ON FORMULAS FOR THE FROBENIUS NUMBER OF A NUMERICAL SEMIGROUP

FRANK CURTIS

Let $S = \langle s_1, \ldots, s_n \rangle$ be the numerical semigroup generated by relatively prime positive integers s_1, \ldots, s_n, that is, $S = \left\{ \sum_{i=1}^{n} a_i s_i \mid a_i \in \mathbb{N} \right\}$, where $\mathbb{N} = \{0, 1, \ldots\}$. The Frobenius number of S, $g(S)$, is the largest integer not in S. If $n = 2$, then $g(S) = s_1 s_2 - s_1 - s_2$ [3]. In the case $n = 3$, algorithms for computing $g(S)$ have been given by Selmer and Beyer [2] and by Rödseth [4]. The purpose of this note is to prove that in the case $n = 3$, and consequently in all cases $n \geq 3$, $g(S)$ cannot be given by closed formulas of a certain type. The main result is the following theorem.

THEOREM. Let $A = \{(s_1, s_2, s_3) \in \mathbb{N}^3 \mid s_1 < s_2 < s_3, s_1 \text{ and } s_2 \text{ are prime, and } s_i \not\mid s_3 \text{ for } i = 1, 2\}$. Then there is no nonzero polynomial $F \in \mathbb{C}[X_1, X_2, X_3, Y]$ such that $F(s_1, s_2, s_3, g(\langle s_1, s_2, s_3 \rangle)) = 0$ for all $(s_1, s_2, s_3) \in A$.

The corollary below shows that $g(\langle s_1, s_2, s_3 \rangle)$ cannot be determined by any set of closed formulas which could be reduced to a finite set of polynomials when restricted to A.

COROLLARY. There is no finite set of polynomials $\{f_1, \ldots, f_n\}$ such that for each choice of s_1, s_2, s_3, there is some i such that $f_i(s_1, s_2, s_3) = g(\langle s_1, s_2, s_3 \rangle)$.

PROOF. $F = \prod_{i=1}^{n} (f_i(X_1, X_2, X_3) - Y)$ would vanish on A.

The proof of the theorem depends on the construction of certain infinite classes of semigroups, which is carried out in the next two lemmas.

LEMMA 1. Let $\alpha \in \mathbb{R}^+$, and let $\varepsilon > 0$ be given. Let p be a prime, and $i, j \in \mathbb{N}$ with $(p, i) = (p, j) = 1$. Then there exist $x, y \in \mathbb{N}$ such that x is prime, $x \equiv i \pmod{p}$, $y \equiv j \pmod{p}$, $(x, y) = 1$, and $|\alpha - y/x| < \varepsilon$.

Received November 28, 1989
PROOF. We may assume $\epsilon < \alpha$. Choose $n > 1/\epsilon$ and let $q/r, s/t \in (\alpha - \epsilon, \alpha + \epsilon)$ be adjacent elements in the Farey sequence F_n. As $|rs - qt| = 1$, the following system of equations has a solution in $\mathbb{Z}/p\mathbb{Z}$:

$$\bar{r}U + \bar{t}V = \bar{1}$$
$$\bar{q}U + \bar{s}V = \bar{1}$$

Let $U = \bar{u}, V = \bar{v}$, for some $u, v > 0$, be the solution. If necessary, we can relabel q/r and s/t, so that we may assume $p \not| u$. Then, by Dirichlet's theorem, we can choose $a \geq 0$ so that $u' = ap + u$ is prime, $(u', v) = 1$, and $u' > t$. Then $ru' + tv \equiv i \pmod{p}$, so $(p, ru' + tv) = 1$. From $(t, r) = (t, u') = (u', v) = 1$, we also have $(t, ru' + tv) = (u', ru' + tv) = 1$. So $(ptu', ru' + tv) = 1$, and we can choose $b \geq 0$ so that $ru' + tv + bptu'$ is prime. Let $v' = v + bpu'$. Then $(u', v') = 1$, and $x = ru' + tv', y = qu' + sv'$ satisfy the lemma.

If $s \in S$ and $s \equiv 0$, let $S(s)$ denote the set of all $t \in S$ such that t is the smallest element in S in some residue class modulo s. Then $g(S) = t - s$, where t is the largest element in $S(s)$ [1].

