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THE SMOOTH SURFACES ON CUBIC HYPERSURFACE
IN P*WITH ISOLATED SINGULARITIES

ALF BJORN AURE

§0. Introduction.

It is wellknown that a smooth surface on a quadric hypersurface in P is either
a complete intersection of the quadric and another hypersurface, or it is linked to
a plane on the quadric. The purpose of this paper is to find a similar result for
smooth surfaces on a cubic hypersurface in P4, If the cubic hypersurface has only
isolated singularities, then we are able to do so; a smooth surface on such a cubic
is either a complete intersection of the cubic and another hypersurface, or it is
linked to either a plane, a quadric surface, a cubic scroll, a Veronese surface or an
elliptic quintic scroll on the cubic (Theorem 1.1). If the cubic hypersurface has
acurve in its singular locus, then there are open questions. Those cubic hypersur-
faces will not be treated here.

The proof of the theorem goes as follows: Since the cubic hypersurface has only
isolated singularities, we get a smooth cubic Del Pezzo surface in P? by intersect-
ing with a general hyperplane. We will show that for a smooth surface on the
cubic hypersurface, the induced hyperplane section is a curve of “nearly maxi-
mal” genus on the Del Pezzo surface. Furthermore, this curve can be linked to
a curve of degree 5 or less on the cubic surface, and then finally we show that this
linkage can be lifted to a linkage of the surface and one of the surfaces mentioned
above.

This work is a part of [A1]. I am grateful to G. Ellingsrud and C. Peskine for
their advice and suggestions.

§1. The results.

We work over an algebraically closed field of characteristic 0. Recall that the
sectional genus of a surface in a projective space is the genus of a general
hyperplane section.
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THEOREM 1.1. Let S be a smooth surface of degree d and sectional genus
n contained in a cubic hypersurface V in P* with only isolated singularities.

Thenn =1 + d/6 (d — 3) — u/6, where p = #(Sing V) S, and S is linked to
a surface S’ on the cubic with the following possibilities

Y dmod 3 u

0 0 0

P2 2 4

Quadric (possibly singular) 1 4
Cubic scroll 0 6
Veronese surface 2 10
Elliptic quintic scroll 1 10

The surfaces S’ in the table with u < 6 are projectively Cohen-Macaulay; hence
a surface S linked to such an S’ has this property too. These surfaces are in the
linkage class of the complete intersection surfaces in P* (see [PS]). An elliptic
quintic scroll is linked to a Veronese surface, so we have the following:

COROLLARY 1.2. A smooth surface on a cubic hypersurface in P* with isolated
singularities is either projectively Cohen-Macaulay or in the linkage class of
a Veronese surface.

If we have a linkage S U S’ = V n V, as in the theorem where V, is a hypersur-
face of degree ¢, then the exact sequence of linkage is (see [PS])

(1.3) 0- ws(2 —t) > Osus = Os >0,

where wy is the dualizing sheaf of §’. From this exact sequence we can calculate
the cohomology groups H'(Os(n)),i = 0,1,2,neZ, and the Euler-Poincaré char-
acteristic y = y(0s). We omit listing these formulae, but we can mention one
application:

COROLLARY 1.4. An irregular smooth surface on a cubic hypersurface with
isolated singularities in P* is necessarily an elliptic quintic scroll.

Proor. With the notation as above, interchange the roles of S and §’ in (1.3)
and twist with (¢ — 2) to get
0- ws— Os s:(t —2) = Os(t —2) >0
The irregularity of S is h'(0s) = h*(ws) = the dimension of coker (H°(®s s
(t — 2)) » H%(Os.(t — 2)). The hypersurfaces of degree t — 2 cut out a complete

linear series for our possible S', unless S’ is a Veronese surface and ¢t = 3; but then
S is an elliptic quintic scroll.
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REMARK 1.5. That all possibilities listed in the theorem may occur is the case
for the Segre cubic primal; a cubic hypersurface with 10 ordinary double points as
singular locus. It can be realized as the image of a rational map P* — P* defined
by the quadrics through 5 fixed points in P3. The 10 nodes are the images of the 10
lines joining the pairs among the 5 fixed points. The image of a plane P in P3 is
either a Veronese surface, a cubic scroll, a quadric surface, or a plane according to
whether P contains 0, 1, 2, or 3 of the fixed 5 points. The image of a quintic surface
in P3 with triple points in the 5 fixed points can be shown to be an elliptic quintic
scroll. Hence the Segre cubic primal contains all possible S’ of the theorem. Since
an §' is cut out by cubics, one gets examples with all possible d and u of the
theorem by linkage.

§2. Proof of the theorem.

