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CLASSIFICATION OF IRREDUCIBLE PROJECTIVE
SURFACES OF SMOOTH SECTIONAL GENUS =3

M. ANDREATTA and A. J. SOMMESE

Let S’ = PY be an irreducible and reduced, possibly singular, complex projec-
tive surface. To classify such surfaces one of the possible way is to consider the
smooth genus of the hyperplane section H €|05p~(1),5]. This type of classification
goes back to the work of Castelnuovo, Enriques and Scorza.

In recent time the second author has given a revised and more understandable
version of their principal tool, the Adjunction Process (see [Sol], [VdV] and
[So2]). This had made possible the classification in the smooth case (see for
instance [Li] and [1o]).

In this paper we approach the general case and we classify at least the
normalizations of such surfaces whose hyperplane sections have desingulariz-
ations with genus less or equal then three (i.e. smooth genus < 3).

We use the following notation. S’ denotes an irreducible and reduced projec-
tive surface in PY. Let p: $ — S’ be the normalization, n: § — S the minimal
desingularization and let L = p*Opn(1)|s, and L = n*L. Finally let g(L) = 1/2
[(Ks + L)- L + 2]. Note that a generic C €|L| is smooth.

We note that (S, L) is a pair consisting of a smooth surface and a nef and big line
bundle such that there exist no smooth rational curves in S, E < $, such that
L-E =0and E-E = — 1 (this is the minimality condition). In a previous paper,
[A + S1], we called such pairs a-minimal and we worked out an “Adjunction
Theory” for them. This results, which are recalled in 0.8, are the principal tools
used in the paper.

The results we get are the following. (For genus O we have the theorem 0.6
proved in [Na] or [Fu]).

THEOREM A. Let (S, L) be as above. Let C € |L| be smooth and suppose g(L) = 1.
Then we have one of the following disjoint possibilities.
a) (S,L) = (S, L) is a geometrically ruled surface (scroll), p: S = P(€) = R, over
a curve R, of genus 1. (g(S) = q(§) = 1)
b) (8, L) is the cone over the polarized curve (C,Lc = Nc s) and C is embedded in
S as the infinite section (q(S) = 0, g(S) = 1).
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c) S has only rational double points as singularities and —Kg =~ L (i.e. (S, L) is
a Gorenstein-del Pezzo surface) (q(S) = q(S) = 0).

THEOREM B. Let (S, L) as above. Let Ce|L| be smooth and suppose g(L) = 2.
Then we have one of the following possibilities.
a) (S, L) is a geometrically ruled surface (scroll), p: S = P(&) — R, over a curve of
genus 2. (q(S) = q(5) = 2).
b) (S, L) is the cone over a smooth polarized curve (C,N¢ s) = (C,L¢) and C is
embedded in S as the infinite section. (g(S) = 0 and q(S) = 2).
¢) m: S — S factors throughny: S — S, and n,: S, — S, where (S., n,*L) is a Goren-
stein conic bundle over P*; n,: S, — S'precisely contracts less then or equal to two
sections of S, - P* (n,: § - S, is the map ¢.: S — S, relative to (S, L) in 0.8.1).

THEOREM C. Let (S, L) as above. Let Ce|L| be smooth and suppose g(L) = 3.
Then we have one of the following possibilities (for definitions see 0.5).
a) (S, L) = (S, L) is a geometrically ruled surface (scroll), p: S = P(&) - R, over
a curve of genus 3 (q(S) = q(S) = 3).
b) (S, L) is the cone over the polarized curve (C,N¢ s) = (C, L¢) and C is embedded
in S as the infinite section (g(S) = 0 and ¢(S) = 3).
¢) m: S — S factors throughnty: § — S, and n,: S. — S, where (S,, m,*L) is a Goren-
stein conic bundle over P'; n,: S, — S precisely contracts less then or equal to two
sections of S, — P! (n,: § — S, is the map ¢.: § — S, relative to (S, L) in 0.8.1).
d) K5 ® L is spanned by global sections, h°(Ks ® L) = 3, and the associated map,
¢: 8§ — P? is a modification.
€) Ks® L is spanned by global sections, h°(Ks ® L) = 3, and the associated map,
¢: S — P2 is a generically 2 to 1 map. S, is a 2 sheeted cover of P? branched along
a quartic curve and L. is the pullback of 0p:(2).
f) (8., L.) is a conic bundle over a smooth elliptic curve.
g) S = S is a degree 4 (see §2) surface in P3, or S’ is a degree 5 surface in P>,

REMARK. We notice that the cases a) and b), i.e. the scroll and the cone over the
curve of genus g, occur for all the genus, for g = 4 as well. For every genus = 2 we
find also the Gorenstein conic bundles over P! and possibly surfaces obtained
contracting at most two of their sections.

In section 2 we classify also the singular surfaces of degree 4 (see the table A, see
p. 208). One of our motivations for doing this classification comes from our work
[4 + S2] where we study when the adjoint sheaf, Ks ® L is spanned by global
sections. The degree four surfaces play a particular role in this study because the
standard techniques to prove when a line bundle is spanned by global sections,
e.g. Reider’s theorem, apply only for degree = 5. One consequence of the
classification in this paper is in 1.13 that states when Ks® L is spanned at
smooth points by global sections in the case c,(L)* = 4.
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§0. Notation and Background Material.

0.0. We work over the complex numbers. All spaces are complex analytic and
all maps are holomorphic. By surface we mean an irreducible and reduced
complex analytic space of dimension two. If S is a complex analytic space, we
denote its holomorphic structure sheaf by Os. We do not distinguish notationally
between a locally free coherent analytic sheaf and its associated holomorphic
vector bundle.

