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SPACES MAKING CONTINUOUS CONVERGENCE AND
LOCALLY UNIFORM CONVERGENCE COINCIDE,
THEIR VERY WEAK P-PROPERTY, AND THEIR
TOPOLOGICAL BEHAVIOUR.

Zur Erinnerung an G. H. Wenzel, einen groBartigen Kollegen und begeisternden Lehrer

H.-P. BUTZMANN and M. SCHRODER

Abstract.

Although ¢ = lu-spaces (namely, those defined by the title) were characterized internally some
years ago by what can now be seen as the weakest in a range of P-properties, their general behaviour
remained largely obscure. Our study of these properties casts some light on this, and enables us to
place ¢ = lu-spaces in their topological context. In addition to the obvious links with the P-property
and with local compactness, some unexpected ones emerge as well, with countable box products and
anti-compactness, for instance.

§0. Introduction.

In order to refine the duality between a space Z and the set CZ of all its
continuous real-valued functions, the latter has often been equipped with various
types of convergence such as uniform or compact convergence or more recently,
continuous or locally uniform convergence. This led to what we call the
¢ = lu-question: when do continuous convergence and locally uniform conver-
gence coincide? In other words, what do ¢ = lu-spaces look like? Kutzler [10],
Binz [3] and Schroder [13] all gave answers. Then Schroder [14] devoted
a paragraph to the topological meaning of their results, with plausible but false
findings. The present paper originates in our efforts to understand the answers
better, to correct the errors, and above all, to study the behaviour of
¢ = lu-spaces.

SURVEY. Let us review the situation. Since we take the various topological
characterizations of ¢ = lu-spaces as the starting point for our work, we content
ourselves with a rather crude picture of locally uniform convergence and continu-
ous convergence: they both lie between their more familiar relatives, uniform and
compact convergence. Details can be found in the references listed above.
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To begin with, locally compact spaces are ¢ = lu, because they make compact
convergences coincide with both locally uniform and continuous convergence.
Conversely, for any completely regular Hausdorff topological space, if either
locally uniform or continuous convergence coincides with compact convergence,
then the space is locally compact. See Poppe [12] or Binz [3].

More than ten years ago, ¢ = lu-spaces were characterized for the first time, in
terms of Cech-Stone compactifications and P-sets. By definition, a point or set in
a topological space has the P-property if its neighbourhood filter is s-complete.
(We hope set-theorists will excuse this term, which just means that the filter is
closed under countable intersections.) Naturally, P-spaces consist entirely of
P-points.

0.1. THEOREM. A completely regular Hausdorff topological space is c = lu iff it
is a P-set in its Cech-Stone compactification.

0,2. COROLLARY. In any completely regular Hausdorff ¢ = lu-space, each
first-countable point has a compact neighbourhood. In particular, metrizable
¢ = lu-spaces are locally compact.

These are proved in Binz [3], Theorem 85 and Corollary 87. The more
versatile form of this characterization given below can be obtained from 0.1
simply by ‘chasing compact sets up and down between remainders’.

0.3. COROLLARY. A completely regular Hausdorff topological space is ¢ = lu iff
it is a P-set in some (or equivalently, every) Hausdorff compactification.

By direct calculation or by 0.3, all P-spaces are ¢ = lu. Looking for a topologi-
cal property common to P-spaces and to locally compact spaces, we devised
a weak P-property and called it P/C. (Van Douwen [17] surveyed several other
types of weak P-property, but P/C is rather weaker than most of these.)

To define P/C, take a filter ¢ on a space Z. We call ¢ sc-complete (again with
apologies to set-theorists), if for each sequence (P,) in ¢ there is a member P, of ¢,
such that the sets Py\ P, are all sub-compact. (One calls a set sub-compact if it has
a compact superset.)

Much as above, we call a point or set P/C if its neighbourhood filter is
sc-complete, and we call a space P/C if it consists entirely of P/C-points.

0.4. PROPOSITION. Locally compact spaces are P/C, and so are P-spaces. All
P/C-spaces are ¢ = lu.

To prove this, use the definition or see 2.5.

The Tychonov plank provides the raw material for two useful examples. Let
wo and w; be the first infinite and the first uncountable ordinals respectively, and
let W, and W, be the corresponding compact Hausdorff ordinal spaces. Put
W= W, x W; and V= W\R, where R = wy x [0,w,).
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Clearly W compactifies ¥, with remainder R. Now as the union of any
sequence of compacta in R is sub-compact in R, the space V is ¢ = lu, by 0.3. On
the other hand, no neighbourhood of w, X w, in V is compact, yet the sequence
converges to (u X w,)in V.

0.5. EXAMPLE. The ¢ = lu-space V is neither a P-space nor locally compact.

Infact, Visnotjustc = lu,itis P/C, by 2.6. However, ¢ = lu-spaces without the
P/C-property do exist as well. To construct one, let U be the P-space obtained
from W, by deleting all countable limit ordinals, and put L = W, x U. Clearly
W compactifies L. Thus by 0.3, L is ¢ = lu. However, because compact sets in
U are all finite, the neighbourhood filter of w, x @, in L is not sc-complete.

0.6. EXAMPLE. The space L is ¢ = lu but not P/C.

In short, all four properties really are distinct.

To complete this review, we point out the main drawback of 0.3: even within its
domain of complete regularity, it can only be put into use if a suitable compactifi-
cation can be found. This difficulty vanished in 1976 with Schroder’s internal
description of ¢ = lu-spaces, stated in 2.0 below. Our entire paper is based on this
result. Its proof appears most accessibly in Schroder [15], together with a real
extension of the original results.

The paper. We aim this paper at the main-stream topologist using the lan-
guage of convergence to place some familiar ideas in the context that the
generality of 2.0 demands and justifies. For completeness and to display our
notation, we include a brief comparison of convergence and topology in §1, which
the expert in convergence can pass over. We emphasize: most of our results hold
for both convergence and topology; the exceptions are marked clearly.

To make 2.0 easier to use and understand, we express it in simpler terms, a sort
of regularity and a sort of countable completeness for covers. The essence of
¢ = lu lies in the latter, an apparently new property called cc. In fact, cc implies
¢ = lu, and for suitably regular spaces, they are euqgivalent. Within the rough
bounds set by local compactness and by the P-property, P/C reflects the behav-
iour of ¢ = lu quite closely — often with much easier proofs. Because of all this, we
devote this paper not just to ¢ = lu, but also to P/C and cc. We study their
inter-relationships and their hereditary behaviour, we compare them with their
elder relatives, local compactness and the P-property (see Misra [11] for details),
and we begin to look at their interaction with other topological properties.

In their hereditary behaviour, ¢ = lu, cc and P/C broadly resemble local
compactness: they are closed-hereditary, and open-hereditary too, in suitably
regular spaces. In final situations, their behaviour depends sensitively on the
category in use. For example, they pass to all final limits in the category of filter
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convergence spaces, they pass to some pre-topological final limits, and to even
fewer topological ones. See §3 and §6.

Products caused us the difficulties seen in §4 and §5. For the usual Tychonov
product to be cc, almost all factors must be compact and all must be cc. Even for
finite products, we do not know whether this necessary condition is also suffi-
cient, that is, if cc x cc = cc. On the positive side, we prove that cc x P/C = cc
(one of our main results), and we do know when P/C x P/C = P/C.

To our surprise, we found an infinite-dimensional Hausdorff topological
vector space with the cc-property. This shows the weakness of cc compared with
P and local compactness: the latter makes the space finite-dimensional, and the
former makes it zero-dimensional. This example led us to a general theorem:
countable box products of locally compact spaces are cc.

Among the strictly topological facts collected in §6, we found

(a) that the neighbourhood filter of the set of all points devoid of compact
neighbourhoods helps determine whether a topological space is cc, and

(b) that two rather special topological inductive limits do inherit cc,even when
the results of §3 do not apply to them.

The process of decompactification introduced in §7 enables us to analyse and
refute the claim in Schroder [14], §5, that the ¢ = lu-property of a space resides
outside its compact sets. (Evidence for this claim comes from the definition of
P/C, which ‘“factors out the compact sets’, and from item (a) in the paragraph
above.) Further, decompactification generates precisely those T; spaces called
compact-finite in Hutton and Reilly [6] and anti-compact in Bankston [1].