LEMMA 2.1. Let S and V be as in Theorem 1.1, then
(2.2 n=1+d/6(d — 3) — u/6 where p = #(Sing V)N S.
If d = 0 (mod 3), then pue {0, 6,12}, otherwise pe {4, 10, 16}.

ProoOF. Let I denote the ideal sheaf of S in P*, and let F be a homogeneous
polynomial of degree 3 defining V. Then multiplication with F defines a section of
a twist of the conormal bundle

0 05 —— I/I*(3).

This section vanishes precisely where the Jacobi ideal of F restricted to S vanish-
es; hence (as a definition when counted with multiplicity) u = ¢,(I/I*(3)) =

#(Sing V) N S, where ¢, denotes the second Chern class. Let N be the normal
bundle of S in P#, then (see [H, p 434]) c,(N) = d?, and for the first Chern class
¢i(N) = 5H + K, where H is the class of a hyperplane section and K the
canonical divisor. This gives

u=c(I/I*(3)) = c,(N(—3)) = d*> + (5H + K)(—3H) + 9d.

By adjunction H-K = 2z — 2 — d, and (2.2) follows by solving the equation
above for 7.

Since V has only isolated singularities, 4 < 2* = 16 by Bezout’s theorem used
on four (general) partial derivatives of F. The possible values of u in the lemma
then follow since = is an integer.

Let us next finish the cases u = 0, 4, 16:
The following result is a consequence of a theorem of Gruson and Peskine
together with a result of Roth (see [A2, Prop. 1.7]).
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PROPOSITION 2.3. Let S be a smooth surface in P* of degree d > 6 and sectional
genus m not contained in a quadric hypersurface. Then n < n3(d) = 1 + [d/6(d — 3)].
If m = m3(d), then S is linked to a surface of degreer < 2, whered + r = 0(mod 3),
by a cubic and a hypersurface of degree (d + r)/3.

For asurface S on V with u = O or 4 we have n = n3(d) by Lemma 2.1. Ifd £ 6
and n = m3(d), then S is either a plane, a quadric surface, a cubic or a quartic Del
Pezzo surface, a Castelnuovo surface, or a complete intersection of type (2, 3) (by
the classification of surfaces of low degree in P4 [S.R., p. 218]). These surfaces are
contained in a P? or a quadric; the residual surface on V has degree 2 or less. If
d > 6, then S is not contained in a quadric and Prop. 2.3 applies (if S is contained
in more than on cubic (d + r = 9), then we can choose one of the cubics in Prop.
2.3to be V).

LEMMA 2.4. The case u = 16 is impossible.

Proor. If u = 16, then (Sing V) N S is a complete intersection scheme defined
by four general partial derivatives of the form defining V. The fifth partial
derivative vanishes too on this scheme, so by Noether’s theorem it must be
a linear combination of the four others, and V is a cone. It is straightforward to
check that a surface on a cubic cone has 75 as sectional genus (consider a general
hyperplane section through the vertex and use [H, p. 374), hence u =0 or 4;
contradiction.

REMARK 2.5. The case u = 12 does not occur in the theorem, and we will
later exclude this possibility. A cubic hypersurface cannot have 12 distinct
double points (consider the degree of the dual hypersurface), but the number u
is counted with multiplicity. For instance the singular locus of the cubic
V' = {xox1x, + x3 + x} = 0} is a finite scheme of length 12, hence V' could
a priori contain a surface with u = 12.

Instead of classifying and then examine all different cubics with isolated
singularities, we choose a more uniform approach:

Let S5 be a general hyperplane section of V, and let C denote the induced
hyperplane section of the surface S on V. The surface S5 is a smooth cubic Del
Pezzo surface in P? with Picard group PicS; = Z’. A smooth curve of degree
d and genus g will be denoted by CY. A divisor D on S; is said to be of type (J;
m,, ..., mg) if there exists a morphism S5 — P2 blowing down six skew lines E; in
Si,i=1,...,6,such that D = ] — Zm;E; in Pic S5. Here | denotes the pullback
ofalinein P2, and {,E,,..., E¢} is a basis of Pic S;. Let H; denote a hyperplane
section of Sj; it is of type (3; 1,1, 1,1, 1, 1). The canonical class K = — Hj.