If S is a connected complex manifold then we have the dualizing sheaf
Kg = A"Tg* where n = dim S and T* is the cotangent bundle of S. If S is a normal
variety then the dualizing sheaf Kg = j* Kgeys) Where j: Reg(S)— S is the
inclusion of the smooth points of S into S. In this case K is a reflexive rank one
sheaf on S. When S is normal and projective and t € R we use tKg to denote the
Weil divisor obtained by multiplying 7 times the Weil divisor K. [Re] and
[A + K] are helpful references for these matters.

Given an effective normal Cartier divisor A on a normal Cohen-Macaulay
variety S we have by ([4 + K], pg. 7): Ks ® [4]), = K.

0.0.1. Let S be a variety and let 7: § — S be a resolution of singularities, i.e. §
is a complex manifold and = is a surjective holomorphic map which gives
a biholomorphism from § — ™! (Sing(S)) to S — Sing(S). The Leray sheaves
Rin*(0g) for i = 0 are independent of the resolution. S is normal if and only if
nx(0g) = Og.

We denote by K the Grauert-Riemenschneider canonical sheaf which is
defined by K5 = n*K3(The sheaf K5 does not depend on the desingularization 7;
see [G + R]).

Assume that S isnormal. If Rin*(Og) = Ofori > 0 then the singularities of S are
said to be rational. It is a theorem of Kempf ([Ke], pg. SO) that S has rational
singularities if and only if S is Cohen-Macaulay and n*(Kg) = K5 =~ Ks. We
denote by Irr (S), the irrational locus of S, which is the union of the supports of the
sheaves Rin*(0g) for i > 0.

If S is a surface, let n: § - S be a minimal resolution of the singularities,
minimal in the sense that the fibres of 7 contain no rational curves E satisfying
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E-E = —1. A fundamental fact is that
K§ +4= n‘Ks

where 4 is an effective divisor such that 4,.4 = n~ ! (Irr(S)),.q [cf. Sa].
Given a reflexive rank one sheaf F on § and an integer ¢t > 0, we use F* to
denote (F ® ... ® F)** (t times) and F ' to denote F*'.

0.1. If F' is invertible for some ¢t > 0 and S is a normal projective variety then
c,(F)e H*(S, Q) is well defined as ¢, (F*)/t. Such an F is said to be numerically
effective (or nef for short) if ¢, (F)[C] = 0 for all effective curves C on S. If further
¢, (F)¥imS > 0 than F is said to be big. If there is at > 0 such that F* is invertible
and spanned by global sections then F is said to be semi-ample. By going to a large
enough positive multiple N of ¢t we can then assume that there is a holomorphic
map ¢: S — P with connected fibres and normal image Y = ¢(S) such that FN =
¢*0p(1).

If S is Cohen-Macaulay and K in invertible, then S is said to be Gorenstein.

What follows is a list of results we will use in the paper, we will give references
for proof and discussion of them; we need an easy consequence of the vanishing
theorems of Kodaira, Ramanujam, Grauert-Riemenschneider and Kawamata-
Vieweg.

0.2. VANISHING THEOREM. [So03] and [S-S]. Let L be a nef and big line bundle
on a normal projective variety S. Then
a) H(S,Ks® L) =0 for i > max{0,dim Irr (S)},
b) H(S,Ks®L)=0 for i>0.

0.3. BERTINI'S THEOREM. (see [So3]. Let S be a normal projective variety and
let L be a line bundle on S spanned by a finite dimensional space V of global sections.
Let |V|denote the linear space of Cartier divisors associated to V. There is a Zariski
open set U < |U | of divisors D such that D is normal, Sing(S) o Sing (D) and no
irreducible components of Sing(S) belongs to D. '

0.4. CasTELNUOVO’S LEMMA. (see [G-H). If Cis anirreducible curve embedded
in P‘~! and C belongs to no linear hyperplane P’ ~2, then, with d the degree of C and
g the genus of the desingularization of C:

gsd-2/(4 -] d—¢+1—-[d—/¢/¢—2]- (¢ —2/2)
(where [ ] is the least integer function).

0.5. In this section we introduce some well known classes of surfaces which
play an important role in the paper.

We denote P the n-dimensional space and by Opn(r) the rth-power of the
hyperplane bundle.
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A pair (S, L) consisting of an ample (nef and big) line bundle on a normal
surface S is called a (generically) polarized surface.

A polarized surface (S, L) is called a quadric if S is biholomorphic to a possibly
singular quadric P? > Q and L is isomorphic to the restriction of the hyperplane
bundle, Ops(1), to Q.

S is called a geometrically ruled surface if S is a holomorphic P!-bundle, p:
S — R, over a non singular curve R. Equivalently, n: § = P(&€) — R for some rank
2locally free sheaf on R. We can chose & in such a way that there exists a section,
E, of n such that: Pic(S) ~ Z[E] @ Z[ f] where f is a fibre of n, and f2 =0,
f*E=1and E? = —e = deg§. (~ denotes numerical equivalence). For r = 0
we denote as F, the geometrically ruled surface P(Op1 @ Opi(—r)). F, is the unique
holomorphic P!-bundle over P! with a section E satisfing E-E = —r.Forr 2 1,
E is unique and we denote the normal surface obtained from F, by blowing down
E, by F.. Note F; = P2,

A polarized surface (S, L) is called again a geometrically ruled surface or a scroll
if S is biholomorphic to a geometrically ruled surface, n: S = P(€) — R, and
Ks ® L? = n*.# for an ample line bundle .# on R.

The usual definition of a scroll, (S, L), is that S is biholomorphic to a geomet-
rically ruled surface and the restriction, L7, of L to a fibre f of mis O(1). The only
difference between these definitions is that our definition excludes the smooth
quadric (S, L), where S = P! x P! with L of degree 1 on the fibres of both
projections P! x P! — P!, The chief virtue of our definition is that the projection
of a scroll (S, L) is canonically associated to the scroll as the map associated to
I'(Ks ® L)) for large N.

