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ON THE CAUSAL STRUCTURE OF
HOMOGENEOUS MANIFOLDS

JOACHIM HILGERT and KARL H. HOFMANN

1. Introduction and results.

In a Lorentzian manifold with orientation there is a continuous choice of one
half of the double cone determined by the Lorentzian metric in each tangent
space. We call the chosen cone at a point me M the forward light cone. A piece-
wise differentiable curve y: I — M, where I is any interval in R, is called causal if
the derivative y'(t), whenever it exists, is contained in the forward light cone. The
manifold M is called causal if there are no non-trivial closed causal curves in
M and homogeneous if there is a transitive orientation preserving Lie group
action on M preserving the Lorentzian structure. In that case M is of the form
G/H, where G and H are Lie groups, and the Lorentzian metric and the orienta-
tion is invariant under the action of G. In particular, the future light cone at
my = H is invariant under the action of H. We call any M as described above
a homogeneous Lorentzian manifold.

There is much literature on causality. Let us first state our objectives and
explain our new results.

The causal data.

We shall describe new criteria for a homogeneous Lorentzian manifold to be
causal. Their basis is the recently developed Lie theory of semigroups. The
standard reference is [8]. Our methods do not only work for Lorentzian mani-
folds. Even in that context they free us from the somewhat cumbersome assump-
tion that the Lorentzian metric be invariant; what is really required is that the
automorphism group of the manifold preserves future light cones. Throughout
this paper we deal with the following situation:

1.1 DerINITION. We say that a triple (G, H, W) is a set of causal data if G is
a connected Lie group, H a closed subgroup and W is a wedge (that is, a closed
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convex cone which need not be pointed) in the Lie algebra g of G which satisfies
the following conditions:

(i) The Lie algebra b of H is the largest vector space contained in W.
(ii) The wedge W is invariant under H, that is, Ad(h)W = W for all he H.

If we use the right translations to trivialize the tangent bundle of G as usual,
then g and T (G) become identified under the isomorphism dp,(1): g = T,(G),
p4(x) = xg, and the vector space automorphism dp,(1) ' dA,(1) is in fact the Lie
algebra automorphism Ad(g). Thus T(G) may be viewed as the semidirect
product g >1G with G acting on g under the adjoint action so that
T,(G) = ¢ x {g} and dA,(1)(X,1) = (Ad(9)(X),9), dp,(1)(X,1) = (X,g). Accord-
ingly, the tangent bundle T(M) may be identified with (g/h) x M in such a fashion
that the quotient map n: G — G/H, =n(g9) = gH has the differential given by
dn(X,g) = (X + b,gH). If m = gH is an arbitrary point of M, then the left
translation 4, G— G induces a diffeomorphism pu,; M - M given by
Uy(g'H) = gg'H. Any other left translation mapping mo = H to m is given by 4,
with some h € H. The vector space automorphism dug,(mo) ™' dp,(mo) is given by
(X + b)—(Ad(h)(X) + b.

The left translations allow the transport of the wedge: dA,(1)(W x {1}) =
Ad(g)W x {g}, and di (1)~ dA, ()W x {1}) = Ad(WW x {h} = W x {h} in
view of Definition 1.1 (ii) for all b € H. Therefore the wedge dn(g) dA,(1)(W x {1})
is independent of the representative g of m = gH and depends only on m; it is
therefore justified to call this wedge W, and we note W,, = du,(mo)(W,, ) =
dpgn(mo)(Wy,,) for all he H. By Definition 1.1 (i), the wedge W,, is pointed, i.e. does
not contain non-trivial vector subspaces. It corresponds to the forward light cone
at the point m, and we therefore call the assignment m+— W,, the causal structure of
M defined by the data (G, H, W). A causal trajectory is a piecewise smooth map
y: [0, 1] = M with y(0) = m, and }(t) € W,,,. We say that M is causal if there are
no non-constant closed causal trajectories and that M is totally acausal if every
point of M can be reached by a causal trajectory.

