
with xe*A4, and g(*A4,) < *B. Hence U )e.p*4, = g~ '(*B). Asg~'(*B)is inter-
nal and the system {* 4, : g(x) € * B} contains at most as many sets as .2/, we obtain
by polysaturation that there exist finitely many A,, i=1,...,n with
Ul=1*A,, = g '(*B). Hence g "' (*B) = *Awith A = U]_, A, . As o/ is U-closed,
we have Ae «/.

2. COROLLARY. Let o/ = P(X) be u,n-closed with X € o and B <= #(Y). For
a function f:X — Ythe following conditions are equivalent:

(i) f is o/, B-measurable;

(ii) *f is “of,°B-measurable in x for all xe*X.

Proor. Apply Proposition 1 to the internal function g = *f and use
*(~1(*B) = *Aiff f ~!(B) = A.

Ross [S] showed that for an algebra & the following two conditions are
equivalent:

(i) fis o/, #-measurable,

(ii)g *f(my(x)) = mu(*f(x)) for all xe*X,
where my(x) = N{*A:xe*A, Ae o} is the o/-monad of x, mg(y) is defined
analogously.

Using polysaturation it is easy to see that (ii) is equivalent to condition (ii) of
Corollary 2. Ross furthermore claimed ([5], I1.1.9): If the equivalence of (i) and
(ii)g holds for all f and all # then o is necessarily an algebra. This, however,
contradicts the statement of Corollary 2, because the equivalence in Corollary
2 also holds for systems &, which are not an algebra.

In our next Theorem we will weaken condtion (ii) of the preceding Corollary by
assuming ’«/,’ #-measurability only for almost all points x € *X where almost all
refers to a suitable measure. To this aim we introduce the following notions. Let
ube a finite measure on a g-algebra o/ on X. We denote by &, the completion of
& with respect to u|</. Itis well known that &/, is the o-algebra of all C = X such
that A « C < AU N for some A, N € of with y(N) = 0.

If v:*of — *[0, c0) is a finite internal content, then v, : L(v) = [0, c0) denotes
the Loeb-measure associated with v|*./; L(v) is a g-algebra containing *</, and
v.|L(v)is a complete measure. L(v)is called the system of v,-measurable sets. A set
C < X is universally Loeb-measurable iff C € L(v) for each finite internal content
v|*of (see e.g. [4], [3]).
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3. THEOREM. Let & < P(X) be a g-algebra, # = P(Y) and u|s/ be a finite
measure. For a fucntion f : X — Y the following conditions are equivalent:

@) fis o, B-measurable;

(i) *fis °f,°AB-measurable in x for *y,-a.a. xe*X.

PROOF. (i) = (ii): Since f ~!(B)e o/, for Be# there exist Ap, Nge o/ with
Ap< f !B < Agu Np and u(Ng) = 0. Put N:= Ugg*Np. Then *u,(N) =0
according to Lema 5 below. We prove that *fis °.</, °#-measurable in x for all
x¢N. Let x¢N. Take Be# with *f(x)e*B. Since x¢*Ny and *f ~!(*B)
*Ap U *Njp, we obtain xe*A4p. As futhermore Age.o/ and *f(*A4p) = *B, this
implies that *fis “«/, °#-measurable in x.

(ii)=(): Let Be®. To show that C:=f"!(B)es, observe that
*C=uU{*4:Aed, f(A) c Bju{xe*X :*{x)e*B and Ae, xe A= f(A)
¢ B}.

The first of these sets is *u;-measurable by Lemma S, and the second is
*u,-measurable by (ii). Hence *C is *u;-measurable. Therefore for each fixed

. . 1 .
neN there exist D, Ee*of with D « *C c E and *u(E — D) < e Using the
transfer principle we obtain Ce &,,.

Let u|o/ be a complete measure, i.e. & = &,. Then Corollary 2 and Theorem
3 yield the following surprising fact: If *fis pointwise ’.«, °#-measurable *yu;, -a.e.,
thenit is pointwise °.«Z, ’#-measurable everywhere. Theorem 3 shows in particu-
lar that the set of all “, ’#-measurability points of *fis *u;-measurable for
o, B-measurable functions f. It turns out, however (see Theorem 4), that we
neither need any assumptions on f nor on the underlying Loeb-measure *u, ; the
set of measurability points is v,-measurable for each function f and each internal
content v.

4. THEOREM. Let of = P(X) be a o-algebra and B < P(Y) with Be & for all
Be®. For each function f:X — Y the set of all xe*X, such that *f is
o ,°B-measurable in x, is universally Loeb-measurable.

ProoF. Let F be the set of all points x € *X such that *fis “.</, “#-measurable
in x. Then F = NpaFp With Fg = {xe*X:*f(x)e*B= f(A) = B for some
Ae of with xe*A}. As Be & if Be 8, we obtain that

(1 F = Npea(Fp N Fp).
By definition of Fz we have
) FgnFg= u{*4:Ae o, f(A) = Bju U{*4:Ae o, f(A) < B}.

Now let v|*o/ be a finite internal content. For each C = Ychoose 4, e .o/ with
f(A,) = C and v (*4,) T sup{v.(*A4): Ae A, f(A) = C}; put Ac = UpneNA,. Then
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Ace s, f(Ac) = C and
3) vi(*A — *Ac) = 0 for each 4 € o with f(4) = C.
Put ¥5:= {Ae s : f(A) = Bor f(A) = B}. By (1) and (2) we have
F — npea(*ApU *A5) © U peaV ses, *(A — Ap U A5) =:N.

By (3) we obtain v (*(4 — Agu Ap)) =0 for each Be B, Ae ¥, and hence
vi(N) = 0by Lemma 5. Put D:= Np.e(*Ap U *Ag). Then D is v,-measurable by
Lemma 5. As F — D < N and v,(N) =0, F — D is v-measurable, too. Hence
F = DuU(F — D) is v,-measurable.

If # has not the property, that Be # for all Be 4, then the assertion of the
preceeding theorem need not be true any more. Lete.g. X = Y= R, & = {@,R}
and # = {B} with B c R, B¢ &. If f(x) = x, x€ R, then *B is the set of all x e *R
such that *f is °<f, °#-measurable in x. However, *B¢ L(*.«Z, *1) = {@, *R} for
each measure u|lo/ with 0 < u(R) < oo.

For the sake of completeness we cite a special case of Theorem 1 of [3].

5. LEMMA. Let of be an algebra on X and & < of be a subsystem. Then the
following assertions hold:

(@) U *4, ) *A are universally Loeb-measurable;

AeS Ae¥
(il) vy (*4) =0for Ac S = vL< U *A) =0.
Ae¥
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