§1. Topology and Convergence.

This short comparison of convergence and topology summarises the ideas
used in our work and sets out our notation. We hope it will enable any general
topologist to read the paper; those familiar with convergence will find little new
except perhaps 1.3 and 1.5. The facts needed here appear below, and Gahler [5]
provides a comprehensive treatment for spaces satisfying slightly different ax-
ioms.

Convergence. Throughout this paper, sets or spaces labeled Q to Z are
non-void, filters are proper filters on some set, and as our description of the space
V shows, we often identify a singleton with its point. Regarding convergence as
arelation (usually symbolised as —) between the filters on a set Z and the points
of Z, we follow Beattie, Butzmann and Herrlich [2] and stipulate that for all zin
Z,

(C;) the ultra-filter Z over z converges to z, and
(C,) if a filter converges to z, then so does every finer filter.

One calls any such pair Z, — a filter convergence space, or simply, the space Z.
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Neighbourhoods and pre-topological spaces. Consider a space Z. The intersec-
tion of all filters converging to z is its neighbourhood filter, denoted by nb,(z) or
simply by nb(z). The point z is pre-topological in Z if nb(z) — z; the space nZ in
which ¢ converges to z iff ¢ o nb(z) is known as the pre-topological modification
of Z; and Z is pre-topological if Z = nZ. Clearly, topological spaces are just those
pre-topological spaces whose neighbourhood filters satisfy the ‘fourth neigh-
bourhood axiom’.

Closure and topology. Given a subset A of a space Z, one defines its closure,
denoted by cl,(A) or simply by cl(A4), just as in topology: z e cl(A) iff 4 € ¢ for some
filter ¢ converging to z in Z. Similarly, one calls A closed if A = cl(A4), and open if
A enb(z) for all ze A. Though closures need not be closed in general, the familiar
connections between neighbourhood filters and closure, and between closed sets
and open sets do persist. See 1.1 below for a reminder.

1.1. LEMMA. Let zeZ and A = Z. Then
() zcl(A) iff Z\Aenb(z)
(ii) A is closed iff Z\ A is open.

The open sets form a topology on Z, defining its topological modification tZ.
Clearly, Z is a topological space iff Z = tZ.

Continuity and the functor w. By definition, continuous functions preserve
convergence and by convention, CZ stands for the set of all continuous
real-valued functions on Z. One obtains the cr-modification wZ of a space Z by
giving it the initial topology induced by CZ. We call any subset of Z closed in wZ,
a w-set.

The functors n, t and w enjoy similar universal properties over pre-topological,
topological and completely regular spaces respectively. For instance, a map from
Z to a topological space T, is continuousiiff it is continuous, from ¢tZ to T. Finally,
using > for continuous inclusions, we record the obvious: Z > nZ > tZ > wZ.

Regularity and the functor v. Regularity and the lower separation axioms need
no change from topology: a space is T if all its finite sets are closed, T if each
filter converges to at most one point, and Tj if it is T; and regular (see below). As
usual, T; =T, =T;.

The space rZ in which { converges to z iff { contains {cl(P): P e &}, for some
¢ converging to z in Z, is known as the regularization of Z, and Z is regular if
Z = rZ. (Note: even in topology, these regularizations need not be regular.)

Similarly, taking closure in wZ, one gets the w-regularization vZ of Z. Of
course, one calls Z w-regular if Z = vZ.

1.2. LEMMA. Let A be a closed subset of a regular space Z. Suppose ¢ — z and
z¢ A. Then cl(S)n A = @, for some S€ ¢.
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PrOOF. Being an open set in a regular space, Z/A4 belongs to the filter based on
the family {cl(F): F € ¢}.

Covers. Take subsets A4, B,... of a set Z and families a, §,. . . of subsets of Z.
Now let pa denote the closure of a under finite unions, and let

a+ p={AuB:Aeaand Bep}.

Further, one says a meets f§ if some set belongs to both « and §. Finally, we write
A < Bif Aliesinside a finite union of members of §, and we say a refines  weakly if
« refines pB, or in other words, if 4 < ffor all Aea.

Let y be a family of subsets of Z. Then by definition, y covers a given set of filters
on Z if it meets each filter in the set. For the sets of all convergent filters on a space
Z, or of all filters converging to z, phrases such as ‘y covers z in Z’, or ‘y covers Z’
mean simply that y covers the relevant set of convergent filters. Naturally,
w-covers are covers consisting wholly of w-sets.

It seems to have escaped notice that one can use covers to characterize
continuity.

1.3. PROPOSITION. Take spaces X and Y, let s be amap from X to Y, and let § stand
for its converse, as a relation from Yto X. Then

(i) the family §(6) = {S(P): P€d} covers x in X, if s is continuous at x and
6 covers s(x) in Y, and

(ii) s is continuous at each point of §(y) iff 5(d) covers each point of §(y) whenever
dcoversyinY.

PRrROOF. (i) Suppose that sis continuous at x, that § covers s(x) and that ¢ — x
in X. Since s(¢) — s(x) in Y, there are sets F in ¢ and D in ¢ such that s(F) = D.
Hence §() meets ¢, as desired.

(ii) Part (i) deals with one half of this. Conversely, let §6) cover each point of
5(y) whenever é covers y in Y, take x in §(y) and let ¢ converge to x in X. Suppose
s(¢) does not converge to y. Then by the axioms for convergence, {\s(¢) is
non-void, for each filter { converging to y. Thus one can find a cover é of y in
Y such that D ¢ s(¢) for all D in 8. But as §(d) covers x in X, one can find some Dy in
d such that §Dy) belongs to ¢. In other words, D € s(¢), a contradiction.

Initial limits. Sometimes known as inverse limits, initial limits encompass
sub-spaces, products, and pull-backs.

Consider an initial family of maps, in which f; maps a set Z to a space X for
eachjin an index set J. Now define convergence on Z as follows: ¢ — zin Z iff for
alljin J, the image filter f{(¢)converges to fi(z)in X;. The space Z, — obtained in
this way is called the initial limit of the family.

In particular, one obtains sub-spaces and products by using the inclusion maps
and the coordinate projections respectively.
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If the spaces X are all pre-topological (or topological), then so is the limit
described above, and further, it ‘coincides with’ the pre-topological (or topologi-
cal) initial limit.

1.4. LEMMA. Let A be a subset of Z and let a cover the sub-space cl(A) of Z. Then
a + {Z\A} covers Z.

PROOF. Suppose ¢ >zinZ. Put{ ={QnA:Qe¢}andn= {Q\ A:Qe¢}.
Then ¢ = { + n and Z\Aen, and either Pe{ or { — z in A (so that { meets a).
Together, these facts imply that ¢ meets a + {Z\ A}, as desired.

Final limits. Unlike initial limits, final limits depend sensitively on the cat-
egory in use. For this reason, we describe them in rather more concrete detail.
Consider a final family of maps g; from spaces Y; to the set Z, and define ¢ — zin
Ziff ¢ = 2 or g{y) = zand ¢ > g{{), for some index j, some point y in Y}, and
some filter { converging to y in Y, The space Z, — obtained in this way is the
(direct or) final limit in the category of filter convergence spaces. But obviously, it
needs a shorter name: we call it the minimal limit of the family.

In other categories, the final limit coincides with the reflection of the minimal
limit - for instance, if the spaces Y; are all topological then the final limit is simply
the topological modification of the minimal limit defined above.

Minimal quotients. Though minimal limits can be characterized by covers, the
result looks rather messy in its full generality. Accordingly, we consider only the
special case of minimal quotients.

Take a surjection s from a space X to a set Y. We turn Y into the minimal
quotient (that is, the minimal limit of the family {s}) as follows: { — y in Y iff for
some x with s(x) = y and some filter ¢ converging to x in X, s(¢) = {. Again, note
our ‘Bourbaki convention’ under which §denotes the converse of s. Note also 1.3,
which characterizes continuity by covers.

1.5. PROPOSITION. Let X and Y be spaces, and let smap X onto Y. Then Y is the
minimal quotient iff's is continuous and for all y, s(y) covers y in Y whenever y covers
each point of §(y) in X.