1.2. DEFINITION. A W-admissible trajectory or a W-admissible chain in G (cf.
[8], Definition VI.1.7) is a piecewise differentiable curve y with j(t) € dA, (1) (W)
for all t for which the derivative exists and with y(0) = 1. We shall denote the set of
all endpoints of W-admissible trajectories by S(W).

Let J,; denote the set of endpoints of all causal trajectories. The crucial
concept in our discussion is the pull back
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The following proposition points out how we determine whether M is causal
or not:

1.3. PROPOSITION. (i) For a set (G, H, W) of causal data, the subsets S = G and
S(W) are subsemigroups, the latter is invariant under all inner automorphisms by
elements of H and S = HS(W) = S(W)H.

(i) The manifold M is causal if and only if H is the precise set SNS~! of
invertible elements of S.

(We shall see the proofs later). Causality of M is now expressed by an algebraic
property of the semigroup S; we shall call S the causal semigroup of the data (G, H,
W). Our program of characterizing causality of M will succeed in the same
measure as we are able to deal with S and its relation to the group H. If H is
connected, then S = S(W), and the Lie theory of semigroups applies directly to S.
If H is not connected we are confronted with a difficult situation and are able to
handle only special cases.

Itis no loss of generality for our purposes to assume that G is simply connected.
Indeed in the contrary case we pass to the simply connected covering and to the
full inverse image of H in that covering. Now M is simply connected if and only if
H is connected; thus the complications vanish if the manifold M is simply
connected.

Reducing the problem.

We have not assumed that W is necessarily very large in g. Here we would say
that W is large in g if W is a generating set for the Lie algebra g. However, the
assumption of this sort of thickness is no real restriction for the problem as we see
now.

1.4. DEFINITION. Suppose that (G, H, W) are the causal data of a homogeneous
manifold M = G/H with a causal structure. Let g = {{(W)) the Lie subalgebra
generated by W, let Gy denote the analytic subgroup A = {exp gw ) endowed
with its intrinsic Lie group structure so that the inclusion j: Gy — G is an
immersion of Lie groups. We set Hy, = j~ }(H) and write My = Gy /Hy.

1.5. ProvrosiTiON. (The First Reduction Theorem). (Gy, Hy, W) are the causal
data of a homogeneous manifold My, with causal structure, and there is an immer-
sion of manifolds jy: My — M, given by jy(gHw) = gH, respecting the causal
structure. The manifold M is causal if and only if My is causal. The manifold M is
totally acausal if and only if gw = g and My is totally acausal.

This reduction allows us to assume that W generates the Lie algebra g. This is
certainly the case if W has inner points; Lorentzian manifolds give such examples.
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For a set (G, H, W) of causal data we consider the semigroup
U=S"tnSW).

It is clearly invariant under the inner automorphisms by elements of H and
allows us to rephrase causality as follows:

1.6. REMARK. M is causal if and only if U equals H,, the identity component of
H.

We focus on the semigroup U as the source of further reductions. In fact, we
shall even use it for the proof of the First Reduction Theorem. We shall see that
U is the set of all points on W-admissible trajectories which end in H. In particular,
U is a path-connected semigroup. Thus the subgroup C generated by U is
path-connected, hence analytic by a theorem of Yamabe’s. We shall show that
C is the path-component of 1 in the semigroup UH = HU. Since C is analytic, it has
an intrinsic topology making it into a Lie group I with Lie algebra c. Let
4 denote H n I' with the topology induced from I'.

1.7. THEOREM. If (G, H, W) is a set of causal data, then (I', A, W N ¢) is a set of
causal data such that S(W n ¢) = U. The semigroup UH = HU is a group, namely,
the set S N S~ ! of invertible elements of the causality semigroup S.