A polarized surface (S, L) is called a Gorenstein-Del Pezzo surface if Kg-1 =~ L
(see [Br] for a classification of these surfaces).

A generically polarized surface (S, L) is called a generalized conic bundle if there
is a holomorphic surjection, p: § — R, with connected fibres onto a smooth curve
R with the property that, for some k > 0 and some very ample line bundle &£ on
R,(Ks ® L)* = p*%#. A conic bundle is a generalized conic bundle such that L is
ample relative to p. The reader should note that in either cases the general fibre
f of the map p: § — R is a smooth rational curve with L f = 2.

Let L be a line bundle on a projective curve R which is ample and spanned by
global sections. Assume that the map f: R — P associated to a vector subspace
V < I'(L) that spans L is generically one to one. Let C = P(Og @ L) and let
¢ denote the tautological line bundle on C. Call ¢: C — P the map associated to
C ® V < I'(¢), where C corresponds to section (4,0) of O @ L and V is as above.
We denote by C(R, L) the normalization of ¢(C). Finally we denote by &, the
restriction of Op(1) to C(R, L). We call the polarized surface (C(R, L), £,) the cone
over (R, L). Note that ¢ is generically one to one. To see this note that ¢ restricted
to any fibre of C — R is an embedding, and note that the restriction of ¢ of



202 M. ANDREATTA AND A. J. SOMMESE

C associated to the obvious quotient Or @ L — L is the generically one to one

map f.
The following is a very well known structure theorem (see [Na] or [Fu])

0,6. THEOREM. Let L be an ample line bundle on a normal projective surface
S spanned by global sections. Assume g(L) = 0, where 2g(L) — 2 = (K5 + L)- L.

Then L is very ample and S has only rational singularities. Further either (S, L) is
(P, 05:(e)), e = 1 or 2, or a quadric, or a scroll over a smooth curve of genus 0, or
a cone over (P!, Opi(e)), with e = 3.

0.7. Let S be the normalization p: § — §’, of an irreducible and reduced surface
S’ embedded in PY. Let L be the pullback of L = Opn(1) to S. Let g(L) be defined
by 2g(L) —2=L-L + Ks-L and g(L) be the arithmetic genus of a general
C’e|L]. Note that if S’ is a local complete intersection then 2g(L) — 2 =
LI+ K L.

0.7.1 LEMMA. If g(L) = g(L) then S’ has only isolated singularities. In particu-
lar,if g(L) = g(L) and S' is alocal complete intersection, then p is a biholomorphism.

PROOF. A general C’'€|L| has a smooth Ce|L| as inverse image p~*(C'). Thus
C is the normalization of C'. If g(L) = g(L) then y(O¢') = x(Oc¢). From the Leray
spectral sequence and the sequence 0 — p*O¢ — O¢ —» & — 0, where & is a sky-
scraper sheaf which is non trivial if C’ is singular, we see that % is empty and C’ is
smooth. Since C' is a Cartier divisor, §’ is smooth in a neighborhood of C'. Since
C'’is ample the singular set of S’ must be finite. If S’ is a local complete intersection
and it is smooth except at a finite set then it is normal. p is a biholomorphism by
Zariski’s main theorem.

0.8. We recall now our main results in [4 + S 1] regarding the structure
theory of the pairs (S, L) consisting of a nef and big line bundle, L, on an
irreducible normal Gorenstein surfaces. Let 7: § — S be a minimal resolution of
the singularities and 4 be the effective divisor such that Kg + 4 = n*Kjy (see
0.0.1)

We say that the pair (S, L) is a-minimal if there are no smooth rational curves
Eon S — A with E-E = —1 and n*L- E = 0; that is the case if for instance L is
ample. We say that (S, L) is c-minimal if it is a-minimal and if there are no smooth
rational curves E on S with n*L- E = Oand eithera)4-E = land E-E = —1,0r
b)4-E =0, E-E = —2 and n(E) is not a point.

We proved the following results, which motivate also the above definitions.

0.8.1. REDUCTION THEOREM. Let (S, L) be a pair consisting of a nef and big line
bundle, L, on a normal irreducible Gorenstein surface S. For i = a or c there exists
a nef and big line bundle, L;, on a normal Gorenstein i-minimal surface S;, and
a bimeromorphic holomorphic map ¢;: S — S; with L = ¢;*L; such that the positive
dimensional fibres of ¢; consist of rational curves.
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Further
a) if '°(K%® L") % 0 for some n > 0 then Ks, ® L, is nef and (S;, L;) is uniquely
determined by (S, L),
b) if %(KE® L) = 0 for all n > 0, then (S,, L,) is either (P?, Op:(e)) = 1 or 2, or
a quadric in P, n: Q - Q, with L, = n*0,2(1)q, or a scroll.
We would emphasize that the theorem says in particular the following

0.8.2. THEOREM. Let (S, L) be a generically polarized Gorenstein surface and
suppose it is a-minimal. The following are equivalent:

a) (S, L) is neither a scroll nor a quadric nor the minimal resolution of a quadric,
nor equal to (P?,05:(e)) for e = 1 or 2,

b) Ks® L is numerically effective,

¢) h°((Ks ® L)V) + for some N > 0.