PROOF. Let Y be the minimal quotient. Then trivially, s is continous. Further,
let y cover each point of y), and take a filter { converging to y in Y. By definition
of the quotient, there are x in §(y) and ¢ converging to x in X such that s(¢) o (.
Now choose Cy in 7 N ¢, and note that its image s(C,) belongs to both s(y) and {,
as desired.

Conversely, assume the cover and continuity conditions given above. Suppose
that Y is not the minimal quotient. Then one can take a filter { converging to y in
Y such that, for each x in §(y) and each filter ¢ converging to x in X, { is not finer
than s(¢). Then much as above, one can find a family y which covers each point of
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§(y) in X, such that s(C) ¢ ¢, for all C in y. In other words, s(y) fails to cover y in Y,
a contradiction.

Compactness. As usual, one calls Z compact if each ultra-filter on Z converges
to some point of Z. A subset A of Z is compact if it is compact, as a sub-space of Z.
Further, a point or space is locally compact (Ic, for short) if it is covered by the
compact subsets.

1.6. PROPOSITION. Let { be a filter on Z and E be a set of ultra-filters on Z. Then
E contains the set of all ultra-filters finer than { iff py meets { whenever y covers E.

This piece of pure set theory, needed later, enables one to define compact sets of
filters. It also enables one to retrieve the usual characterization of compactness
given below: just put { = {Z} and let Z be the set of all convergent ultra-filters on
VA

1.7. COROLLARY. A space Z is compact iff Z < v, for each cover y of Z.
As in topology, this criterion can be weakened in regular spaces.

1.8. PROPOSITION. Let Z be regular and D be dense in Z. Then Z is compact iff
D < v, for each cover y of Z.

ProOF. Asnoted above, if Z is compact then D = Z € py, for each cover y of Z.
Conversely, let § cover Z. By regularity, {cl(Q): Q €y} refines B, for some cover
y of Z, and by assumption, D = Q, U... U Q,, for some Q,,...,Q, in y. Now
Z =cl(D) = | Jcl(Q)) = Z, and so Z < f, as required for compactness.

§2. Definitions and Basic Properties: ¢ = lu and cc.

That brought our short course in convergence to an end, and allows us to
return to the ¢ = lu-problem. Calling a set ¥ of families of subsets of a space
Z weakly countably directed if, for each sequence (y,) in ¥, some y in ¥ refines each
y. Weakly, Schroder [13] characterized ¢ = lu-spaces as follows.

2.0. BAsIC THEOREM. For any space Z, the following statements are equivalent:
@ Zisc=1lu,and
(ii) the set of all w-covers of Z is weakly countably directed.

Because ‘real analysis’ plays no (other) part in this paper, (i) above becomes
our primary definition. Since much of our work deals with individual points, we
need the pointwise formulation given below. Then we ‘tidy it up’, by separating
off the forgetful effects of the well-behaved functor v.

2.1. DerINITION. Consider a space Z. We call z a cc-point in Z, if for each
sequence 7, of covers of Z, some cover y of z refines each y, weakly. Naturally we
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call Z a cc-space if it consists entirely of cc-points, or equivalently, if the set of all
covers of Z is weakly countably directed. Using w-covers instead of covers, we
define ¢ = lu-points similarly.

2.2. COROLLARY. (i) A space is ¢ = lu iff its w-regularization is cc, iff all its
points are ¢ = lu.

(ii) For both points and spaces, cc implies ¢ = lu; conversely, in w-regular
spaces, ¢ = lu implies cc.

(iii) For both points and spaces, regularization and w-reqgularization preserve the
cc-property.

One derives 2.2 directly from the basic theorem, with the help of two obvious
facts: Z and vZ have the same w-covers, and each cover of vZ can be refined by
a w-cover.

2.3. DEFINITION. One calls z a P-point in the space Z if, whenever ¢ — z, some
coarser s-complete filter { has the same limit z. Similarly, P/C-points are defined
by sc-complete filters {.

2.4. LEMMA. In any space Z, z is a P-point iff for each filter ¢ converging to z,
there is a coarser filter { converging to z such that (|G, € ¢, for each sequence (G,) in

L.
Even in this general situation, 0.4 remains true: see below.
2.5. PROPOSITION. For both points and spaces,lc = P/C, P = P/C,and P/C = cc.

PrOOF. We omit the trivialities, and turn to ‘P/C => cc’ Let z be P/Cin Z. Take
asequence (y,) of covers of Z. For each filter ¢ with limit z, choose an sc-complete
filter {, coarser than ¢ and with the same limit z. Now find sets G, in y, n { and
F in ¢, together with compacta K, such that F < G, u K, for all n. Then F < y,
for all n,since G, €y,and K,, < y,, by 1.7. In other words, the sets F constructed in
this way cover z, and refine each y, weakly, as desired.

Examples 0.5 and 0.6 distinguish Ic, P, P/C and ¢ = lu, but being completely
regular topological spaces, they cannot separate cc from ¢ = lu. To do this, take
any space Z without the cc-property, such that wZ is indiscrete, and in particular,
compact. Steen and Seebach [16] offer several suitable examples.

Note the difference between P, P/C and Ic on one hand, and cc and ¢ = lu on
the other. The former are local properties, defined pointwise, while the latter are
global, defined by covers. This led us to define local versions of cc and ¢ = lu. (It
also led us to define the cover versions of P and P/C discussed in [4].)

Though the gap between cc and P/C is quite large, the cc-property does imply
higher ones under certain conditions, as 2.6 and 2.7 show. The first applies to
simple examples such as 0.5, and the second extends 0.2 significantly.
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2.6. PROPOSITION.

(i) Let z be a pre-topological cc-point in a space Z consisting otherwise of
Ic-points. Then z and Z are both P/C.

(ii) Let z be a pre-topological ¢ = lu-point in a w-regular space Z consisting
otherwise of Ic-points. Then z and Z are both P/C.

PRrROOF. Let k stand for the family of all compact subsets of Z. By 2.5, the
Ic-points are all P/C. So let us try to show the sc-completeness of nb(z). Take
a sequence C, in nb(z) and for each n, cover Z with {C,} U x. Now use cc to find
a cover y of z refining each of these weakly, choose C from y n nb(z), and hence
find K,ex with C = C,u K, for all n. This deals with (i), while (i) and 2.2(ii)
together yield (ii).

As in topology, one calls z a first-countable point in the space Z if, whenever
¢ — z, some coarser filter { with a countable base has the same limit z.

2.7. PROPOSITION.

(1) Any first countable cc-point in a regular space is locally compact.

(ii) Any first countable ¢ = lu-point in a w-regular space is locally compact.
(iii) Any first-countable w-regular c = lu-space is locally compact.

ProoF. Obviously, (i) = (ii) = (iii). So, take a regular space Z and a first-
countable point z which is not locally compact in Z. Then some filter ¢ converg-
ing to z has a countable base (A4,) such that the sets 4, are not sub-compact. In
particular, the sets cl(4,) are not compact. But by regularity, the filter { based on
the sets cl(A4,) converges to zin Z.

As sub-spaces of Z, the sets cl(4,) are regular. Thus by 1.8, for each n there is
acover a, of cl(A4,) such that A, < a,. By 1.4, the families a, + {Z\A,} all cover Z;
they also keep z from being cc. To see this, let y cover z, choose Q from y n¢, and
find some A, = Q. Clearly, Q < o, + {Z\A,}: in other words, y does not refine o,
weakly.

Though the functors n and ¢ tend to degrade or even destroy the cc,¢ = lu and
other properties, they do not always do so: two cases appear below.

2.8. LEMMA. Any P-point in a space Z remains P innZ. Further, if Z is a P-space
then so is tZ.

Given a space Z, one says that its convergence at z has a countable base, if there
is a sequence of filters ¢,, all converging to z, such that ¢ — zin Z iff ¢ is finerthan
some ¢;. (Of course, this includes the possibility of a finite base for the conver-
gence. For example, any pre-topological space has a finite base at each point,
since one can choose the constant sequence with just one term, the neighbour-
hood filter.)
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2.9. LEMMA.

(i) For q =cc,c =luor P/C, let z be q in Z, and suppose convergence at z has
a countable base. Then z is q in nZ.