The new set (I, 4, ¢ n W) of causal data is canonically associated to the old one.
Usually, the entries I', 4, ¢ n W are much smaller in dimension than the original
data. In fact, they are as small as possible while still having significance for the
causality of M. We denote the homogeneous manifold I'/4 by .# and call it the
reduction of M. There is an immersion of .# into M whose image is the submani-
fold CH/H of M which forms one leaf of a foliation of M.

1.8. THEOREM (The Second Reduction Theorem). If # is the reduction of
a homogeneous manifold M given by the causal data (G, H, W), then the following
conditions are equivalent:
(1) M is causal.
(2) M is singleton.
(3) A is causal.
4 I' =4 = H,.
(5) U = H,.

The difficulty remains that, in general, the reduction .# may be hard to
identify. We shall see, however, that in our main results it plays a crucial role. We
will encounter a situation where the reduction is either a point or a one-sphere.

The two reductions say in effect that every homogeneous manifold M with
a causal structure given by the data (G, H, W) has an immersed submanifold My
which is “generated by W” (in the sense specified in Proposition 1.6) whose
causality determines that of M, and that M, hasin turn a,immersed submanifold
{U v U~'>H/H which is non-singleton precisely when M fails to be causal.
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Closing S(W)

Welet T = :S:(_V_V_j denote the closure of the semigroup S(W). The semigroup
{exp W) generated by exp W, the semigroup S(W), and the semigroup T have all the
same interior, and this interior is dense in all three of them (see [8]). In particular,
T = {exp W).Itis finally this semigroup T, canonically associated to the data (G,
H, W), which we use in order to classify causality. Notice that we are not closing
up § = S(W)H and that the semigroup TH = HT may not be closed, unless
H = T. We denote the group T ~ T ! of invertible elements in T by s(T). Then
H, < ##(T). The set L(T) of subtangent vectors to T at the origin is the Lie wedge
of T, i.e. a wedge V satisfying e***V = Vforall x, —xe V,and itsedge V n — Vis
exactly the Lie algebra b, of #(T). We note b < h; and W < L(T). Once again,
we see a set of causal data (#(T), #(T)n H, hrn W) and an associated
homogeneous manifold My = #(T)/(#(T) N H) with an immersion into M as
submanifold »#(T)H/H. For these new data we can again form the causality
semigroup and, in particular, the semigroup S(hy N W) < #(T) of all points on
hr N W-admissible trajectories in G. Recall U = S~ n S(W).

1.9. THEOREM. For any set of causal data (G, H, W) with H < T, the following
relations hold:

(1 S(W nbr) = S(W)n H#(T).
(2 U c S(Wnby).

Conclusion (2) says that an element of G isin U if and only ifit is the endpoint of
a W N hr-admissible trajectory from 1 to some point of K. It follows quickly that
for the groups of invertible elements in the semigroups S(hr N W)) and S(W) we
have

&) H(S(W N br)) = H(S(W)).

Since U is entirely contained in #(T), and since we know that M is causal if
and only if U = H,, the issue of causality of M is again decided by the causal data
(##(T), #(T) ~ H, hr n W) and we have

1.10. THEOREM (The Third Reduction Theorem). The manifold M associated
with the causal data (G, H, W) is causal if and only if the manifold My associated
with the causal data (H#(T), #(T) ~ H, by n W) is causal.

This reduction is pragmatic in the sense that T = {(exp W), hence
H(T) = T~ T~ !isimmediately given if G and W are given. Given a choice we
vastly prefer to deal with closed semigroups than with non-closed ones. Also, if
W has inner points in g (such as in the Lorentzian case), then S(W) and hence
T have inner points in G and, unless S(W) = G, the closed subgroup #/(T) is
definitely of smaller dimension than G and dim My < dim M.
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Strictly causal manifolds.

