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A HOMOLOGICAL PROOF OF A THEOREM BY DAVIS,
GERAMITA, ORECCHIA GIVING THE
CAYLEY-BACHARACH THEOREM

RICKARD SJOGREN

Let A be a graded Gorenstein k-algebra. There is a connection between two
Hilbert series related characters for a Cohen-Macaulay (C-M) ideal and its
algebraic link in 4. This was shown by Davis, Geramita, Orecchia [2]. A corol-
lary is the classical Cayley-Bacharach theorem. We will give a homological proof
of the D-G-O theorem, using ideas from Peskine-Szpiro [6].

Throughout this paper, let R = k[X,...,X,] (k a field). We call an ideal
Gorenstein (C-M) if R/I is Gorenstein (C-M).

We begin by recalling some facts about algebraicaly linked ideals (from e.g.

(61

DEFINITION. Let G = R be a Gorenstein ideal, and 1, J = R ideals with
G cInJ. Wecall I and J algebraically linked by G if

I=G:J and J=G:I

i) If this is the case, then ht] = htJ = ht G.
ii) Suppose G = I n J, where I, J are parts of the primary decomposition of
G with no common associated prime. Then I and J are algebraically linked.

Next, we recall the definition of the cone of a morphism of complexes, and
a long exact sequence involving it (from e.g. [1])
Let u:(C',d’) = (C,d) be a morphism of complexes.

DEFINITION. (Con(u), D) is the complex (Con(u)), = C,,_, ® C, and
D:C,®C, —~C1DC,
¢, x)= (=dy,dx — uy)
There is a long exact sequence

.. = H(C) - H,(C) - H,(Con(u)) » H,_(C) - ...
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It will prove helpful to establish some additional facts (which can be found in

(31, [4D).

Let A be a graded k-algebra (i.e. 4 = R/J, for some homogeneous ideal J) with
Krull-dimension d and projective dimension c.

1) A has Hilbert-series H ,(z) = p(z)/(1 — z)".

DEFINITION. a(A) = deg p(z).
If now I = A4 is a homogeneous ideal, we define the following two characters
DEFINITION. o(l) = o(A4/I).
DEFINITION. o(I) = min {¢|I, % 0}.
2) A has a graded R-resolution
0- é; R[-d;]—...> b@llR[-—di‘l] —+R—->A4-0
i=1 i=

where all maps are of degree zero (R[d], = R, +4) and are given by forms of
positive degree on the components where they are non-zero (it’s called a minimal
resolution). Conventionally,

dijsdy;<...=d,; allj
by be

3) Hy2) = (1 — Yz + .+ (1 L g9/ — 2.
1 1

4) The sequence of lowest degrees is strictly increasing:
dig<dy,<..<dj,.
5) If A is C-M, the same for highest degrees:

dy, 1 <dp, 2 <...<dy.

6) If A is Gorenstein, then b, = 1, and furthermore, the resolution is symmet-
ric, in the sense that b; = b,_, for allj,and if p(z) = 1 — } 2% + ... + (= 1)z%
then p(z) = z% <p(1/z) —1)".

7) Here I is any ideal in any noetherian ring R.
a) gr(I) = length of a maximal R-sequence in I = min {i|Extg (R/I, R) # 0}.
b) gr(l) < pdr(R/I)
¢) R/IC-M<>gr(I) = pdg(R/I).

We are now appropriately equipped to prove the following

THEOREM. Let G < I be homogeneous ideals, G Gorenstein and I C-M with the
same dimension in R = k[X,,...,X,]. Let J = G: 1. Then

o) + o) = o(R) (X = X/G).
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REMARK. Then, also, «(I) + o(J) = a(R) since also I satisfies the hypothesis and
I, J are algebraically linked by G, according to [6].

Proor. Put dim(R/I) = dim(R/G) = n — k (so both I and G have height k).

Then pd(R/G) = pd(R/I) = k (use (7). Take minimal graded R-resolutions %,
%, of R/G and R/I, respectively. ’

by
Fo 0-R[-d] —-...- ®R[-d;;]>R->R/G-0
T L T Lo
# 0— @ R[leju]—...» @ R[e;;] —-R-R/I -0
i=1 i=1

The lifting u exists (well-known).