(i) Let z be Ic in Z, and suppose convergence at z has a finite base. Then z isIc in
nZ.

Proor. Consider the cc case first. Take a sequence y, of covers of nZ, and
choose C; from y, N nb(z) for all k. Now use the cc-property to find D; € ¢; with
D; <y forallk. Put E;=D;nCy;n...nC;and E = U E;. Then E enb(z), as
E;e ¢, for all i and nb(z) = () ¢;. Further,

ECCkUEIU...UEk_l CCkUDIU...UDk_.l

since E; < C, if i > k and E; <y, if i < k. Consequently, E < y, for all k, as
desired.

In the ¢ = lu case, proceed much as above. Begin with with w-covers y,, choose
D; closed in wZ (thus E; is also w-closed), let F be the closure of E in wZ, and
conclude that Fenb(z) and F < vy, as desired. (Note: one really needs closure in
wnZ, but wnZ = wZ, since Z and nZ admit the same continuous real-valured
functions.)

The remaining cases are left to the reader.

§3. Heredity.

Sub-spaces and sums provide no surprises. However, topological quotients
and other topological final limits often differ from their counterparts in conver-
gence. This allows one to see the problems in the usual topological limits from
a different angle.

We consider just three kinds of final limit here: topological, pre-topological,
and minimal (for filter convergence spaces). The last of these, described in §1 in
the section on final limits, preserves all the properties discussed here: cc, ¢ = lu,
P/C, P and lc. Then the pre-topological and topological limits are obtained by
applying the functors n and ¢ to the minimal one. This seems simple, but. .. Many
pre-topological cases respond well to our analysis, within the sharp bounds
exposed by star spaces. Our results also explain why the often recalcitrant
topological limits behave well, in several well-known situations.

Sub-spaces. Like local compactness, cc and P/C are closed-hereditary, and
open-hereditary too, in suitably regular spaces; ¢ = lu is both closed- and
open-hereditary, in w-regular spaces.

3.1. PROPOSITION. Let zeH < Z. Then
(i) zisccin H,ifitisccin Z and H is closed, or if it is cc in Z and H is open and
Z is regular,
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(ii) zisc = luinH,ifitisc = luinZ and Z is w-regular and H is either closed or
open,

(iii) Forq = P/Corlc,zisqinH,ifitisqinZ and H is closed, or if it isq in Z and
H is open and Z is T3, and

(iv) zisPinH ifitisPin Z.

Proor. All but the cc cases are left to the reader. However, in the open P/C
case, the proof seems to need closures to be closed, at least within compact sets.
This happens not only in T ; spaces, by Gihler [5], §3.16.18, but also under much
weaker conditions. We do not wish to embark on such technical diversion in this
introductory paper, though.

. Let H be closed, and take a sequence y, of covers of the space H. By 1.3, the
families y, + {Z\H} all cover Z. Take a cover y of z in Z, refining them all weakly,
and put & = {Q n H:Qev}. Clearly é covers z in H. Further, it refines each y,
weakly. Thus z is cc in H.

Next, let H be open and Z be regular. Again, take covers y, of H. Fix a filter
¢ —zin H, and use 1.1 and 1.2 to find a set S, e ¢ with Z\S, enb(y) for all
y outside H. The families y, U {Z\S,} all cover Z, as H is open. Thus they can all
be weakly refined by a cover y4 of z in Z. Choose D, from ¢, and for each n,
choose Q, from py, with D, < Q, U (Z\S,). Let E, = Dy, N Sy. Then E,; € ¢ and
E4 < Q,for all n. In short, the family {E, : ¢ — z in H} so constructed covers z in
H and refines each y, weakly, as desired.

The next result, a partial converse of 3.1, goes some way towards localizing the
global nature of the cc and ¢ = lu properties.

3.2. PROPOSITION. Take a space Z, a point z in Z and a neighbourhood N of z in
Z. Forq=cc,c=1u, P/C,Icor P,ifzisqin N, thenitisqin Z.

Proor. Consider the cc-case first. For all n, let 9, cover Z, and put
6, = {Cn N:Cey,}. Then each y, covers the space N. By assumption, some
cover J of z in N refines each J,. But 6 also covers z in Z, because N enb(z).
Further, ¢ refines y, weakly, as desired.

In the ¢ = lu case, take the y, to be w-covers, obtain é as above, let @ consist of
the closures in wZ of the members of 6, and observe that w does what is needed.
(This relies on the continuity of the inclusion from wN to wZ.)

We leave the remaining cases to the reader.

Sums and minimal limits. Disjoint or ‘topological’ sums behave well, because
each component X is clopen in ), X;. Thus to prove 3.3, just use 3.2 and 3.1.

3.3. ProPOSITION. For q = cc,c = lu, P/C, Ic, or P, a disjoint sum is q iff each of
its components is q. More generally, a point is q in a sum iff it is q in its component.
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3.4. THEOREM. For q = cc, ¢ = lu, P/C, Ic, or P, minimal limits inherit q.

Proor. Toillustrate what this means, consider a final system of maps g; from
spaces Y;to aset Z, for jin an index set J. Let M denote its minimal limit, take z in
Z, and suppose that §z) consists entirely of q-points for all j. Then z is q in M.

Wedeal with the cc case first. Take covers y,, of M, and let ¢» converge to zin M.
If ¢ = 2, just put C, = {z}. Otherwise, take j, { and y as in the definition (see §1),
and assume y to be cc. Since g{y.) covers Y; for all m, by continuity, some cover
o of yin Y, refines them all weakly. Choose D from 6 n { and put C, = g4D). Now
asCye¢pand C, < y,forall m,thesets C, form the desired cover of z that refines
each vy,, weakly.

In the ¢ = lu case, consider the spaces vY; and let their minimal limit be N. By
the ccresult above, zisccin N. Thus by 2.2, zisccin vN. Further,vM = vN, by an
easy exercise in universal properties, and so z is cc in vM. By 2.2 again, zisc = lu
in M, as desired.

We leave the remaining cases to the reader.

Pre-topological final limits. Consider again the final system of 3.4 and its
minimal limit M, and consider the pre-topological space nM as well. Clearly, if
the spaces Y; are all pre-topological, then nM is their final limit in the category of
pre-topological spaces, because it has the requisite uinversal property. Thus the
next result follows immediately from 2.8, 2.9 and 3.4.

3.5. PROPOSITION. Pre-topological final limits inherit

(i) cc, ¢ = lu, and P/C, when the index set J is finite or countable,
(ii) local compactness, when J is finite, and
(iii) the P-property, in all cases.

Though one can still generalize and extend 3.5 (say, by allowing ‘large’ sets J, if
they are in some suitable sense, countably generated), the pre-topological stars
described below show how little room remains for real improvement.

Pre-topological stars. Foreachjin anindex set J,let X; be a pointed space, the
centre of which is denoted by *;. Now let X, be the star-set obtained by
identifying all the pointsj x *;in Z X, let * be its centre and s, the identification
map. Finally, let ¥; be the minimal quotient and let Z; = nY,.

3.6 ExaMPLE. Suppose each X is pre-topological. For q = cc, ¢ = lu or P/C,
the centre * is a g-point in Z; iff

(i) *; is a g-point in X; for all j, and

(i) the set N of indices j for which *; is not a P-point, is at most countable.



240 H.-P. BUTZMANN AND M. SCHRODER

PrROOF. Assume (i) and (ii), and let M = J\N. Because the centre is a P-point in
Zy and a g-point in Zy, by lemmas 2.8 and 2.9, it is a g-point in the
pre-topological quotient Z; of Z,, + Zy, by lemma 2.9 again.

Conversely, let N be uncountable. Consider the cc case. For each j in N, let v;
be the neighbourhood filter of +;in X;;. Take a decreasing sequence (C, ;) in v; with

(*) n C,jév;.
Further, for all n and all je M, put C,; = X;. Set C, = s(};.; C,;) and

= {Cn} v {S(Xl) JGJ}

Then the families y, all cover Z,. Now take C € nb(*) and suppose that C refines
each y, weakly. This means, there are finite subsets A, of J, such that for all n,

CcC,u (U{s(X,-):jeA,,}).
Thus §(C) N X; < C, ; for all je J\A,, which implies
ﬂ Cn,j o] S~(C) ) XjEVj,

for all j in the infinite set N\ JA,. Hence, (),C, ev;, for all such j. This
contradicts (*), and shows that * is not cc.