0.8.3. MAIN THEOREM. Let (S, L) be an a-minimal generically polarized Goren-
stein surface. Assume that h°(Kgn. ® I') % 0 for somen > 0. Thenthereisan N > 0
such that (Kg ® L) is spanned by global sections and such that the map ¢: S — P
associated to I'((Ks ® L))" has connected fibres and a normal image. The map ¢:
S — 8 = ¢(8S) can be factorized ¢ = ¢’ o ¢, where ¢p¢c: S — Sc is the map in the
reduction theorem above, (S., L.) is c-minimal and ¢': S, — S’ is the map associated
to I'(Ks. ® L.)"). One of the following holds.

i) If dim ¢(S) = O then (S, L) is a Gorenstein-Del Pezzo surface.

ii) If dim ¢(S) = 1 then (S, L) is a generalized conic bundle and ¢: S — P is the
projection in the definition of conic bundle. Further (S., L.) is a conic bundle.

iii) If dim ¢(S) = 2, then the image S’ = ¢(S) is a normal Gorenstein surface.
Ls_,- 1) extends to a nef and big line bundle L on §' such that ¢*(Ks ® L) =
(Ks® L) and Kg ® L is ample on §'.

0.8.4. THEOREM. Let (S, L) be a generically polarized Gorenstein surface. As-
sume that L is spanned by global sections and the genus, g(L) of a smooth Ce|L|
equals h**°(S). Then h°((Ks ® L)) = 0 for all N positive integer. In particular the
associated a-minimal pair of (S, L) is classified in theorem (0.8.2a).

We need also the following easy inverse result

0.8.5. PROPOSITION. In the hypothetis of 0.8.4, if h°(Ks® L)) =0 then
g(L) = h°(8).

ProoF. Let Cel|L| a general section. By the residue sequence 0 — Kg —
Ks® L — K¢ — 0, and the vanishing h*(Ks ® L) = 0, if h°Ks® L) = 0, then
g(L) = h°(K) = h'(Ks) = h'°(S).

From 0.8.2 and 0.8.3. it clearly results the following

0.9.1. ProposITION. Let (S, L) be an a-minimal generically polarized Goren-
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stein surface. If g(L) = 1 then either

a) (S, L) is geometrically ruled over an elliptic curve, or

b) Kg= L and § is the minimal desingularization, n:$ — S of a normal
Gorenstein surface with rational singularities such that L = n*L for an ample line
bundle L on S with Ks = L™ ! (i.e. S is a Gorenstein-Del Pezzo surface).

0.9.2. LeMMA. Let S, L, S, L be as in 0.9. 1b) and assume that L+ L.= 4 and that
L is spanned by global sections. Let p:S — P be the map associated to I'(L). Then
h°(L) = 5, p is an embedding with image the intersection of two quadric hyper-
surfaces.

ProoF. Clearly asmooth C €|L]is anelliptic curve and h'(Os) = 0 by 0.2, since
L is ample and L — Kg = 2L is ample. Using these facts and considering
0—-0s—>L—Lc—>0weseethat °(L)=1+h’(L)=1+4=35.

Note deg(p)- deg p(S) = L- L = 4, where deg (p) is the generic fibre degree of p.
Since deg p(S) = 5 — 2 we conclude that deg (p) = 1.

Consider the sequence 0 — Op«(1) ® F5) = Ops(1) > L - 0.
Clearly I'(Op«(1)) = I'(L). Consider 0 = Ops(2) ® Fys5) = Ops(2) = 2L - 0.
Since 2L — K5 = 3L we know by 0.2 that h°2L) = y(2L). By Riemann-Roch
x(2L) = 13. Since I'(Op«(2)) = 15 we conclude that dim I' (Op«(2) @ S,5)) = 2.
Thus there are two linearly independent quadrics Q, and Q, with @, > p(S),
@, o p(S). Both are irreducible since p(S) is not contained in any linear P3.
Q, N Q, is codimension 2 and o p(S). Since both @; N @, and p(S) are of degree
4 we conclude that p(S) = Q; N Q..

Finally note that p(S) is normal. To see this, note that a smooth C €|L| has genus
1. Also, a curve section of p(S) has arithmetic genus {(2 + 2 — 4)-2:2 + 2}/2=1.
Since these numbers are equal we are done by 0.7.1.

0.10. Iterating the Adjunction Process. Typically we have a nef and big line
bundle L on an a-minimal smooth surface $, such that & = K3 ® L is also nef
and big. If we apply the results in 0.8 we obtain in this case the following

0.10.1. LeMMA. IfKs® £ is not nef, e.g. (Ks + £)* < 0, then either (S, &) is
one of the pairs in 0.8.2.a), or there is a smooth rational curve E on $ with self
intersection —1 such that ¥ -E = 0. In the latter case let n:8 — S* be the
contraction of E. There is a big nef and big line bundle L* on S* such that
L=n*I* —Eand L-E=1,% = n*%* where ¥* = Ks* ® L*.

In particular after a sequence of such contractions we obtain a pair (Z, M),
where M is nef and big on the smooth surface Z and either 2K; ® M is nef, or
(Z,K; ® M) is one of the pairs in 0.8.2.a). (Note that (Z,K; ® M) is the
a-minimal model for (§, Kg ® L)).

An important consequence of the above is the following.

0.10.2. LeMmMA. Let L, 8, &, M, Z be as above. Assume $ is birationally ruled. If
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4 ="h'(05) 2 1 and (Kg + £)* < Kg: — (8 — 84) then Z is geometrically ruled
and le = 0“‘(3).

The key point in proving this lemma is to note that 1 + (K3 + £)* =
(Ks* + £*)~

§1. Surfaces of Degree 4.