The Lie theory of semigroups now allows us to consider a refinement of the
causality concept which is at the core of our classification. If we are given a Lie
group G and a Lie wedge Winits Lie algebra g, we say that Wis global in G if there
is a subsemigroup Z of G whose tangent wedge L(Z) is exactly W. This is
tantamount to saying that the semigroups {(exp W) and S(W) have W as tangent
wedge. If W is a Lie subalgebra, then this is always the case by the Fundamental
Theorems of Global Lie Group Theory; for Lie wedges W which are not vector
spaces this fails often, and there is an elaborate theory attached to the issue of
globality (see [8]). If (G, H, W) is a set of causal data, then W is global in G if and
only if W = L(T).

1.11. DErFINITION. A homogeneous manifold M given by the set (G, H, W) of
causal data is said to be strictly causal if it is causal and W is global in G.

If we were free to speak about the subtangent wedge L, (J,..) in T, (M) of the
set of all points which can be reached from m, by a causal trajectory, which is
possible if one is willing to face the technicalities involving immersed nonclosed
submanifolds, then strict causality adds to causality the information that
Ling(Jmg) = dn(1)(W) = W /b

For the reduction afforded by the Third Reduction Theorem it is instructive to
understand the role of the added hypothesis that H is contained in T.

1.12. PrROPOSITION. For the causal data (G, H, W) consider the following
statements:
(i) H is connected, i.e. H = H,.
(i) H = T,i.e. H = #(T).

Then (i) implies (ii), and if L(T) = W, then they are both equivalent, and
H = »#(T).

This applies, in particular, when M is strictly causal.

Let us observe that the hypotheses H = T and L(T) = W imply that M is causal.
We adopt the view point that strict causality is a particularly strong kind of
causality, and that we must better understand the situation that M is not strictly
causal. It is perhaps a bit surprising that the Lie theory of semigroups allows us to
describe this situation. Thus we proceed with our classification according to the
Jollowing mutually exclusive cases:
OH UT)=g
I KT)=w
Im w4+ L(T) + g
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Classification.

1.13. THeOREM (Classification Theorem, Part A). Let (G, H, W) be a set of
causal data for the homogeneous manifold M. Then M is totally acausal if Case (I)
holds. If Case (II) holds and H < T, then M is strictly causal.

Unfortunately, we know little when H ¢ T. By Proposition 1.12 above this
occurs if and only if H is disconnected, i.e. if M is not simply connected. It is not to
be expected that one can prove very general theorems without the condition
H c T In fact, if Hy = {1} and W = L(T), we may take any (closed) cyclic
subgroup of in the normalizer {ge G|Ad(g)W = W} of W as H and thereby
produce causal or totally acausal manifolds depending on the position of the
generator of H. Our classification has a gap in this case which may not easily be
overcome in the general situation. However, aside from this shortcoming (which
instantaneously vanishes if G and M are simply connected) we are now left with
the investigation of Case (III).

We state clearly at this point that we will now invoke special hypotheses on the
geometry of the cone Wb, certainly satisfied by all Lorentzian cones. We shall
assume that W/h is “sufficiently round”.

1.14. DeriNniTION. We shall say that a wedge W in a vector space g with edge
b = W n — Wis sufficiently round if W has interior points and the following two
conditions are satisfied
(i) Every boundary point w of W\} is a C'-point (i.e. has only one support
hyperplane to W through w).
(ii) Every nonzero boundary point w of W is an E!-point (i.e. there is at least one
support hyperplane E to W through w with En W = h).

Condition (i) says that the surface of Wb has no sharp edges, and (ii) says it has
no flat portions.

1.15. THEOREM. Suppose that (G, H, W) is a set of causal data such that W is
sufficiently round and that Case (III) prevails. Then either H < T, or M is totally
acausal. In the first case, L(T) is a half-space bounded by a hyperplane subalgebra
br; the closed subgroup #(T) is a hypersurface.

We inspect the situation more closely in the spirit of our reduction theorems.
By Theorem 1.15 we know that (#(T), H, hr n W) is a set of causal data on
a hypersurface.