Similar arguments dispose of the other two cases.

Applications in topology. Minimal quotients appear in disguise in topology,
noteworthy for their good behaviour. For topological X and Y, if s is surjective,
continuous and open, then Y is the minimal quotient, by 1.5. The usual topologi-
cal quotient of a topological group by a normal subgroup exemplifies this. So do
the projections from a product of spaces onto a sub-product, and from a box
product onto the reduced product: see §5.

Pre-topological quotients also appear in toplogy. For example, if one ‘glues’
two T toplogical spaces along homeomorphic closed sets then the topological
and pre-topological quotients coincide, even though the surjection from their
disjoint sum onto their topological quotients need not be open, nor need the
quotient be minimal.

Stars and another case: 3.6 applies directly to topological stars as well as
pre-topological ones, because if each X is topological, then the pre-topological
star Z, described above is actually topological.

Further, more specialised, results appear in §6.



A VERY WEAK P-PROPERTY 241

§4. Tychonov Products.

Take another look at 0.6: there the product of two P/C-spaces (the one,
compact and the other, a P-space) lost the P/C-property. This illustrates the
difficulties that even finite products cause.

After recalling the two main types of product and dealing with the trivialities,
we look at the problems arising with the Tychonov product in the cc case, and
solve them in the P/C case. Note: Tychonov products of topological spaces are
topological, even when taken in the category of filter cdnvergence spaces.

Products and their factors. Take a collection Y; of sets, for j in an index set J,
along with its Cartesian product Y. Given filters 7; on Y, we consider only the
extreme cases among their many box products, namely their Tychonov product
[ In; and their (full) box product O#;. The two filters coincide for finite J, but
otherwise, the latter can be properly finer than the former.

One defines the Tychonov and box products of spaces Y;similarly:n — yin [
iffitsimage n; under the jth projection converges to y;in Yforall je J, whilen - y
in JYiff n > yin []Y;and n = On;. Since the projections make each factor or
sub-product of either type of product a minimal quotient, 3.4 implies 4.1 below.

4.1. PROPOSITION. If a point in a Tychonov or full box product has any of the
g-properties, then so does its image in each factor or sub-product.

Tychonov products. Recall Tychonov theorem: a Tychonov product is locally
compact iff all factors are locally compact and almost all, compact. The
P-property behaves analogously [11]. More generally though, infinite products
kill even the cc and ¢ = lu properties, unless they are preserved as above by
compactness or by the P-property.

4.2 PROPOSITION. (i) No point in a Tychonov product is cc, if infinitely many
factors are not compact.

(i) No point in a Tychonov product is ¢ = lu, ifinfinitely many w-regular factors
are not compact.

ProOOF. By 4.1, we lose no generality by considering the Tychonov product
Y of non-compact spaces Y; for j=1,2,... Let y; cover Y, ‘without a finite
sub-cover’, and define

5,={0 x % x ¥y x ...:Qey},
Sy={X xQx ¥ x....Qen:},

and so on. Clearly, each J, covers Y. Choose a point y in Y, let v be the Tychonov
product of the ultra-filters over y;, and suppose 6 refines each J, weakly. Then
v—y in Y, but § does not meet v. (Suppose on the contrary: Ded nv. Then
D contains some F = [[F;ev. Choose j so that F; = Y. Now D < §;. Project this
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onto Y. Then D; < y;, while D; = Y, a contradiction.) All in all, no cover of y can
refine each J, weakly. This disposes of (i), while (i) and 2.2 together deal with (ii).

A stronger cc-property. However, we still do not know whether finite products
preserve the cc-property. To study the problem in more detail, we turn it around
as follows.

4.3. DErFINITION. We call a point y in a space Y cc-productive if x x y is cc in
X x Y whenever x is cc in X; as usual, we call the space Y cc-productive if it
consists entirely of cc-productive points. (One could call Y cc-productive, if
X x Yis cc for cc-spaces X. For the present, we ignore this slightly weaker
definition.)

4.4. PROPOSITION. For both points and spaces,

(i) cc-productivity implies the cc-property, and

(ii) cc-productivity passes to closed sub-spaces (and to open ones too, in T,
spaces), to finite products, to sums, to minimal quotients, and in fact, to all minimal
limits.

Proor. For (i), take X to be the space with one point. For finite products, use
the associative law. For closed heredity, use 3.1. For open heredity, use the proof
of 3.1 as a guide — since 3.1 itself does not apply unless X is regular. For minimal
limits, use 3.4 and the distributive law: X x lim — = lim(X x —).

Two of our main results, 4.5 and 5.1 below, may help in the search for an
internal description of cc-productivity. When found, it should lead to a signifi-
cant improvement in 4.4. It should also settle the main open question: does the
cc-property imply cc-productivity? We guess — no.

4.5. THEOREM. All P/C-points and spaces are cc-productive.

ProOF. Let y be P/C in Yand x be cc in X. To prove x x y is cc, consider
asequence p, of covers of X x Y. Without loss of generality, assume that each p,
consists of boxes indexed as follows by the convergent filters ¢ and { on X and Y:

U ¢,0) = V(n¢,0) x Wn,¢,)ed x L.

Next, take any filters ¢ and v converging to x and y respectively, and assume (as
P/C permits) v to be sc-complete. One can now find aset Rin ¢ x v, refining each
pn weakly: this completes the three step proof.

Step 1. For each n, the sets V(n,—, v) cover X. Thus one can find B € ¢ and finite
sets b, of filters converging in X, such that

Bc J{V(n,¢,v):d€b,}.
Let
Co=({Wn ¢,v):peb,}.
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Then C,ev, and
(1 B x C,c {J{U(n, ¢,v):¢eb,},

Step 2. By sc-completeness, one can find Tev and compact sets K, such that
Tc< C,u K, for all n. Now for each n and ¢, as the sets W(n, ¢,—) cover Y, one can
find finite sets k(n, ¢) of filters converging in ¥, such that

K, J{Wn, ¢,0):Lekin, ¢)}.
Define

A(ns ¢) = ﬂ { V(n’ ¢9 C) : C € k("? ¢)}‘

Because A(n, ¢) € ¢, the families A(n,—) cover X. So one can find J € ¢ and finite
sets j, of filters converging in X, such that

J <= J{Am, d): d€jn}.
Thus

2 J x K, < {J{Un, ¢,0):¢€j, and L ek(n, ¢)}.

Step 3. PutS=BnJand R =S x T,and use (1) and (2) to show that R < Pn
for all n.

P/C in Tychonov products. This completes our incomplete set of results on cc
and c = lu. On the other hand, we know all about P/C, largely because the
set-theoretic difference of two boxes in a product of two sets, is the union of three
disjoint boxes. Bearing this in mind, the reader can easily check the proof of 4.6
below.

4.6. PROPOSITION. For any spaces X and Y, the point x x yis P/Cin X x Yin
and only in the following cases:
(i) both x and y are P, OR
(ii) both x and y are Ic, OR
(iii) both x and y are P/C, but one of them is neither P nor Ic, while the other is
both P and lc.

PrOOF. Suppose x is not locally compact and y is not P. To complete the
proof, it suffices to show that x x yisnot P/C. First, choose a filter ¢ with limit x,
such that ¢ does not meet the family of compact subsets of X. Second, see lemma
2.4 and choose a filter { with limit y, such that for each 5 converging to y, if  is
coarser than { then there is a decreasing sequence (H,) inn such that (| H, ¢ {. Put
¢ = ¢ x {,and consider any coarser filter § with the same limit, x x y. Let  be
the projection of 4 on Y, choose (H,) in n as above, and let D, = X x H,. For each
E€4, there are Fe ¢ and Ge{ such that E o F x G. Now E\D, o F x (G\H,),
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a non-void set without compact supersets, if n exceeds some n,. In short, E\D, is
not sub-compact for all these n, that is,  is not sc-complete.

