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THE WEIGHTED POINCARE INEQUALITIES

RITVA HURRI

1. Introduction.

We consider the weighted Poincaré inequalities:

(1.1) <J|u(x) — Up 4|? d(x,0D)* dx)l/p <c (J‘Wu(x)l’J d(x, oD)* dx)l/p
D D

and

(1.2) <J|u(x) — Up 4|7 d(x,0D)* dx)w < c(fqu(x)]" dx)l/p
D D

where the number uj, , is the weighted average of u over D:

Up,q = (Jd(X, oD)* dX>_ l Ju(x) d(x, dD)* dx.
D D

In particular we are interested in the metric properties of domains D where (1.1)
and (1.2) hold in appropriate Sobolev classes.

If o = 0, inequality (1.1), as well as (1.2), reduces to the ordinary Poincaré
inequality.

We write 2, (respectively 2 ,) for the class of bounded domains satisfying
inequality (1.1) (respectively (1.2)). We give sufficient conditions of combinatoric
nature for Deg’p“ » and for Deg’pzv « see Theorems 3.2 and 3.4. In particular,
domains satisfying both a quasihyperbolic boundary condition and a Whitney
cube #-condition belongto 2, , and %7 . for some a and o, see Theorems 4.1 and
4.2. John domains are examples of such domains, see Section 5.

Weighted inequalities have been studied earlier by T. Horiuchi [Ho], T.
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Iwaniec and C. A. Nolder [IN], A. Kufner and B. Opic [KO], and V. G. Maz'ya
[Maz], for example.
The author wishes to thank Professor Olli Martio for helpful comments.

2. Preliminaries.

2.1. NotaTioN. Throughout this paper we let D be a domain of euclidean
n-space R", n = 2, with finite measure. We suppose that a € R, unless otherwise
stated, and pe[1, o).

In this paper a Whitney decomposition of D into non-overlapping dyadic
closed cubes is denoted as W. For the construction of a Whitney decomposition
see [S, VI].

The space L?(D, «) is a set of functions u on D such that

1/p
lullLop,a) = (jlu(X)lp d(x, 0D)* dx) < o0,
D

The weighted Sobolev space W,'(D, o) is the space of functions u € L*(D, «) whose
first distributional partial derivatives belong to L?(D, ). In W,!(D, «) we use the
norm

"u"W;(D,a) = "u"LP(D.u) + IVull Lo, 0)-

We set L?(D) = L7(D,0) and W,(D) = W,(D, 0); these are the ordinary Lebesgue
and Sobolev spaces, respectively.
The weighted average of a function u over D is

Up, = (J‘d(x9 aD)a dX) - Iu(X) d(x, 6D)“ dx,
D D

where we suppose

fd(x, dD)* dx < oo.
D

If a bounded domain D satisfies a Whitney cube #-condition, then this integral is
finite also for some a < 0, see Section 4. We write up = up o.

We let c(*,...,*) denote a constant which depends only on the quantities
appearing in the parentheses.
The following lemma will be used frequently.
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2.2. LEMMA. If ue LP(D,a), o€ R, then
lu — tp o llLop.ay S 24 — CllLow,a
for each ceR.
Proor. By the Minkowski inequality
lu — upallLep,a < 4 — cllLop,a + llc — Up o llLrp,a)

The Holder inequality yields

1 ] 1/p
lup,e — cllrp.a) = <J'—I“U) d(y,0D)*dy — c| d(x,oD)* dx)

b f d(y, D) dy °

D

(ﬂ J (u(y) — c)d(y, D)’ dy{ d(x, 3Dy dx)”"
f d(y,0Dydy ° P
D

1/p-1
= (Jd(y, oDy* dy) < J 1-|u(y) — ¢l d(y, oD)* dy)

D

Up-1+1-1/p 1/p
s (Id(y, oD)* dJ') ( f |u(y) — | d(y, oD)* dY> = lu = cllLep,a)-
D D

3. Saufficient conditions.

We apply some methods used in [Hu, Sections 4 and 6]:

Let D be a domain and W its Whitney decomposition. Write tQ for the cube
with the same center as Q and expanded by afactor ¢t > 1. Fix Qo€ Wand x, € Q.
Join Q, to Qe W with a chain of expanded Whitney cubes §Q,, j=0,1,...,k,
Qi = Q, such that

0:nQ;+0 ifandonlyif |i—jl<1,

see [Hu, the proof for Proposition 6.1]. This construction of expanded Whitney
cubes is called a chain, abbreviated C(Q)) = (Qo, Q1. Qk)- We let £(C(Q,)) = k
denote the length of the chain C(Qy).