1.0. In this section we give a classification of the irreducible surfaces of degree
4in P sufficient for the needs of this paper and whichis usedin [4 + S 2], tostudy
when the adjunction bundle is spanned by global sections. The table A in the
introduction summarizes this classification. (See also the related articles [Um],
[Ur] and [Sa])

S’ will always denote an irreducible surface in P of degree 4 and Og.(1) will
denote the restriction of Op(1) to S'. S will denote the normalization p: S — S’'of §'
and L = p*Og.(1). § will denote the minimal desingularization of S, : § — S and
L=n*L. Welet 6 = (Kg + L)%, g = g(L) = g(L), g = h*(Os) (respectively ¢ =
h'(0s)) and p, = h*(Os) (respectively p; = h*(Og)). Note that

1.1. g=3and § = g.
The first inequality follows immediately from Castelnuovo’s inequality 0.4. and
the second from the vanishing theorem 0.2.

Using the proposition 0.8.2 we have

1.2. Either (S, L) belongs to the list in 0.8.2.a), and in particular (S, L) is in the
class consisting of cones, scrolls, quadrics and (P2, O(1)), (P%,0(2)), or Kg + Lis
nef.

Therefore from here on we assume that Kg + L is nef.

One consequence of this, by 0.8.4, is

1.3. § < g, and in particular g > 0.

If g =1 then by 0.9.1 and 0.9.2, K5 = L', Ks = L%, § is Gorenstein-Del
Pezzo with rational singularities, and p embeds S as the intersection of 2 quadrics
in P4,

We are therefore reduced to the cases of g = 2 and g = 3. We have, by the
Index theorem, since (L)? > 0, that (Ks + L)*(L)* < (K5 + L)- L)%, that is

14. 6<(g—1)7?

Assume that g = 2. By 1.4, 6 < 1 and therfore 6 =0oré = 1.

If 6 =0, then by 0.8.3 ($,L) is a generalized conic bundle, f: § — C, over
a smooth curve of genus § and Kg + L= f*M, where degree M = g — 1. Note
that, by 1.3,4 = O or 1. If § = 0 then M, and hence K3 + L is spanned by global
sections. Now assume § = 1. Since § = 0 implies K52 = 0, we conclude that § is
geometrically ruled over an elliptic curve by f.
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Claim. Such a geometrically ruled § does not exist.
Proof of the claim. First note § = P(&), with

a) & =0 @ M degree M = 0, or

b) & is the unique non split extension: 0 - O — & — 05 — 0, or

c) & is the unique non split extension: 0 - O3 - & - M — 0 with degree
M=1

Let E be the section of P(£) corresponding to the subbundle M of £ in case a).
Then E*= —r= —degM £0. L~2E +bf and 4 =1?=4b— 4r. Since
b—2r=1-E=0, weconclude4=4b—4r>4rorr=0or 1.

Note that r % 1since, if r = 1,then b = 2,and L-(E + 2f) = 2. But hi°[E + 2f]
= h% A @ B) = 3, where A4 is a degree 1 line bundle and B is a degree 2 line
bundle. Since B is spanned by global sections and A4 has one section there are
infinitely smooth elliptic curves D e |(E + 2f)|. Since a is generically 1 — 1 it is
impossible that L-(E + 2f) = 2.

If r =0 then L ~ 2E + f and L-E = 1, which contradicts the fact that L is
spanned by global sections.

Incaseb), L ~ 2¢ + bf where ¢ is the tautological line bundle satisfying £ = 0.
Thus, since [? = 4, b = 1. Again letting C be the section of & — Og — 0, we have
L-C = 1 on nothing [C] = ¢&. This also contradicts that Lis spanned by global
sections.

In case c), let & denote the tautological line bundle satisfying &2 = 1. [2 = 4and
L~ 2¢ + bf imply L = 2¢ + © where 7 is a Chern class zero line bundle. Note
2¢ + v — Kpg) = 4¢ — f is ample by proposition 2.2.1 chap. V [Ha]. Thus by
Kodaira’s vanishing theorem h'(L) = h'(Kp) + (L — Kp(g) = 0 for i > 0 and
h°(L) = x(L). By Riemann-Roch y(L) = 4/2 — (—4 + 2)/2 + 0 = 3. This contra-
dicts h°(L) = 4 and finishes the proof of the claim.

Now assume 6 = 1. Then Kg2 =1and L-2Kg + L) = 0.

By the Hodge Index theorem it follows from (2K + L)> = 4 — 8.+ 4 = O that
2K ~ [71. From this we conclude that § is rational and 2Kg = I !. Note the
curves D such that 0 = L- D are —2 rational curves. Thus S is Gorenstein with
rational double points. Then 2Kg = L™ . A simple computation shows h°(Ks-1) =
h(Ks® Ks™?) = h°"(Ks ® L) = x(Ks ® L) = x(Ks-1) = 2. Thus |Ks-i| is a
pencil of curves of arithmetic genus 1 which are irreducible since Kg-1*Kg-1 = 1.
Thus Ks- 1 is spanned by global sections except at the point where all these curves
meet. Since these curves are Cartier, both S and the curves are smooth at this
point. By Bertini’s theorem an infinite number of these curves are smooth elliptic
curves. Since L- D = 2 for De|Ks-1| and since p is generically one to one we get
a contradiction.

Now assume g = 3. The first thing to note is that h°(L) = 4, since h°(L) = 4and
h°(L) £ 1 + h%(L¢) £ 4 for a smooth Ce|L|. Next note that, by 0.7, p is an
embedding of S into P3,
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1.5. LeMMA. Ifg = 3 and 4 > 0, then p, = 0.

Proor. Consider
1.5.1. 0-K;—»Ks®L->Kc-0
where C is a smooth and general element of |L|. Note that since h°(L) — h°(Lc)
has a 3-dimensional image for general Cel|L|, (K3 ® L) » I'(K3 ® L)c = K¢
has at least a 3-dimensional image if I'(Kg) % 0. Since § 0, h'(Ks ® L) = 0 by
0.2, and h°(K¢) = g = 3, we conclude that dim image (I'(Ks ® L) - I'(K¢)) =
3 — g < 2. This proves the lemma.