PROPOSITION 2.6. Let C be a smooth curve on S, of degree d and genus n =
1 + d/6(d — 3) — p/6 with ideal sheaf Ic = Igs,. If the values of d and p are as
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listed in the table below, then C is linked to a smooth curve D on S by a surface of -
degree t, such that we have one of the following possibilities

dmod3| u | D typeof D |h%0s,(D))|h°(Os,(D — H3))|  h'(Ic(n)

0 |61c9!(;0,00000]| 3 0 0

2 [10]C9](21,1,0,0,0,0)| 4 0 Snies

1 |10|ci|(31,1,1,1,0,00| 6 1 Sni—2

0 |12|C?|42,1,1,1,1,0)] 8 2 Sna-2 + One—s

Proor. We will omit the details since the proof is mainly elementary but
tedious. For a given curve C of degree d on S5 there exists a so called adequate
basis of PicS; w.r.t. C (see [G.P]), i.e. in this basis C is of type (J; m,,...,mg),
where 1) 0 = my + my, + ms, i) my 2 my, = ... = Mg, iil) r:=90 —m,; <2/3d,
lV)d = CH3 =30 — Zmi.

By adjunction, the genus  of Cis 1 + 1/2(C-C — C- H;) leading to
. 6
2.7 n=1+1/2(r — 1)d —3/4r* = Y (r/2 — m)?).
i=2
Because of iii), write r = 1/3(2d — b) — a, wherea 2 0and0<b<2,b+d =0
(mod 3). Comparing (2.7) and © = 1 + d/6(d — 3) — u/6 one finds

6
(2.8) 1/6 = 1/24(3a + b)*> + 1/2 Y, (r/2 — m;)~.
i=2
Using i), ii), iii), and iv), the solutions of (2.8) for the given u and b are:
u=6and b=0:
a=1lmy=..=meg=1/2(r — 1);6 = 1/2(3r — 1).

Lett = 1/2(r + 3),thend + 3 = 3tand C + D’ = tH5,where D' = (5;2,2,2,2,2,2)

in the adequate basis of Pic S;.
u=10and b = 1:

a=Lm=..my=r/2,ms=mg=r/2—1;6=3/2r.

Lett =r/2 + 2,thend + 4 = 3tand C + D' = tHy,where D' = (6;2,2,2,2,3,3).
u=10and b =2:

a=1m =m, =120+ 1),ms=...=mg=1/2(r — 1); 6 = 1/2(3r + 1).

Lett = 1/2(r + 5),thend + 5 = 3tand C + D’ = tH,, where D' =(7;2,2,3,3,3,3).
u=12and b =0:

a=2m=r2+1my=...=ms=r2,mg=r/2—-1,6=3/2r+ 1.

Lett =r/2 + 3,thend + 6 = 3tand C + D' = tH;, where D' = (§;2,3,3,3,3,4).
In the cases above C is linked to a curve D’ of the indicated type. Let G; =

2l — ¥4, ;E, j=1,...,6, then the G;'s are six skew lines contracted under
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a morphism S; — P2, The pullback of a line for this morphism is of type
(5;2,2,2,2,2,2). Using this basis for Pic S3, D’ gets the type of D as written in the
table.

The general curve in the linear system |D| is clearly smooth and of the indicated
degree and genus.

It remains to fill in the three rightmost columns of the table. We have
h‘(@ss(n)) =0, for neZ, and K = — H;. From the exact sequence

™ 0 - 05, - 0s,(D) > Op(D) = 0,

we find h°(0s,(D)) = D+ Hs + p(D), where p(D) = genus of D, by using Riemann-
Roch on D. Hence the first column follows. Tensoring (*) with 05, (— H;), we find
by adjunction h°(0s,(D — H,)) = p(D).

For the last column we have C + D =tH, in PicSs; hence h'(I(n)) =
h'(Os,(D + (n — t)H3)) = h*(Ip(t — 1 — n)) by Serre duality. The latter cohomol-
ogy group is easily studied by considering the exact sequences

0 — Ip(r) = 0s,(r) > Op(r) - 0,
and
0-0s,(—D +rH3) - Os,(-D + (r + )H3) = Oy, (=D + (r + 1)H;) > 0.
We skip this calculation.

Now we can finish the proof of the theorem for the remaining cases with
ue{6,10,12}. A curve C (resp. D), as in Prop. 2.6 when u = 6 or 10, is the
hyperplane section of a surface S (resp. §’), as in the theorem, because of Lemma
2.1. We must show that we can lift the linkage of C and D to a linkage of S and an
§'. Furthermore, we must exclude the possibility 4 = 12. Since the proofs for the
various values of 4 are rather similar, we will treat the case u = 10,d = 1 (mod 3)
in detail and then just sketch what differs for the other values of y and d.

The case u = 10,d = 1 (mod 3).

Let Is = I5; and as before, S is a general hyperplane section of V. Let C denote
the induced hyperplane section of S and Ic = Ic;s,. By Prop. 2.6, we have
C + D = tHy and D = C}. Consider the exact sequence

(2.9) 0 - Is(n — 1) = Ig(n) - Ic(n) — 0.