For each Q € W we fix a chain C(Q). For a fixed cube 4 € W we write

AW) = {QeW|AeC(Q)}.
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3.1. LeMMA. For each Qe W and ue W, (D, a)

f luly) — us,|”d(y, 0D)* dy < c(n, p) dia(Q)" J [Vu(y)|? d(y, oD dy

9 9
82 82
and for ue LP(D, a) such that |Vu| € L*(D)

J |u(y) — u%QI” d(y, oD)* dy < c(n, p)dia(Q)*** Jw [Vu(y)l” dy.
g0 30
Proor. For each yegQ

% < M <20.
dia(Q)

Thus ue W, (int §Q) (in both cases) and the Poincaré inequality without weights
in a cube yields the claims.

The quasihyperbolic distance between points x; and x, in D is given by

. ds
kp(x1,x2) = ll:fjm

Y
where the infimum is taken over all rectifiable curves y joining x; and x, in D. For
the properties of kj, see [GP] and [GO].

3.2. THEOREM. Suppose that D is a domain in R", xoe D, and let pe[1, ).
Suppose that

(3.3) jkb(xo, x)P 1 d(x, 8D)* dx < 0.
D

Ifpzn+a,thenDe?,,.
If p 2 max{—a,n}, then De #2,.

3.4. THEOREM. Suppose that D is a domain in R", xo€ D.
(i) Let pe[1, o). If for some constant c

(3.5) Y (kp(x0,x) + 1)~ d(x,dD)* dx < cdia(4)"**~ P
QeA(W)
)
whenever Ac W, then De 2,.,.
(ii) Let pe[max{—a, 1}, 00). If for some constant c
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(3.6) Yy (kp(xo,x) + 1P~ d(x,dD)* dx < cdia(A4)"~?
QeA(W)
g0
whenever A€ W, then De 27,.

We note that for « = 0 Theorems 3.2 and 3.4 reduce to Theorem 6.7 (Py), (P3)in
[Hu].

PROOF OF THEOREMS 3.2 AND 3.4. Let O, € W be such that x,€ Q,. By Lemma
2.2 it suffices to estimate

Jlu(y) — Usg,|” d(y, OD)" dy.
D

We shall employ properties of Whitney cubes.
First

(3.7 J lu(y) — us,, [Pd(y,0D)*dy = Y, |lu(y) — us,, |”d(y, dD)* dy
8 0 QGW 8 0
D Q

-1 a a
s2° <QEZW J lu(y) — u%QI" d(y,0D)" dy + ng Iugq - ugqol” d(y, D) dy)-
g0 20

By Lemma 3.1

(3.8) Y | [uy) — ug,y I d(y, 0D)* dy

QeW 8
70

Scmp,0) Y dia(Q)? f [Vu(y)| d(y, OD)* dy
QeW
70

< c2(n, p, @) dia(D)? leu(Y)l” d(y, oDy* dy
D

and

(3.9 )y _[ lu(y) — usgl® d(y, oD)* dy

QeW
30
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< c3(n, p,q) QZW dia(Q)"** j [Vu(y)P dy
20
< c4(n, p,a)dia(D)P** j [Vu(y)l” dy,

ifp+az0.
To estimate the last sum in (3.7) we fix Q € W and join Q, to Q with the chain
C(Qo) =(Q0,Q15---, Qi) Qi = Q. Write
u; = u%e, = :f u(y) dy.
%QJ
Now the ordinary Poincaré inequality in a cube yields

k p k
|“%Q - “%Qolp = (Z ju; — uj—ll) Sket Z [uj — u;,|P
Jj=1

j=1

k
= kP! Z J[ luj — u;—4|F dy

j=1
%Ql~lf‘%01
k
= p—1 Y Y 1 P ; — Pd
(2k) jZl 7 1“3le< J luj—1 — u(y)lPdy + flu u(y)l Y)