4.7. COROLLARY. Let Z be the Tychonov product of the spaces Z;, for jin J. Then
the point z = (z;) is P/C in Z in and only in the following cases:
(i) z;is P in Z, for all j, and the indiscrete filter {Z;} converges to z; in Z;, for
almost all j, OR
(i) zjisIcin Z; for all j, and Z; is compact for almost all j, OR
(iii) z; is P/C but neither P nor Ic for some i J, and z;is both P and Ic in Z; for all
other j, and the indiscrete filter {Z;} — z; for almost all j.

Since this follows directly from 4.6 itself, we omit the proof.

4.8. DEFINITION. We call y a P/C-productive pointof Yifx x yisP/CinX x Y
whenever x is P/C in X, and we call Y itself P/C-productive if it consists wholly of
P/C-productive points.

4.9. COROLLARY. A point is P/C-productive iff it is both P and Ic. Further, P/C
productive T, spaces are discrete (since compact sets in T, P-spaces are finite).

§5. Box-products.

Recall that a box product of T, topological spaces is compact iff its factors are
all compact and almost all are singletons: see Knight [8]. The same is true for
filter convergence spaces in general. We emphasise something not mentioned in
§1: the box product of topological spaces is topological, even under the ‘conver-
gence’ definition given in §4 above.

Major result. To our surprise though, we found something more general,
namely, the box product of a sequence of locally compact spaces is cc-productive.

5.1. THEOREM. Let y = (y;) be a point in Y, the box product of a sequence of
spaces Y. Suppose y; is Ic in Y], for all j. Then y is a cc-productive point, and in
particular, cc.

Proor. Take a space X, a cc-point x in X, a sequence p,, of covers of X x Y
consisting of boxes

VX W= VX Wl XWZX...

indexed as in 4.5, and filters o and v converging to x and y respectively. Next,
choose compact sets H; belonging to the projection v; of v on ¥, and put
K,, = H, x ... x H,.Further,let I',, be the set of all filters £ converging in Y with
the same projectionon Y, ., x Y,,, X ...as v, and let p, and g,, be the projec-
tions from Yand X x Yonto ¥} x ... x ,and X x ¥, x ... x Y, respectively.

Much as in 4.5, for each m and each filter ¢ converging in X, we find finite sets
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k(m, ¢) in I',, and b, of filters converging in X, along with M € ¢ and A(m, ¢) € ¢,
such that

K = U {paW(m, ¢,8):Sek(m, §)},
A(m,¢) = () {V(m, ¢,0):Eekim, @)},

3) Am, ¢) x < | {gnU(m, ¢,&): Eckim, ¢)}, and
4) M < ) {A(m, ¢): p by}

Now put N; = H,. Forj > 1,let N; = G;n H;, where
) Gy = () {W(m ¢,¢):m <j, g b, and Eek(m, $)},

an intersection of a finite number of sets. When these indices m, ¢ and ¢ run
through their possibilities, each &e k(m, ¢) ‘has the same m-tail’ as v, and in
particular, £; = v;. Thus the sets Wy(m, ¢, £) in (5) all belong to v;. Consequently,
Njev;.

Let N =[[N;. Then M x Neo x v. Furthermore, M x N < p,, for all m. To
prove this, fix m and take v x we M x N. By (4), ve A(m, ¢), for some ¢eb,,
Next, w;e N; < Hj, for 1 < j < m. Thus by (3),

6) VX Wy X ... X Wpeq,U(m,o,E),
for some & € k(m, ¢). Now let j > m: then by definition and by (5),
) w;eN; = G; < Wm, ¢,¢).
By (6) and (7), v x we U(m, ¢, £). In short,

M x N < |J{U(m, ¢,&):peb, and Eekim, ¢)},
completing the proof that x x y is cc.

Application. In the context of 0.2, because scalar multiplication in topological
vector spaces provides a very weak form of first countability, we wondered
whether ¢ = lu topological vector spaces had to be locally compact. They do not.

Let T be the set of all real sequences and S be the set of all real sequences
eventually zero. As a countable box product of real lines, Tboasts a complete
Hausdorff ¢ = lu group topology which becomes a ¢ = lu locally convex vector
topology, when restricted to the closed infinite dimensional sub-space S. Thus
neither S nor T'is locally compact.

In fact, as we show below, § and T are not even P/C. On this evidence, we
suspect that P/C topological vector spaces must be locally compact.

5.2. ExaMpLE. The topological vector space S is ¢ = lu but not P/C.

ProoF. Let Og stand for the zero vector in S. For all n, let D, be the set of all



246 H.-P. BUTZMANN AND M. SCHRODER

sequences z in T with |z;| < 1/nfor all i, and put C, = D, n S. By definition, each
C, is a neighbourhood of Qg in S. We claim: the sequence C, kills the
P/C-property at Ogin S.

To see why, consider a neighbourhood D of Ogin T, and let C = D n S. With-
out loss of generality, we assume there is a decreasing sequence q = (g;) of positive
real numbers, such that D is the set of all sequences z with |z;| < g; for all i. For
each n and for any sequence z, let t,(z) be the truncated sequence, whose first
n terms coincide with those of z, and are zero from then on. Choose n > 1/q,.
Then t,,(q) € C\C,, for all m > n. Thus by 5.5, the set C\C, is not sub-compact.

Reduced products. Tychonov’s theorem characterises compact boxes in T,
spaces, but it does not force compact sets to lie in a compact box! Though this
must surely be known, if not folklore, we prove it below, as we cold not find it
anywhere. Reduced products enter our proof: see van Douwen’s survey [17] for
their use in the ‘para-compactness problem’. We begin with their ‘convergence’
definition, and then show its agreement with the usual ‘topological’ one.

Given a sequence Y, of spaces, consider the equivalence ~ on their box product
Y under which x ~ ziffx,, = z,,for almost all m, and its quotient map sfrom Y to
the factor-set Y/ ~. Let Z denote the resulting minimal quotient, usually known
as the reduced product VY,.

As s sends any box product filter O ¢; in Ytoan s-complete filter, this quotient
is a P-space. Indeed, so are its pre-topological and topological modifications, by
2.8. Further, for i = 1 or 2, the space Y is T; iff each factor is T;, while the reduced
product is T; iff almost every Y;is T,. For each y in Y, let E(y) = {x:x ~ y} and
E\(y) = {x: X, = ymforallm > n}. Bothsets are closed in Y, if Y is T, and in any
case, E(y) = (JE,(y).

Next, let x ~ zand ¢ — x in Y. Then s(¢) = s(n), for some n — z. (To construct
11, suppose x and z agree for j > m, let 0 be the ‘m-tail’ of ¢ and putn =1 x 6,
where 7 is the ultra-filter over z, x ... x z,,.) As aresult, in our standard notation
for neighbourhood filters,

(i) nbz(s(y)) = s(nby(y)) for all ye Y, and

(ii) if U is open in Y then s(U) is open in VY,.

Together, these facts prove 5.3 below, and this in turn explains the good
behaviour of the usual topological reduced product. See Kunen [9] for more
details.

5.3. PROPOSITION. Let each Y, be topological. Then the space Z constructed above
is a topological P-space, which coincides with the usual topological reduced product
VY,. Furthermore, s is open as well as continuous.

Compacta in box products. Now take T, spaces Y;, and consider a compact set
L in Y. Being compact in the T, P-space VY,, its image s(L) is finite. Hence
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L < {J{E(y): ye G}, for some finite subset G of L. In other words, L is the finite
union of the ‘one-legged’ compact sets L N E(y), for y in G. In fact, ‘the legs are
bare’, as we explain in Theorem 5.5 below.

5.4. LEMMA. Let L be a compact subset of E(y). Then L < E,(y), for some n.

PrOOF. Assume the contrary. Then there is an infinite set J of integers, and for
eachnin J, a point y, in L which differs from y in the n-th component but has the
same n-tail: that is, pr,(y,) # pr,(y), and pr,(y,) = pr.(y) for m > n. Put
M = {y,:neJ}. Then M is an infinite set, since its points y, are all distinct.

We claim: for each z in E(y), we can find an open neighbourhood U of z with
M N U finite. In the T, space Y, this makes M a closed, discrete and compact
subset of L, and hence, finite.

To prove the claim, take z in E(y). Then there is some n, such that
pr.(z) = pr.(y) for all n > n,. In particular, if n, < ne J then y, # z. Put

U = {w:pr,(w) # pr,(),), for nin J with n > n,},

Since Y is T, U forms an open box around z, and by construction, if y, belongs to
U then [ < n,. In other words, the claim is true.