NoTtE. The resolutions enable us to deduce the Hilbert-series (3), e.g.
Hg,6(z) = p(z)/(1 — z)" with p(z) as in (6). This allows us to compute the ¢’s;
o(R/G) = dy, — k,a(I) = e, — k.

Dualize, that is, apply the functor Homg(,R) (remember
Hom(R[ —a], R) = R[a]). :

. N
Fo 0« R[d] «...« ®R[d;;]<R«0
i=1 ~
T a Ck T C1
% 0 @ R[eix] ...« @ R[e;,;]<R«0
i=1 i=1

Here, let the homological dimension decrease from k (to the right) to 0 (left). Now,
take the cone.

bi-1

Con(@) 0« R[]« ® Rleix] ® R{dix-1] ...« ® R{e @R R0

i=1 i=1 i=1
Shift degrees.

Ck bic-1 '
Con()[—dy] O0<R« @ Rle;x—di] @ R[di-y —d] ~...
i=1

i=1

< @ R[e;, —d] ® R[—di] « R[—d,] < 0.

i=1
CLaM. Con(#)[ —d,] — R/J — 0 is a resolution.
Before proving the claim, let’s wrap up.
(1 — 2)" Hgyy(2) =
=1 =Y % ko (=Y T (= 1)
- Yzt 4 (= DEY 2 (= 1)
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The first row on the right side is z% p(1/z} — 1)* = p(z), so

Yoo g (— LY e g (1)
(-2 '

Hpg,y(z) = HR/G(Z) -

Consider this exact sequence of graded R-modules:
0-J/G—-R/G—R/J-0.
It follows that

Zhme — (=1 TLY e 4 (— 1)
Hyold) = Huyoe) — Hle) = &= (uta; s
Now,

«(J/G) = the least occuring degree in the numerator =
=dy— e,k (R/I C-M, use (5)).
But, as pointed out in the note above,

o(R)y=d,—k
ol) = oll) = e s — k

SO
«(J/G) = o(R) — o(]).

The proof is completed, but for the proof of the claim. Before proceeding with
that, we recall from [5, Lemma 2], that there is a functorial isomorphism

™) Extk (M, R) ~ Homg (M, R/G)
for modules M with Ann (M) o G.
PRrOOF OF cLAIM. We have to show

Hy(Con) = R/J
H;(Con)=0, i>0

Use the characterization of grade by Ext (7a) to get

Exto(R/G,R) =0, i<k whence H(%)=0, i>0
Exti(R/ILR) =0, i<k H(#)=0, i>0

Consider the long exact sequence mentioned in context with the definition of the
cone

H{(%,) - H{(Con) - H,_(%).
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From this, we immediately get
i> 1= H{(Con) = 0.
We also have, further down in the exact sequence,

®
0 - H,(Con) » Ho(g"l) nd Ho(%) — Ho(Con) -0
I I
Ext&(R/I, R) Ext&(R/G,R)
But there is a commutative diagram

R o1
1xt',‘((R/I, R) ~ Homg(R/I,R/G) = Homgc(R/I,R/G) ~ Homg (—l(i, R/G) ~ G—

lo \B e G
Ext%(R/G, R) ~ Homg(R/G, R/G) = Homg;(R/G, R/G) ~ R/G

Let’s take a moment to explain this. One gets the first quadrant by applying (*)
above. The equalities are true, since G = Ann(R/I) n Ann(R/G), and the last
isomorphism in the top row is due to the fact that Homg(S/J, S) ~ 0:J for any
ring S. Furthermore, § is mono, since the functor Hom(-, R/G) is left exact. Now,
we have

Bmono = ¢gmone = H(Con) =0
G:1 R
Hy(Con) = Coker (—G— - R/G) =GI- R/J.

This ends proof of claim.
A rather immediate consequence of this theorem is the

CAYLEY-BACHARACH THEOREM. Let (fi,..., f;) be a complete intersection in
k[Xo,Xy,...,X,] (k alg. closed field), degfi=d; and V(fi,....f)=
{Pe#| f(P) = 0Vi} = {P,,...,P,}. Suppose m = d, - ...-d,. Then every hyper-

-1
surface of degree <Y d; —y (y 2 r + 1) which passes through m — (y . ) of

-1
the points in V, passes through them all, if the remaining ( Y . ) don’t lie on
a hypersurface of degree <y —r — 1.

Thisis proved in [2]. Of course, the first proof, for r = 2, was done in the 1880’s,
with completely different methods.
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