§QJ 1 3Q1

k

< cs(n,pk?~! jzo dia(Q;P~" j (Vu(y)I? dy
%QJ

Write k = £(C(Q)); now

(¢.10 Y lus, — usg |? d(y, OD)* dy
QeWg
Q

= cs(n, p) ZW ((C(Q) ™" d(y,0D)*dy 3 dia(Ay~" J IVu(x)l? dx;
Qe

AeC(Q)
&0 §
and changing the order of summation we obtain
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(11) 3 | lusy — us, IPd(y, 8DY dy

QeW 8
20

Sesnp) 3 X f/ (C(Q)F~" d(y, oDy dy dia(4)* " fIVu(x)Ip dx.
9

AeW Qe A(W)
§Q 84

Next we shall employ the inequality ((Hu, Proposition 6.1])
2(C(Q)) < c(n)(kp(xp,x) + 1) foreach xeQ.

If p = n + a, we obtain from (3.10)

QeW AeC(Q)

Y. | 2ACQ)yP d(y,oD)*dy Y. dia(4)y""* J |Vu(x)|? d(x, 0D)* dx
bo 2

QeW
1)
where ¢ = cg(a,n, p). This together with (3.3), (3.7) and (3.8) yields De 2, ,, if
pZn+ o If p> max{—a,n}, then (3.3), (3.7), (3.9) and (3.10) imply De 2?,.
Hence Theorem 3.2 is proved.
From (3.11) we obtain

Scedia(DyP " Y | (kp(xo,x) + 1)~ ' d(x,dD)* dx I [Vu(x)|P d(x, 0D)* dx,
D

) J lusg = usg,I” d(y, ODY" dy

QeW
20

ey, Y j (kp(xo,x) + 1P ~1d(x,8D)* dx dia(A)y ~"~° JIVu(x)l" d(x,0D)* dx.
AeW Qe A(W)
fo i
where ¢, = c4(a, n, p). This together with (3.5), (3.7) and (3.8) implies De %, . If
p + o = 0, then (3.6), (3.7), (3.9) and (3.11) yield De?pz'a, Thus Theorem 3.4 is
proved.

4. Domains satisfying (3.3), (3.5) or (3.6).

Here we give examples of domains which satisfy the conditions in Theorems
3.2 and 3.4. These examples show that the Poincaré domains can be quite
non-smooth.

John domains. [MS] A domain D is called an (o, f)-John domain,
0 < a £ B < oo, if there is xo € D such that each xe D can be joined to x, by
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a curve y:[0,/] —» D parametrized by arc length with £ < § and
d(y(t), aD) 2 %t, te[0,/].
Domains satisfying a quasihyperbolic boundary condition. A domain D satisfies

a quasihyperbolic boundary condition with a constant a > 0, if there exists
a point x, such that

|Xo — x|
kp(xo,x) = “k’g(l * hin{d(x, 0D), d(xo, aD)})
for all xe D, see [GM, 3.6], [HV, Section 2] and [Hu, 7.2].

John domains form a proper subclass of domains satisfying a quasihyperbolic
boundary condition,

Plumpness. Following O. Martio and J. Viisdla [MaVi, 2.1] we say that
adomain D is a-plump, 0 < a < 1, if there is ¢ > 0 such that for every y e vD and
for all t (0, o] there is x e D n B(y,t) with d(x, dD) > at.

We consider only bounded domains satisfying a quasihyperbolic boundary
condition.

W hitney cube #-condition ([MaVu, 2.1]). Suppose that for a bounded domain
D ,

o N

b= U

k=1j=1

where the Whitney decomposition W of D is arranged in such a way that the
Whitney cubes Q satisfy

dia(Q%) = dia(D)27% j=1,...,N,.

A domain D is said to satisfy a Whitney cube #-condition with A < n, if there are
constants M < oo and A€ (0, n) such that

N, < M2* foreach k.

A John domain satisfies a Whitney cube #-condition, [MaVu, Lemmas 6.3 and
2.8], and, more generally, if a domain D is plump, then it satisfies a Whitney cube
#-condition, see [MaVu, 2.7 and Lemma 2.8]. g

4.1. THEOREM. Let D be a domain in R" satisfying a quasihyperbolic boundary
condition with a constant a and a Whitney cube #-condition with A <n. Let
a>A—n. Now(i) De®}, for eachp = a + nand (ii) De P}, for eachp 2 n.