1.6. LEMMA. Either K = Og or K5 < 0.

ProorF. L-L =4 and g = 3 imply L- K3 = 0. By the Hodge index theorem
either Ks~0 or Kg* <0. If Kg~O0 then K§ =~ 05 for some t>0. If
K4 O then, by 151, P(Ks®L)=3-3G<3. By 02, xK;®L)=
h°(Ks® L) < 3. Since K5 ~ 0, x(L) = y(Ks ® L) £ 3. But Kg' ' ® L ~ Lis nef
and big and thus h°(L) = y(L) £ 3, contradicting h°(L) = 4.

1.7. LemMa. If K5 = Oz then S is a K — 3 surface. Further Ks = Os, q = 0 and
S is a Gorenstein K — 3 surface with rational singularities.

Proor. Consider the sequence 0 — Og — L — Lo — 0 for a smooth Ce|L|.
Since L =Ks® L, h'(L) =0. Thus h°(L) = 1 + h°(L¢c) — 4. Since h°(L¢) =
ho(Ks ® L)c) = h°(K¢) = 3 and h°(L) = 4 we conclude that § = 0 and thus § is
a K — 3 surface. If L- D = 0 for some irreducible curve D then D?* <0 and
Kg:D = O;-D = Qimply D is a smooth rational curve with D? = —2. From this
the rest of the lemma follows immediately.

1.8. LEMMA. If K. < O then § is birationally ruled or rational.

PROOF. Assume that mKj is effective for some m > 0. Then mK3- (K3 + L) is
nef. But mK3- (Ks + L) = mKs- K3 < 0.

1.9. LEMMA. Kg-Kg + 4 = 6 £ 4, with equality only if Kg = O3.

Proor. Use 1.4 to conclude 6 £ 4. By the Hodge index theorem, exactly as in
the case of g = 2 and = 1, we conclude Kg ~ 0. Use 1.6.

1.10. LEMMA. § S 1.

PROOF. § < g — 1 = 2.1f§ = 2then j, = 0 by lemma 1.5. Then S is ruled over
agenus2curveby 1.6 and 1.8. Thus K§- K3 < 8(1 — §) = —8.But,by1.9,6 20
implies K¢ Kg = —4. This contradiction establishes the lemma.

1.11. LEMMA. If & = O then (S, L) is a conic bundle and K5 ® L is spanned by
global sections.
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PRrOOF. If 6 = 0 then, since g = 3, it follows from the fact that K3 + L is nef
and 0.8.3, that ($, L)is a conic bundle, f: § — D,and K3 ® L = f*M, where M is
a line bundle of degree 2 on the smooth curve D. Since § = genus(D) < 1,by 1.10
we conclude that M, and hence Kg ® L, is spanned by giobal sections.

Putting together the above we have the classification summarized in the table A.
. We notice that for g = 3 and § = 1 we have that § is birationally equivalent to
an elliptic ruled surfaces, and that S is a quartic surface in P3 embedded by L.
A description of (S, L) in this case is given in [Um].

The following theorem follows from the classification we have just obtained.

1.13. THEOREM. Let S be the normalization of an irreducible degree four surface in
PM. Let L be the pullback of Opn. If (S, L) is neither (P?,0(2)), nor a scroll nor
a cone, then Kg ® L is spanned by global sections outside the singular points.

Proor. By the classification either Kg ® L is spanned by global sections or
(8, L) is a conic bundle over P!. By 1.11, K§ ® L is spanned by global sections in
this case. Since the direct image of Kg ® L is a subsheaf of K ® Lwith cokernel
supported on the singular points, we are done.

§2. Surfaces with low sectional genus.

2.0. In this chapter we give the proofs of the theorems A, B and C stated in the
introduction.

We use the same notation as before: S’ = P"is a surface in P" and L' = O(1);s,
p: S — §' its normalization and L = p*L.

§ is the minimal desingularization of S, n: § - § and L= n*L.

Let Ce|L| a section. The adjunction formula gives g(C) = 1/2[(Ks + L)- L +
2] = g(1).

We use also the notation ¢(S) = h'(S, Ks) and p,(S) = h°(S, K).

2.0.1. LeMMA. Let (S,L) (resp. (S,L)) as above. Then h°(Ks® L) = g(L) —
q(S) + py(S) (resp h°(Ks ® L) = g(L) — 4(S) + p,(S)).

ProoF. The equality follows easily from the long exact sequence associated to

0K+ Ks®L—>Ke—0
(resp. 0> K> Ks® L-Ke—-0,C =n"1(0)
and the vanishing theorem 0.2.
PROOF OF THEOREM A. By the adjunction formula and the ampleness of L, we

have that K- L < 0 and therefore h%(KY) = O for all N > 0; in particular p,(S) = 0
(the same for p,(S) = 0).
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If (K5 ® L) = 0, then we apply proposition 0.8.5. Therefore we are either in
case a) or in b) depending if S is or not smooth, or, differently, if g(S) = 1 or
q(S) =0.

fh(Ks® L) =1, then % Ks®@ L) = 1.

Choose a smooth generic C €|L|. Note (Ks ® L)c = K¢ = O¢. Thus a general
sel'(Ks® L) is zero only on a finite set in S\C. Thus (Kg® L)y = Oy for
U = S — F where F is finite. Therefore if i: U — S is the inclusion Ky =~ i *K;, =
i*Ly' =~ "', A similar argument shows Kg= [”!. Thus by the vanishing
theorem q(S) = h!(Ks) = h}(L") = 0.