Since h!(Is(m)) = 0 when m < 0, and h*(I¢(n)) = &, (prop. 2.6), it follows by
induction on n that

(2.10) h's(t —2) s 1.
For n =t — 1 we get from (2.9) the long exact sequence

0— HIs(t — 1) » H(Ic(t — 1)) > H'(Is(t — 2)) » H' (Is(t — 1)) > 0.
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We have that Ho(Ic(t — 1)) ~ H%(0s,(Es + E¢)) hasrank 1, where Es5 + Egis the
union of two skew lines being of type (0;0,0,0,0, — 1, — 1) by Prop. 2.6. But then
H°(Is(t — 1)) = 0; otherwise § is linked to the union of two planes intersecting in
one point and having Es + E¢ as a hyperplane section. This is impossible
because the union of the two planes is not Cohen-Macaulay in the point of
intersection. This contradicts the fact that S is a Cohen-Macaulay scheme;
a property preserved by linkage ([P.S., Prop. 1.3]). So (2.10) and the long exact
sequence above imply H'(I5(t — 1)) = 0; hence there is a surjection H°(I5(t)) —
H°(Ic(t)). We can then lift the linkage of C and D = C} to a linkage of S and
a quintic surface S5 having D as a hyperplane section. Since D is smooth, S5 is
reduced, irreducible and has only isolated singularities (if any). By Serre’s cri-
terion for normality (“Ry + S,”), S5 is normal (the S, property comes from
linkage with S [P.S, Prop. 1.3]). If S5 is smooth, then it is an elliptic quintic scroll
by the classification of surfaces of degree 5, and we are through.

Assume that S5 is singular. First of all, S5 is not a cone over D because such
a cone is not Cohen-Macaulay in the vertex (D is not projectively Cohen-
Macaulay).

Let § — S5 be a minimal desingularization, i.e. no — 1 curves are contracted.
Let |L| be the linear system on S defining this morphism. Since S is normal and
not a cone, Severi’s theorem [M, p. 72] applies: h°(©s(L)) = 5. Furthermore,
I? = 5 and by adjunction L-K = —5, so § is ruled [B, p. 112]. Let y = x(03),
then S is ruled over a curve of genus g = 1 — y. The elliptic curve D dominates
this curve so g < 1. By Riemann-Roch x(Os(L) = 5 — h'(035(L)) = x + 5; hence
g = 1. By Hurwitz’ formula, D is a section and Ss is ruled in lines, because
otherwise we would have ramification points. Since L intersects a line in the
ruling once, the minimality of the desingularization implies that a section of §is
contracted. But then S5 is a cone; contradiction.

The proofin the case u = 10,d = 2 (mod 3)is similar. For u = 6,d = 0(mod 3)
the lifting of the linkage is without difficulty since the twisted cubic curve D = C3
is projectively Cohen-Macaulay. To avoid linkage with a cubic cone use
h°(I(t)) = h°(0s,(D)) = 3: By the proof of Lemma 2.4, V itself is not a cone so it
contains only a finite number of such cones (the vertex is in a singular point of ¥,
so the cone is contained in the tangent cone of a singular point).

The case u = 12,d = 0 (mod 3): There are no smooth surfaces of degree 6 with
sectional genus 2, and we will show that a normal surface S¢ of degree 6 in P* with
sectional genus 2 is a cone. The proof is analogous to the treatice of the elliptic
quintic scroll: Let § — S, be a minimal desingularization given by a linear system
IL]. As before, § is ruled, and we must show that §'is ruled in lines, i.e. §'is ruled
over a genus g =2 curve. By Riemann-Roch x(Os(L)=5— h'(Oz(L)) =
1—g+35; hence g=1 and for K the canonical divisor, y(0s(L + K) =
h°(O3(L + K)) — h*(Os(L + K)) = 2 — g.If g = 1, then h°(O5(L + K)) > 0. But
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this contradicts an easy modification of a result of A. Sommese [So, Lemma
2.3.3]: Since the morphism given by |L| does not contract any —1 curve and
h°(Os(L + K)) >0,wehave 0 S (L + K)> =I*? + 2L-K + K2 =6-8+ K> <0
(since K? < 8(1 — g) = 0); contradiction. Hence g = 2 and S, is a cone.

One shows that a smooth surface S on V with 4 = 12 and d = 0 (mod 3) is
linked to such a cone; this is impossible sine the cone is not Cohen-Macaulay in
the vertex, and therefore this case is excluded.
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