PROOF FOR THE CLAIM (i). Write ¢, = sup d(x, dD)/d(xq, D).
XeD

The quasihyperbolic boundary condition yields
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QeW

j‘kD(Xo, x)P~1d(x,0D) dx = Y. |kp(xo,x)" ' d(x,dD)* dx
D Q

p—1
< g1 log| 1 Colxo — X| .
<a Q§WJ< og( + __———d(x, D) d(x, 8D)* dx
Q

and the Whitney cube #-condition gives

Y. | kp(xo, x)?~* d(x, 8D)* dx

QeW
Q
o Ni 2c dla(D) )p—l )
L <10 B e *| dia (Q")*
B kgl j;l & dla(Qj‘) |QJ| (Qj)

<c
k

kp- 12k(l—n—a) < 0,
1

iMs

where the constant ¢ depends on n, p, a, 4, d(x,, 0D), and dia(D). Thus Theorem 3.2
yields De 2, ..
A similar estimate as above also yields the claim (ii).

If instead of the Whitney cube #-condition plumpness is used, then we obtain
better estimates than in Theorem 4.1 for the exponents « and p.

4.2. THEOREM. Let D be a domain in R" satisfying a quasihyperbolic boundary
condition with a constant a, let D be f-plump, and let ¢ = (log(1 + (5/24)")/
log(120/B) and pe[1, ).

. 1 € 1
(@) Ifao> —eandp>(a+ n)(l - —2;> o5 then De %, ,.
(i) If « > max{—¢, —p} and p > n — (« + & + n)/2a, then De #7,.

For the proof we decompose D into Whitney cubes and construct chains as
explained at the beginning of Section 3. We need the following lemma.

4.3. LemMa ([Hu, Lemma 7.27]). Suppose that D satisfies a quasihyperbolic
boundary condition and D is B-plump. Then for each A € W

Y 10l < 27 dia(4)"*/2e

QeB;

where

)i 9a@ 2-1'“},

B;= {QEA(W) = c¢,dia(4)* =

J=1,2,...; constants ¢ and ¢, depend at most on n, p, B, d(x,, dD) and dia(D).
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PRrOOF OF (i) IN THEOREM 4.2. Fix Ae W. Write ¢y = sup d(x, dD)/d(x,, dD).

xeD
Constants c¢;, i = 1,2,3, below depend at most on n,p,a,B,a,d(x,, 0D), and

dia(D). The quasihyperbolic boundary condition and Lemma 4.3 imply

) J (kp(xg,x) + 1*~ 1 d(x, OD)* dx

QGBJ
30
2ecodia(D)\P ™'
gclgél(log—————-dia(g) ) dia(Q)*1Q|
C2

< _.__jP_ 12—j(u+e) dia(A)(n+¢)/2a+¢/a—6
0

where 0 < 6 < (n + ¢)/2a + a/a. Summing over j = 1,2,... we obtain

Y J. (kp(xo,x) + 1P~ 1d(x,0D)* dx < © dia (A)nteN2ataja=d
QeA(W) )
)
see [Hu, Lemma 7.13]. Theorem 3.4 yields the claim (i).
The proof for the claim (ii) in Theorem 4.2 is analogous.

4.4. ReMARrk. If D « R" is a John domain with a Whitney cube #-constant
A<nandif e(A — n, ), then De.?p‘_,, for each p = 1, see Theorem 5.2. The
following example shows that the lower bound for p in Theorems 4.1 (i) and 4.2 (i)
is essentially sharp for a non-John domain.