Tensoring the exact sequence 0 - K — Kg — & — 0 with L using the fact that
h°(Ks ® L) = h°(K3® L) = 1 and the vanishing theorem 0.2, we can conclude
that & = 0;as noticed in 0.0. 1., this implies that S has only rational (Gorenstein)
singularities.

PrOOF OF THE THEOREM B. Using the Castelnuovo inequality 0.3 we can
suppose L- L =L L > 4. By §2 we can assume that L- L. > 5. With this, by the
adjunction formula and the fact that L and L are nef, we have Kg- L < 0 and
Ks'L < 0; this implies h°(Ks~x) = h°(Kgv) =0 for all N > 0. In particular
Pg(S) = Pg(g) =0.

By means of lemma 2.0.1. and what above we have h°(Kz ® L) = 2 — ¢(S).

If g(S) = 2, and thus h°(K§ ® L) = 0, proposition 0.8.5 applies and we con-
clude directly that (S, L) is either in b) or in a) depending S is or is not singular.

If g(S) = 1 then there is an Albanese map from $ to a curve R of genus 1. Since
ho(K g’ ) = Oforall N > 0,$ isruled and therefore the general fibre of the Albanese
mapis P!, i.e. Sis a ruled surface over a genus 1. This implies K3- K < 0. By our
assumption, () = 1, we have also h°(Kg + L) = 1; applying theorem 0.8.2, we
have 0 < (Ks + L) = K§' K¢+ 2(Ks+ L)-L— L-L<4 — L-L. This is im-
possible since L+ L = 5.

We finally assume ¢(S) = 0. Thus h°(Ks ® L) = 2 and, by the theorem 0.8.2
(K3 + L) is nef. By theorem 0.8.3 we have that n(K3 + L) is spanned by global
sections for n > 0. Moreover we have (K5 + L)-(Ks + L) = 0, otherwise the
Hodge Index theorem will imply (L- L)(Ks + L) (Ks + L)) £ (Ks + L) L)? = 4,
and thus L-L < 4. Therefore n(Ks+ L) gives a map, p: § - R, from § into
a smooth curve R of genus 0, i.e. into P'. It is immediate to see that the generic
fibre, £, is a smooth rational P! such that L-f = 2, i.e. by 0.8.3 (§,, L.) is a conic
bundle over P!, p: S, —» PL.

Let C be an irreducible curve contracted by =,. Since a general fibre, f, of the
conic bundle structure, p: S, — P!, deforms we conclude that C-f > 0. We want
to show that C is a section, e.g. that C-f = 1. Assume C-f > 1. Since 7,(C) is
a point and C-f > 1, it follows that 7,(f) cannot be smooth for a general fibre
f of p. But for a general fibre f of p, n,(f) is an irreducible and reduced conic; in
particular 7,(f) must be smooth. This contradiction shows that C-f = 1.
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Next we claim that there cannot be 3 sections C,, C,, C; collapsed by n,. Let
C3, C3, C3 be the proper transforms of C;, C,, C3in 8. Let C = n(f)for a generic
fibre of p. Since Cis a conic, h°(L;c) < 3,and moreover h°(L) = 4, since otherwise
S = P2 Therefore there exists a D € |L| such that C = D. This implies C; U C3 U
Csu f c n~Y(D)e|L). thus L-f = = Y(D)-f = 3, which contradicts L. f = 2.

ProoF oF THE THEOREM C. Using the Castelnuovo inequality 0.3 we can
suppose L- L = L- L = 6 except if the general section C €|L| is a plane curve of
degree 4 or 5. This will imply S’ to be a hypersurface of degree 4 or 5 in P and, for
degree 4, S’ = S (see §2).

As in the previous proofs, since L and L are nef, by the adjunction formula we
have Ks-L <0 and Ks'L <0 and therefore h%(KY) = h°(K¥) =0 for all
N > 0. In particular p,(S) = p,(S) = 0 and § is ruled, p: § — R.

By means of lemma 2.0.1. we have h°(K3® L) = 3 — ¢(S).

If g(S) = 3 then proposition 0.8.5. will apply and we conclude that (S, L) (resp.
(§', L)) is either in a) or in b) depending if S is or is not singular.

Suppose now ¢(8) < 3,i.e. h°%K3® L) % 0. By theorem 0.8.2 (K3 ® L) is nef;
thus two cases are possible:

1) (Ks+L)?=0 2) (Kg+ L)? > 0.

Suppose first (K + L)* = 0. Then as in the proof of theorem B, since (K5 ® L)
is nef, by the theorem 0.8.3 we can show that § is a conic bundle over a curve R of

genus ¢(3).
We have the following inequalities if g(S) = 1:

—2<L-L—8=KsKs<8(1—q@)

(the last works for ruled surfaces). Therefore g(S) = 0 or 1.

If q(S) = 0 we are in the case c (see the analogous proof for theorem B). If
q(S) = 1 we are in the case f).

Assume now (K + L)? > 0. By the Hodge Index theorem, (K3 + L)?(L)? <
((Ks + L)-L)® = 16. Since we have 6 < L- L, the following two cases are poss-
ible:

@) (Ks+L)Y?*=1and 6L-L16
B) (Ks+[)*=2and 6sL-L< 8

Note g(S) = Oor 1. If g(S) = 2 then by Hurwitz the ruling p¢: C — R would give
a two to one map for a general C e |L|. Thus (K + L)? would be = 0, contradic-
ting our hypothesis.

Therefore we have h°(Ks + L) = g(L) — q(§) = 2.