5.5. THEOREM. Let Y be the box product of a sequence Y, of T, spaces, and let
L be compact in Y. Then for some m, the projections K and F of Lon Y; x ... x Y,
and Y, .1 X ... are compact and finite respectively, and L = K x F.

P/C in box products. Together with 4.6, this allows us to characterize P/C in
Hausdorff box products: we omit the proof.

5.6. PROPOSITION. Let Z be the box product of the T, spaces Z;, for j = 1,2,...
Then z is P/Cin Z iff
(i) z;is Pin Z; for all j, OR
(i) zjislcin Z; for all j, and for almost all j, the singleton z; is open in Z;, OR
(iii) z; is P/C but neither P nor Ic for some i, and z; is both P and Ic in Z; for all
other j, and the singleton z; is open in Z; for almost j.

§6. Topological Aspects.

Our first results apply to a few (nearly topological) pre-topological limits and
other spaces not covered by the general techniques of §2 and §3.

Then we save something from Schroder [14], theorems 5.1 and 5.2. The former
exaggerates the influence of the set of non-compact points on the ¢ = lu-prop-
erty, while according to the latter, the ¢ = lu-property resides wholly outside the
compact sets. This idea led us to decompactification, a process which generates
spaces known variously as anti-compact, compact-finite, or pseudo-finite. See
Bankston [1] or Hutton and Reilly [6].
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Two topological limits. We begin with a definition and a lemma. A point z in
a space Z is topological if its neighbourhood filter nbt(z) in tZ converges to z in Z;
we call it strange otherwise.

6.1. LEMMA, Let K be a compact set of topological cc-points in a space Y, and let
v, be a sequence of covers of Y. Then there is an open neighbourhood U of K, refining
each y, weakly.

We omit the proof. Without the ‘topological’ requirement, this result is false, as
any strange pre-toplogical cc-point z shows, with K = {z}.

Now let Y be the pre-topological inductive limit of a sequence
... Xy > X;+1 > ... of spaces, and let Z = tY. Suppose z is cc in almost all X,.
Then by 3.5,zisccin Y (and in Z too, if z is topological in Y). But otherwise? Even
for compact Hausdorff topological spaces, we do not know.

To get some sort of answer, we assume roughly that (i) Y is cc and Z is T, (i)
‘not many’ strange points lie near z, and (iii) ‘neighbourhood-layers near z are
o-compact’. To be precise, see below.

6.2. PROPOSITION. Let Y and Z be respectively, the pre-topological and topologi-
cal limits of a sequence ... X; > Xy .+, > ... of topological spaces. Suppose that for
each sequence (C,) in nbt(z) there is a ‘smaller’ sequence B, of open sets in nbt(z)
such that

(i C, > A, > B, > A,+, for all n, where A, is the closure of B, in Z,
(ii) each strange point in A, belongs to (\A,, and
(iii) the sets L, are all compact, where L, = X,, " (A,\B,+,).
Thenzisccin Z.

Proor. Take covers y,, of Z, choose C,, from y,, N nbt(z), and hence obtain the
sets A,, B, and L,, as above. Put L = ( JL,, and M = A U L. Then M N X, is
a neighbourhood of y in X,, for all y in AN X,, as B, is Z-open and
M n X, o By n X;. Thus M enb(y) for all ye A.

Next, use 6.1 to insert a Z-open set W; between B, . o L;, with W, refining
eachy,, weakly. Now put W= | JW, and V= 4 U W. Then V enb(y) for all ye 4,
because V o M. Further, V e nb(y) for all y e W, because W is open. In short, V' is
open in both Y and Z. Finally, V <y, forallk,as V< B,u W, u...u W ;.

A simple example illustrates this. Let H be the open right half complex plane
together with the origin. For all k, consider the set X; of all x + iy in H such that
y = 0 or x > 1/k, with its locally compact (Euclidean) topology. Their minimal
inductive limit Y is pre-topological and locally compact, and 0 is its only strange
point. To form a neighbourhood of 0in Z = tY, take a positive real number r and
a Euclidean open set U in H containing the half-open interval (0, 7] : then {0} U U
is open in Z. In fact, these sets (‘tear-drops’) generate the neighbourhood filter of
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0,and so Z is T5. Because the other conditions needed for 6.2 clearly hold, 6.2 and
2.6 justify our claim below.

6.3. ExaMpLE. The topological inductive limit Z of the locally compact spaces
X, above is P/C.

A result like 6.2 holds for pre-topological spaces in general.

6.4. PROPOSITION. Consider a pre-topological cc-space Y and its topological

modification Z. Assume that
(1) Y is T and strongly regular at z (that is, each C enb(z) contains a closed

neighbourhood A of z),

(i) zisP/CinY,

(iii) z is isolated in Z from all (other) strange points, and

(iv) for each sequence C, in nb(z) there is a smaller sequence A, in nb(z) such that
(A, is compact.

Then z is cc in Z.

ProoF. Take an open set U over z, such that U\{z} consists entirely of
topological points. Now let y, cover Z with open sets, choose C, from the family
y, N nbt(z), and pick closed sets 4, from nb(z) whose intersection A is compact,
such that Co " U > Agand C, o 4, o A, for all n. Further, take a closed set
B,enb(z) such that B, = A, and B,\ A4, is sub-compact, for all n. Next, for each
ye A\{z}, choose an open neighbourhood B, of y, with B, < y, for all k. By
compactness, a finite union B of these sets contains A, and in fact, Be nb(y) for all
ye A. (Do not confuse this with 6.1: one needs B, in general, and z need not be
topological!)

Slice up B, as follows: S, = B, N (4,\4,+ ). For each n, insert a compact set L,
between A4, > S, and an open set W, between C, o L,, such that W, < y, for all k.
Asin 6.2,put W= )W,and Q = BU W.

By construction, Q e nb(y) for all ye B, while Q\ B, is clearly open. In short,
Q is open. Furthermore, Q <y, forallk,asQ c BUC,u Wy u...u Wiy,

Not quite by coinicidence, the space Y which appeared in the construction of
example 6.3 illustrates the use of 6.4 as well.

Errors and corrections. Let us now turn to the ideas and errors in Schroder
[14], theorems 5.1 and 5.2. The former claims: a completely regular topological
space X is ¢ = lu iff the collection X, of all its points devoid of compact
neighbourhoods forms a P-set in X. Butzmann and others gave examples
showing the independence of these conditions.

On the one hand, as the rational field Q has no Ic-points, Q,. is trivially a P-set
in Q, even though by 0.2, Q is not ¢ = lu. On the other hand, in the ¢ = lu-space
Vof 0.5, V,. is not a P-set, since its only member, w, X w,, is not a P-point.
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Nevertheless, as 6.5 shows, the situation of X, in X does help determine whether
X has the cc-property.

6.5. PROPOSITION. Let X be a topological space.
(i) Suppose X, is compact. Then X is cc iff X, is a P/C-set in X.
(i) If X, is a union of compact P/C-sets, then X is cc.

ProoF. To prove (ii), take a compact P/C-set K, and let y, cover X for all n. By
compactness, for each n there is a neighbourhood U, of K, with U, < y,. By P/C,
an open neighbourhood U of K and compact sets K, exist, with U < U, U K,,.
Thus U < y, for all n. Consequently, each point of K is cc. (Note: this does not
make each point of K a P/C-point — counter-examples exist.)

As (ii) implies half of (i), suppose now that X is cc and X, is compact. Let
k denote the family of compact subsets of X, take open sets U, > X, ., form the
covers {U,} U k of X, and use 6.1 to find an open neighbourhood U of X, and
compact sets K, with U = U, u K,. Hence X, is a P/C-set, as desired.

§7. Decompactification.

All this led Schroder to see the ¢ = lu-property in the non-compact convergent
filters: let us give him better glasses.

7.1. DerFINITION. Given a space Z, we call a filter on Z non-compact if no
compact set belongs to it and anti-compact, if the complement of every compact
set belongs to it.

Anti-compact filters are non-compact, non-compact ultra-filters are anti-com-
pact, and more generally, a filter is non-compact iff some finer ultra-filter is
anti-compact.

