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ON FORMULAS FOR THE FROBENIUS NUMBER OF
A NUMERICAL SEMIGROUP

FRANK CURTIS

Let S = {s;,...,S,) be the numerical semigroup generated by relatively prime

positive integers s,,...,s,, that is, S = {Z a,-sila,-eN}, where N = {0,1, ...}.
i=1

The Frobenius number of S, g(S), is the largest integer not in S. If n = 2, then
9(S) = 518, — 8y — 55 [3]. In the case n = 3, algorithms for computing g(S) have
been given gy Selmer and Beyer [2] and by Rddseth [4]. The purpose of this note
is to prove that in the case n = 3, and consequently in all cases n = 3, g(S) cannot
be given by closed formulas of a certain type. The main result is the following
theorem.

THEOREM. Let A = {(s1,55,53)eN3|s, <s, <3, s, and s, are prime, and
i X safori = 1,2}. Then thereis no nonzero polynomial Fe C[X 1, X 5, X 3, Y] such
that F(sy,s2,53,9(<81,52,53))) = 0 for all (sy,5,,53) € A.

The corollary below shows that g({sy, s,, 53 >) cannot be determined by any set
of closed formulas which could be reduced to a finite set of polynomials when
restricted to A.

COROLLARY. There is no finite set of polynomials { f,..., f,} such that for each
choice of sy, 53, 53, there is some i such that f(s, 55, 53) = g({sy,52,53)).
n
ProoF. F = [] (fiX1, X3, X3) — Y) would vanish on A.
i=1
The proof of the theorem depends on the construction of certain infinite classes
of semigroups, which is carried out in the next two lemmas.

LEMMA 1. Let aeR*, and let ¢ > 0 be given. Let p be a prime, and i, je N with
(p,i) = (p,j) = 1. Then there exist x,ye N such that x is prime, x = i (mod p),
y=j(modp), (x,y) =1, and |a — y/x| <e.
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PROOF. We may assume ¢ < a. Choose n > 1/¢ and let g/r, s/te(a — &,a + €)
be adjacent elements in the Farey sequence F,. As |rs — gt| = 1, the following
system of equations has a solution in Z/pZ:

FU + V=1

Gu +s5v=j
Let U = i, V= 0, for some u, v > 0, be the solution. If necessary, we can relabel
g/r and s/t, so that we may assume p } u. Then, by Dirichlet’s theorem, we can
choosea = Osothatu’ = ap + uis prime, (¥,v) = l,andu’ > t. Thenru' + tv =i
(mod p), so (p,ru' + tv)=1. From (t,r) = (t,u') = (w,v) =1, we also have
(t,ru’ + tv) = (W, ru’ + tv) = 1.So(ptu',ru’ + tv) = 1,and we can choose b = 0so
that ru' + tv + bptu' is prime. Let v =v + bpu’. Then (w,v)=1, and
x=ru +tv', y = qu' + sv’ satisfy the lemma.

If se S and s % 0, let S(s) denote the set of all te S such that ¢t is the smallest
element in S in some residue class modulo s. Then ¢g(S) = ¢t — s, where ¢ is the
largest element in S(s) [1].

LEMMA 2. Let S = <s,,5,,53), where 2 <s; <s, <s83. Let 2k Z(s; — 1)/
2 + 1,and supposes; — k < s3/s, <s; —k + 1,5, = 1(mods,),s;=s; —k + 1
(mod sy). Then g({sy,$5,53)) = (k — 2)s; + 53 — 5;.

Proor. We first show that (k — 2)s, + s3€8(s;). Suppose not. Then, as
(k — 2)s, + s3 =5, — 1(mods,), we have as, + bsy < (k — 2)s, + s for some
a,b = 0, with as, + bs3 = s; — 1(mods,). If b =0, then s, = 1 (mod s,) implies
az2s; — 1. Thus (s; — 1)s; < (k — 2)s, + s3, which would imply s; —k + 1 <
53/s,, a contradiction. If b= 1, then a = k — 2(mods,), so a = k — 2, and
as, + bs3 = (k — 2)s, + s3, contrary to assumption. So b =2, and
2s3 < (k — 2)s, + s3. Then s3/s, < k — 2, which implies s; —k <k — 2, i.e.
51/2 + 1 < k, contrary to the choice of k. So (k — 2)s, + s3€5(s1).

Form=0,1,...,s; — k, we have ms, = m(mod s,), and s3/s, >s; — k = m,so
s3> ms, and (k — 2)s, + 53 > ms,. Foe m=s;, —k + 1,...,5; — 2, we have
(m—(s;y —k+1)s; +s3=m(modsy), and (m—(s; —k+1))s;+53<
(k—2)s; +s3. So (k—2)s; +s3 is the largest element in S(s;), and
g(S) = (k — 2)s, + s3 — 5.

PROOF OF THE THEOREM. Assume such a polynomial F exists. Fixaprime p + 2
and let 25k<(p—1)/2+ 1. Let G(X, X3)=F(@p,X,;,X;,(k—-2)X, +
X; —p). Let ae(p — k,p — k + 1) be irrational. For n = 1,2,3,..., choose, by
lemma 1, x, = 1(mod p), y, = p — k + 1(mod p), with x, prime, (x,,y,) = 1 and
loe — yo/xal < 1/n. Then (p,x,,y,)€A, and by lemma 2, G(x,,y,) =0. Let
G*(X,, X5, Z) be the homogenization of G with respect to Z in C[X,, X3, Z].
Then G*(x,,y,, 1) =0, which implies G*(1,y,/x,,1/x,)=0, and thus
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G*(1,2,0) = 0, by continuity, for any irrational ae(p — k,p — k + 1). So the
projective curve ¥"(G*) contains infinitely many points (1 :a:0), and thus ¥ G¥*)
contains ¥°(Z). It follows that Z|G*, thus G(X,,X3) =0.

Fix a prime p > 2, let H(X,, X3, Y) = F(p, X5, X3, Y), and let H¥(X ,, X5, Y, Z)
be the homogenization of H with respect to Z in C[X,, X3, Y,Z]. Then H*
vanishes on the hyperplanes ¥ ((k—2)X,+ X;3—Y—pZ) for
k=2,...,(p—1)/2+ 1,sodeg H =deg H* = (p — 1)/2. ThusdegF = (p — 1)/2
for every prime p > 2, and there is no such F.
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