By the definition of arithmetical genus we have easily g(Ks + L) + g(L) =
(Kg+ L)* +2,ie. g(Ks+ L) =(Ksg+ L)> - 1.
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Suppose we are in the case a) and thus that (K + L) = 1and g(Kg + L) = 0.
The general divisor De|(Ks + L)| can be written as D = & + 4 with & the
moving part and . the fixed part. 2 - Z = 0 and therefore (Kg + L)- & > 0, by
the Hodge Index theorem, and (Kg + L)-.# = 0, since (Kg + L) is nef. Moreover

Ks+L)ys=Ks+L}—-Ks+L)yZ=1-(Ks+1L[)2.
This implies
*) (Ks+L)#F=0and (Kg+ L) 2=1.

In particular, since Z is the moving part, it is irreducible.
Using the exact sequence

0-(—Ks—L)-»05-0,-0,

the fact that h'(— Kg — L) = 0 (theorem 0.2.), and h'(0p) = g(Ks + L) = 0, we
obtain that h'(0g) = ¢q(S) = 0 and therefore h°(Kg + L) = h°(Z) = 3.
This implies, using the exact sequence

0-20s-2Z 220

that Z is spanned by global sections (g(Z) =0 and & - % = 0). Since Z is
irreducible h°(Z|4) =2, and thus -2 =1. By *), Z-# =55 =0. The
Index theorem forces .# to be 0.

So far we have proved that (Kg + L) = [27] is spanned by global sections.
h°(Ks + L) = 3 and (K§+ L)?> = 1. Therefore we have a map associated to
|(Ks + L)| that is a birational morphism, ¢: § — P2, from $ to P2,

We now consider the second case, f), in which we assume (K3 + L)? =
26<L-L<8andg(Ks+ L)=1 Wehave

81-q()=2Ks Ks=(Ks+L)? —2(Ks+ L)-L+L-L=-6+L-L

Therefore either q(§) = 1 and L- L = 6 or q(§) = 0.

In the first case, since q($§) = 1 and K3 K5 = 0, we have that § is a geomet-
rically ruled surface over a curve, R, of genus 1, p: § = P(€) — R,. It s straight-
forward to show that L ~ 3a + f, where fisa fibre of p,and ¢ is a section of p with
o2 = 0,and such that any other section has self intersection at least 0. Noting that
L-o = 1 we see L is not spanned by global sections.

Thus we can suppose q(§) = 0,8 = L- L = 6 and (Kg + L)* = 2.

LetD = Z + f bea general divisorin |(Ks + L) decomposed in its moving part,
Z, plus its fixed part .£.

We have 3 = h°(Kg + L) = h°(%). Two different cases are possible, since
Ksg+ L*=2 '

a) (Ks+ L)-Z = 1and(Kg + L) # = 1;here by theindex theorem 2 - & = 0,

b) (Ks + [)- 2 = 2and (Kg + L): # = 0; here by the index theorem &'+ Z < 2.

0.

[\
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In the first case a) we first notice that & is irreducible and, using the exact
sequence 0 > 03 > Z - Z|» — 0 and h°(Z ) = 2. But Z-Z = 0 implies the
contradiction h%(Z)») < 1.

Suppose then the equalities in b) are true. If - % = 2, then by the Hodge
index theorem K3 + L ~ & and . is trivial. Here g(2) = g(Ks + L) = 1. From
this, the exact sequence 0 » O — Z — 2,4 — 0 and h°(Z|) = h°(K5 + L), we
see that | 2| is spanned by global sections, giving a map ¢: § - P, whichis 2 to 1.

Now assume &+ % < 1. In this case (Ks + L) Z = 2 tells us that Z has at
most two components, Z = %, + %,. If this is so, then since neither stays fixed
Ks+ L) 2 =1

If 2, - %, % 0 then, by Bertini’s theorem, they meet in base points, therefore
(2, + Z,)* 2 2, which is absurd.

%, -2,=0then? =%, %, +2%, %, SinceZ-Z=<1land Z;- %, 2 0,
we conclude either Z;-%; =0 for i = 1,2 or, after renaming, &, -2, = 1,
Z,- %, = 0. The latter is absurd because by the Hodge index theorem this would
imply %, ~0 which is absurd since (Ks+ L)-%; = 1. In the former case
(#, — Z,)'(Ks+ L) =0 and we conclude that &, ~ %,, Z ~ 2%,. Thus
%, 5 =1fori=1,2and #2 = —2. Since 4 = (Ks + L)- L = (2%, + #)-Lwe
conclude L-#, = 1land L-# = 2or L- %, = 2and L- # = 0. Since |2 has finite
base locus, L is spanned by global sections, p is generically one to one, we
conclude that the Z; are smooth rational curves and thus K3- %, = —2. This
gives the contradiction 1 =(Kg+ L) &, = -2+ L-Z, = —1 or 0.

Therefore we can suppose that a general 2 has one component. Here - % = 0
or ¥ % = 1. Letfirst -2 = 1;if L- 2 = 1 then Z is smooth and has genus
zero. Thus Kg-% = —3 and we get the contradiction (K + [)-2 = —2.
IfL-2>2thenKs- 2 <0.Since K¢ Z +2 -Zisevenand -2 =1 we
conclude Kg-Z = —3and g(Z) =0or K§-Z = —1 and g(Z) = 1. In the first
case, since (Kg + [)- Kg = —2, we have Kg-# = 1. From (Ks + L)- # = 0 we
have - .# = —1 < 0, which is absurd. In the second case, since £ is irreducible,
h°(Z ) = 1; we have the absurd using the exact sequence 0 — 05 - Z — Z 4 — 0
and the fact that h°(Z) = 3.

Thus we come down to the final case - & = 0and Z irreducible. In this case,
by 0 - 05— [2Z] - [Z] 2 — 0, we see h°([Z]) £ 1 + h°([Z]2) < 2since [2] >
is a degree 0 line bundle on an irreducible curve. This contradicts 3 = h°([Z]) =
h(Ks + L).
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