7.2. DEFINITION. One calls a space compact-finite if all its compact subsets are
finite. Given a space Z, we define its decompactification dZ as follows: ¢ — zindZ
iff

(i) ¢ »zin Z, and
(i) s(z, K)e ¢ for all compact K in Z, where s(z, K) = {z} U (Z\K).

Bankston [1] had good reason to call compact-finite spaces anti-compact, but
that would cause confusion here. The rather irregular properties of decompacti-
fication appear below.

7.3. PROPOSITION. For all spaces Z,
() dZ > Z and dZ = ddZ,
(ii) dZ is compact-finite and T,
(i) Z is a compact-finite and T, iff Z = dZ,
(iv) dZ is (pre-topological or) topological if Z is,
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(v) zislcin Z iffit is discrete in dZ, and
(vi) dA is a closed sub-space of dZ, if A is closed in Z.

Proor. Consider a space Z.

(i) By definition, dZ > Z. Consequently, ddZ > dZ. Conversely, any filter
converging in dZ also converges in ddZ, because dZ has fewer compact sets to
impose restrictions than does Z.

(i) Let K be compact in dZ. Taken an ultra-filter p over K. Since p - zindZ
for some z e K, the definition requires s(z, K) to belong to p. Hence, either {z} € p
or Z\K € p, but the latter contradicts K € p. Thus p = 2. So K is finite, as it admits
trivial ultra-filters only.

Now suppose j converges to z in dZ. Since the singleton y is compact,
s(z,{y})€ . Thus y = z. In short, dZ is T;.

(iii) Parts (i) and (ii) do half the work. Conversely, let Z be compact-finite and
T;. Suppose ¢ — z in Z. For each compact K, the co-finite set s(z, K) is an open
neighbourhood of z in Z, and as such, it belongs to ¢. Consequently, ¢ — zindZ,
as desired.

(iv) The pre-topological case being trivial, let Z be topological. For any open
U, compact K and finite F in Z, put Q(U, K, F) = U\(K\F). These sets form
a base for a topology. Further, the neighbourhood filter of z in dZ is clearly based
on the sets Q(N, K, z), as N runs through the open neighbourhoods of z in Z. In
short, the topology generated by these sets coincides with that of dZ.

(v) This is obvious.

(vi) Let{ — zin A4 as a sub-space of dZ, and let ¢ be the image of { in Z. Then
¢ - zinZand { - zin A, asa sub-space of Z. Also, s(z, K) = Q(Z, K, z) € ¢, for all
compact K in Z. Hence Q(4, K, z) € { for allcompact K in A. Inshort,{ — zin dA.

Conversely, let A be closed and let { — zin dA. Taking ¢ as above, we want ¢ to
converge to z in dZ. First, ¢ — z in Z. Next, take a compact set K in Z. Then
zU(A\K)e{, because KnA is compact in Z. As a result, zu
(Z\K)e ¢. Allin all, ¢ — z in Z, as desired.

One really does need T; in 7.3 (iii) above. For example, the set of natural
numbers becomes a topological space M which is not Ty, when given neighbour-
hood filters as follows: nb(m) = 0 1 for all m.

7.4. EXAMPLE. The space M is locally compact and compact-finite, even though
dM + M.

Compact-finite cc-spaces.

Further, prompted by 7.3(v) and by the compact-finiteness of T, P-spaces, one
might guess: maybe compact-finiteness converts ccinto P. We refute this with the
help of Martin’s axiom, which provides an sf-complete ultra-filter ¢ on the
natural numbers and so guarantees non-trivial P-points in this Cech-Stone
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compactification. See Jech [7], theorem 57 and lemma 24.9. (We call
¢ sf-complete if for each sequence (Q,) in &, some Q in ¢ makes all the sets Q\Q,
finite.)

One obtains a T, topological space S by giving the natural numbers the
discrete topology except at 0, where the neighbourhood filter is 0  &.

7.5. EXAMPLE. The space S is para-compact, anti-compact and P/C, but not P.

Before leaving decompactification, we emphasise its peculiar behaviour in
sub-spaces (which the proof of 7.3(vi) illustrates), under continuity, and in
products (which we did not discuss).

Decompactification and cc. Take a space Z, and let ¥,., and ¥,.,(2) be the sets of
anti-compact ultra-filters which converge in Z, and to z in Z respectively.
Consider the following analogues of the cc-property:

(a) for every sequence (y,) of covers of ¥, there is a cover y of 7,.,(z) which
refines each y, weakly,

(b) as above, using 7., the set of anti-compact convergent filters,

(c) as above, using 71,, the set of non-compact convergent filters,

(d) zisccindZ, and

() zisccin Z.

7.6. REMARK. Take a collection = of filters with a coarsest member ¢. Then the
set of covers of E is weakly countably directed iff ¢ is s-complete.

7.7. PROPOSITION. In any space Z,

(@) < (b) = (d) = (e),and (c) = (¢),

(b) and (c) are independent of one another, and each ‘=’ given above is proper.

In particular, though the cc-property passes to a space from its decompactifica-
tion, the decompactification of a cc-space need not be cc.

(a) <> (b). This follows directly from 1.6.

(d) = (e). Suppose zisccindZ, and let k be the family of all compact subsets of
Z. Take covers y, of Z. As they also cover dZ, some cover y of z in dZ refines them
all weakly. Now y U k covers the ultra-filters converging to zin Z, and so py + k
covers z in Z, by 1.6. Further, py + « refines each y, weakly, for again by 1.6,
k refines 8 weakly as soon as d covers the ultra-filters convergingin Z. Inall, zis cc
in Z.

(b) = (d) and (c) = (e). These are proved similarly.

() # (c)and(e) ¥ (d). Several counter-examples deal with these non-impli-
cations. The first, the cc-space V of 0.5, consists entirely of Ic-points except for w,
the corner point wy X ;. Thus ¥, has a minimum, the filter « based on the open
boxes (v, wg) X (4, ;). Now « is obviously not s-complete: it is not even sf-
complete.
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Since the neighbourhood filter & N a of w in the topological space dV is not
sf-complete, (d) does not hold. Further, the neighbourhood filter of w in V is the
coarsest member of 7, as it is not s-complete, (c) fails too, by 7.6.

(d) 4> (b) and (d) ¥ (c). Assume Martin’s axiom, and consider the com-
pact-finite cc-space S of 7.5. Clearly, (d) holds but (c) does not, because the
coarsest member 0 N & of ¥, is not s-complete. Similarly, as ¢ is the coarsest
member of ¥, condition (b) fails.

(b) # (c)and (e) # (c). Take the P-space U of 0.6 and the ordinal space W,,
and let w be the point in the topological quotient T of U + W, obtained by
identifying w, and w,. In T, 1, and 7, both have minima, the neighbourhood
filter of w in T and the filter based on the co-countable sets in U\w, respectively.
Because the latter is s-complete, (b) — and hence (€) — both hold. On the other
hand, (c) does not, as the former is not s-complete.

(c) # (d),(c) # (b)and(e) # (d). Take the c = lu-spaces ¥ and L of 0.5 and
0.6, and let M be the topological quotient of V + L obtained by identifying the
points of W, x w, in V with their counterparts in L. Here, the minimal members
of 7, are the neighbourhood filters in M of the points v x @y, for v in W,. By
a standard argument based on ‘if 3, < w, for all n, then sup(x,) < w,’, the reader
can easily verify (c) for the point wy x w; in M.

On the other hand, 7.3(vi) makes dV (homemorphic to) a closed sub-space of
dM, as V is closed in M. Now, as noted above, wy x w, isnotccindV. So by 3.1,
wp X w; is not cc in dM: in other words, (d) fails. This completes the list of
non-implications, since (b) implies (d) and (c) implies (e).

Finally, we return to Schroder [14], theorem 5.2. This claims the equivalence
for any space Z, of the conditions

(A) the set of all w-covers of ¥, is weakly countably directed,

(C) the set of all w-covers of ¥, is weakly countably directed, and

(E) Z is a ¢ = lu-space.

The reader will see from 7.7 what really happens: (A) = (E)and(C) = (E),as
claimed, but the rest is false, as these examples show.
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