4.5. EXaMPLE. Let G be the open rectangle bounded by the lines
x;=0,x,=0,x;, =1,x,=—1
and for j = 1,2,... let G; be the open triangle bounded by
Xy =27 x, =270 27 x4 x, =272 272

where b 2 2is a constant; cf. [GM, Example 2.2b]. Denote by G* the reflection of

@

the domain () G; with respect to the line x, = —3. Set
i=o

G= U GJ'UG*.
j=0

Let T R? — R? be a translation such that T(x,, x, ) = (x;, x> + 3). Set D = T(G).
The domain D satisfies a quasihyperbolic boundary condition with a = 36b
and also a Whitney cube #-condition for some i, € [1, 2). Thus by Theorem 4.1 (i)
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De 2}, at least for each p = 2 + §, where §€(2 — 4,0], A€ [4o,2) will be fixed
later. We show that D¢ 2, ;,if p <2 + 6 — -2!})—(4 + d).
Let G; be the open set bounded by the lines
Xy =272 x, =272 27 x, =272 x 4 x,=27"2%_272j

Let G}* be the image of G} under reflection across the line x, = —3%. Set
T(G) =D} and T(GA(G!nG,)=D? and T(G'*)=D!* and T (G}\
(G}* N Go)) = D?* see Figure 4.1.

X,
22
D;
1/2 q ‘ 2
1
X,

—1/2 }t /]
VA

Dj*

Figure 4.1.

; .. 1 ;
Fix D}, j=1,.... Now D} is an (a;, B;)-John domain with «; = 52‘2”’ and

Bj=3-272 Let W(D}) be a Whitney decomposition of D?. The proofs of
[MaVu, Lemmas 6.3 and 2.8] yield that

${QeW(D?)| dia(Q) = dia(D?)27*} < 42",
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k=1,2,...,and A, < 2. Constants ¢;,i = 1,..., 5, depend at most on g, p, and G.
Set 1 = max{4o,4,}. Now

(4.6) j d(x, 6Df)" dx = Z Jd(x, 6Df)" dx
QeW(D?)
D]? o

[} [}
= Z Z fd(x, 6Df)" dx < ¢, dia(D})2 +é Z 22+
k=1 QeW(D}) k=1

dia(Q) = dia(D}2-* @

=c, dla(Djz)z +4 = 032 —-2b(2 +6)j’
ifo>A4-—2
Fix e (A — 2,0]. Choose a piecewise linear continuous function u: D — R such
that
20*29 in Dlj=1,2,...

ux) = 0 i {(xl,xz)|x1€(0»1),xze(—%,%)}
—2@+29) jp D}*,j=1,2,...

=]

Now up = 0 and

f ) dix, 00" dx 2 3, Izww d(x, 8D dx
D

1
b;

© S
g Z 2(4+20)](2.2—2.i)6 IDJll =c, Z 22(2+5)12"2(2+6)] = 00.
j=1 j=1

On the other hand,

leu(x)l" d(x,0D)’dx =2 Y, J 2(4+3+2b0) d(x AD)® dx
j=1
D

D

[y 9

IIA

2 i 20444+ 2bp) J. d(x,0D?) dx
j=1 D}

and by (4.6)

J |Vu(x)|P d(x,dD)’ dx < cs Y, 24+3+2bp-ab=200)j < oo,
j=1
D
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. 1 L. 1
1fp<2+6——517—(4+6).HenceD¢9’p,‘,,1fp<2+5—§E(4+5).

5. The weighted Poincaré inequality in John domains.

We will show that an («, f)-John domain D e?,“y for each pe[1, oo) whenever
y€(c(n, /o), 00) where c(n, f/a) < 0 is a constant. Our method is based on a po-
tential estimate and the method of Martio [M], and it differs from that used in
Section 3.

5.1. THEOREM. Let D be a bounded domain in R" and let W be its Whitney
decomposition. If D satisfies a W hitney cube #-condition, with constants M < o
and A < n such that

#{QeW|dia(Q) = dia(D)277} < M2¥
foreachj=1,2,..., then for all ye D

(5.2) Jlx — y|t~"d(x, dD)’ dx < c(n,y, AM 2"~V dja(D)d(y, D)
D
where (A — n)/2n <y £ 0.
PROOF. Let x,yeD. Since D is bounded,
d(y, dD) < dia(D)*""~V d(x, aD)*/(* ~2m
for all x, ye D. Thus

J.lx _ yll -n d(x, aD)Y dx = J|x — .Vll "‘d(x, aD))'/(x —2"’d(x, aD)y(l -1/(1 "2””dx
b D
< dia (D)™ = d(y, OD)’ f Ix — yl' =" d(x, 9D)*™3n =1 dx.