LEMMA 2. Let $S = \langle s_1, s_2, s_3 \rangle$, where $2 < s_1 < s_2 < s_3$. Let $2 \leq k \leq (s_1 - 1)/2 + 1$, and suppose $s_1 - k < s_3/s_2 < s_1 - k + 1, s_2 \equiv 1 \pmod{s_1}, s_3 \equiv s_1 - k + 1 \pmod{s_1}$. Then $g(\langle s_1, s_2, s_3 \rangle) = (k - 2)s_2 + s_3 - s_1$.

PROOF. We first show that $(k - 2)s_2 + s_3 \in S(s_1)$. Suppose not. Then, as $(k - 2)s_2 + s_3 \equiv s_1 - 1 \pmod{s_1}$, we have $as_2 + bs_3 < (k - 2)s_2 + s_3$ for some $a, b \geq 0$, with $as_2 + bs_3 \equiv s_1 - 1 \pmod{s_1}$. If $b = 0$, then $s_2 \equiv 1 \pmod{s_1}$ implies $a \geq s_1 - 1$. Thus $(s_1 - 1)s_2 < (k - 2)s_2 + s_3$, which would imply $s_1 - k + 1 < s_3/s_2$, a contradiction. If $b = 1$, then $a \equiv k - 2 \pmod{s_1}$, so $a \geq k - 2$, and $as_2 + bs_3 \geq (k - 2)s_2 + s_3$, contrary to assumption. So $b \geq 2$, and $2s_3 < (k - 2)s_2 + s_3$. Then $s_3/s_2 < k - 2$, which implies $s_1 - k < k - 2$, i.e. $s_1/2 + 1 < k$, contrary to the choice of k. So $(k - 2)s_2 + s_3 \in S(s_1)$.

For $m = 0, 1, \ldots, s_1 - k$, we have $ms_2 \equiv m \pmod{s_1}$, and $s_3/s_2 > s_1 - k \geq m$, so $s_3 > ms_2$ and $(k - 2)s_2 + s_3 > ms_2$. For $m = s_1 - k + 1, \ldots, s_1 - 2$, we have $(m - (s_1 - k + 1))s_2 + s_3 \equiv m \pmod{s_1}$, and $(m - (s_1 - k + 1))s_2 + s_3 < (k - 2)s_2 + s_3$. So $(k - 2)s_2 + s_3$ is the largest element in $S(s_1)$, and $g(S) = (k - 2)s_2 + s_3 - s_1$.

PROOF OF THE THEOREM. Assume such a polynomial F exists. Fix a prime $p \neq 2$ and let $2 \leq k \leq (p - 1)/2 + 1$. Let $G(X_2, X_3) = F(p, X_2, X_3, (k - 2)X_2 + X_3 - p)$. Let $\alpha \in (p - k, p - k + 1)$ be irrational. For $n = 1, 2, 3, \ldots$, choose, by lemma 1, $x_n \equiv 1 \pmod{p}$, $y_n \equiv p - k + 1 \pmod{p}$, with x_n prime, $(x_n, y_n) = 1$ and $|\alpha - y_n/x_n| < 1/n$. Then $(p, x_n, y_n) \in A$, and by lemma 2, $G(x_n, y_n) = 0$. Let $G^*(X_2, X_3, Z)$ be the homogenization of G with respect to Z in $\mathbb{C}[X_2, X_3, Z]$. Then $G^*(x_n, y_n, 1) = 0$, which implies $G^*(1, y_n/x_n, 1/x_n) = 0$, and thus
$G^*(1, x, 0) = 0$, by continuity, for any irrational $x \in (p - k, p - k + 1)$. So the projective curve $\mathcal{V}(G^*)$ contains infinitely many points $(1 : x : 0)$, and thus $\mathcal{V}(G^*)$ contains $\mathcal{V}(Z)$. It follows that $Z|G^*$, thus $G(X_2, X_3) = 0$.

Fix a prime $p > 2$, let $H(X_2, X_3, Y) = F(p, X_2, X_3, Y)$, and let $H^*(X_2, X_3, Y, Z)$ be the homogenization of H with respect to Z in $C[X_2, X_3, Y, Z]$. Then H^* vanishes on the hyperplanes $\mathcal{V}((k - 2)X_2 + X_3 - Y - pZ)$ for $k = 2, \ldots, (p - 1)/2 + 1$, so $\deg H = \deg H^* \geq (p - 1)/2$. Thus $\deg F \geq (p - 1)/2$ for every prime $p > 2$, and there is no such F.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MAINE
336 NEVILLE HALL
ORONO, ME 04469
U.S.A.