D

By the Holder inequality with exponents (2n — 1)/2(n — 1) and 2n — 1

J-lx — y|* " d(x, dD)?"2 1) gx
D

2(n—-1)/(2n—-1) 1/(2n—-1)
< ( f x — yt =202 dx) (fd(x, oDy dx)
D D
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where

f'x — yl(l —2n)/2 dx -_<__ lx _ YI“ —2n)/2 dx
D B(y,(|D}/2n)*/™)
(ID1/2n)'/m

=¢1(n) J. P14 " dp = ¢y(n) DI,

0
Using a Whitney decomposition W of D we obtain

fd(x, Dymdx =3y Y d(x, dD)*™ dx
=1 Qew

) dia(0)
=dil:?DQ)2'j 2

< Mdia(Dya+ ¥ 27Jnt 20 < oo,
j=1
ifn+2ny—21>0.
The above inequalities yield (5.2) and the theorem is proved.

5.3. THEOREM. Let pe[1, o0). An («, p)-John domain D belongs to %, , where
(A—n)2n<y < 0and A = An, B/a) < n is the Whitney cube #-constant.

PROOF. Let x, be a John center and let x € D. Now [M, Theorem 2.2] implies

that there is an L-bilipschitz mapping T, of B"(0, &) into D such that T,(0) = x,,
4 5

xe TAB"0,a)),and L = c(n) (g) . Write A = Ty(B"(0,2))and E = B’ (xo,c(n) %1—)

Let ue W,}(D, d(x, dD)"). The proofs of [M, Lemmas 2.3, 2.4 and 2.5] yield that

A < D. Hence ue W,'(4,d(x,dD)") and the norms ||u| , and |ullw! 4
W _(A,d(x,0D)7) 14

are equivalent. Thus W;,‘(A, d(x, D)) = C*(A), where the closure is taken with
respect to the norm |- || . Hence we obtain from [M, Lemma 3.3]

W (4, dx, 5D

|u(x) — ug| < c4(n, a,ﬂ)ﬁx = ' Vu)ldy £ c,(n, ﬂ)flx — Y' 7" [Vu(y) dy
A D

for x. Since x € D was an arbitrary point,

|u(x) — ugl < ca(n, o, ﬁ)jlx — yI' " Vu(y) dy
D

for each xe D.
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The Hoélder inequality yields

|u(x) — ugl® < c(n,, B) (J(IX — WP =yt TP V() dY>p
D

< cx(n, o, f) (J‘lx -y ‘"dy>p_ f Ix — yI' " Vu(y)P dy,
D D

where

J’IX —y'Tmdy < f Ix — yI' ~"dy < n€,(ID|/2,)"".
D Br(x,(1D|/R20)1/7)

Multiplying with d(x, dD)”-on both sides of the inequality

[u(x) — ugl” < c3(n,p, o, f)|D|P~ ”"‘Jlx — YI' " Vu(y)lP dy
D

and integrating over D with respect to the variable x and using Fubini’s theorem
we obtain

j [u(x) — ug|? d(x, dD)" dx

D

< cs(n,p,o, )|DIP D" J(IIX = W Vuy)P dY> d(x, D) dx

D

= c3(n, p,, B)|D|®~ ”/"JIV“(}’N’ (Jlx — yI* " d(x,oD)’ dX> dy
D D

An (o, f)-John domain satisfies a Whitney cube #-condition with
A= An,B/x) < nand M = M(n,a, ) [MaVu, Lemmas 6.3 and 2.8]. Thus The-
orem 5.1 implies

Jlx — ' 7"d(x,0D)" dx < cq(n, o, B,y) dia(D) d(y, oD)’
D

where (A — n)/2n < y £ 0. Thus combining the above inequalities we obtain

jlu(x) — ug|?d(x, dD)" dx
D
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< cs(n, p, o, B,7)ID|"~ V" dia(D) J IVu(y)|* d(y, oD)' dy
D

§ CG(n’ D, 2, ﬂ’ ')’) dla(D)p leu(y)lp d(Ya aD)y dy
D

Lemma 2.2 completes the proof.

5.4. REMARK. Theorem 3.4 (i) and [Hu, Lemmas 8.3 and 8.4] yield that an
(o, B)-John domain D belongs to 9’},” forallp=1,ify = 0.
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