1.16. TueoREM (Classification Theorem, Part B). Let (G, H, W) be a set of
causal data for the homogeneous manifold M with a sufficiently round cone W and
suppose that Case (I11) holds. If H & T then M is totally acausal. IfH < T, then the

wedge by n W is a half-space in aqg(hr N W) — (hy n W) and by bounds this half
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space in a. The Lie algebra ¢ of UH (see Theorem 1.7) satisfies ) = ¢ = a leaving
exactly two cases:
@ b=¢

(ii) ¢ = a.

The causal data(I', 4, ¢ ~ W) yield the reduction # which in Case (i) is singleton
and in Case (ii) is diffeomorphic to S*. In the first case, M is causal, in the second
case it is not and has a foliation by timelike circles.

Before we go on let us summarize the results of the classification for sufficiently
round wedges W in a table:

THE CLASSIFICATION TABLE
L(T) = g implies that M is totally acausal, the other cases are represented in the
following table

HcT H4T
A =1 M= S
un=w M is strictly This case is ? impossible if M is
causal impossible ¢ simply connected
W % I(T) M is causal M is not M is totally
T+ g (not strictly) causal acausal

The Classification Theorem, Part B shows that Case (III) is impossible if W is
sufficiently round, g contains no hyperplane subalgebras, and M is not totally
acausal. This gives immediately the following consequence.

1.17. COROLLARY. Let M be a homogeneous manifold with a causal structure,
which is not totally acausal, given by the data (G, H, W), and suppose that W is
sufficiently round. If g contains no subalgebras of of codimension one then M is
strictly causalor H ¢ T.

In particular, if under the circumstances of Corollary 1.17, the manifold M is
simply connected, then it is either totally acausal or strictly causal. Since we have
acomplete theory for detecting hyperplane subalgebras in a Lie algebra (see [9]),
this criterion is rather effective.

The Classification Theorem, Part B shows that in Case (III) the distinguishing
feature is the reduction .#. We shall give a Lie group theoretical criterion which
allows us to distinguish the two cases. Indeed under the hypotheses of Theorem
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1.16, the manifold M is causal if and only if for all x €(hy N W)} the relation
expt-x € H implies t = 0. (See Proposition 4.2.)

Algorithm.

Suppose we are given a homogeneous manifold M through the causal data (G,
H, W)satisfying the hypotheses of the Classification Theorem 1.13 and 1.16. Our
results suggest the following procedure for the determination of the causal
properties of M.

Firstly, one tests whether W is global or not. In general, this may be a delicate
task as the general Lie theory of semigroups shows (see [8]). In practice, one
frequently knows the maximal subsemigroups of G; a comparison of W with their
tangent wedges may give an affirmative test result. Then we are in Case (II). This
procedure is particularly effective for the class of Lie groups, for which maximal
subsemigroups are half-space semigroups (cf. [8]). In this case one inspects the
(known) list of hyperplane subalgebras of g, for these bound the tangent wedges
of maximal subsemigroups of G [9].

Secondly, if W is global (Case (II)!), we know that M is strictly causal as soon as
H < T. This is automatic if M is simply connected, for which case we may assume
that G is simply connected. If H ¢ T, we need a detailed knowledge of S(W) and
H/H, to determine whether M is causal or not. This is the case marked “?” in the
Classification Table.

Thirdly, suppose that W is not global (Cases (I) or (III)). If S(W) = G we are in
Case (I). If S(W) # G (this implies T + G, hence Case (I1I)), we have to check all
hyperplane subalgebras g (the complete list is known [9]) and check which are
support hyperplanes of W. The subalgebra b must be one of these. We consider
the analytic subgroup »#(T) with Lie algebra b, (which, being the group of units
of T, has to be closed and to contain H,.) We inspect H: If H ¢ »#(T) then M is
totally acausal. In the opposite case we have to study the algebras
a = (hyn W) — (h » W) and the topology of the corresponding analytic sub-
group of G in order to determine whether the reduction .# is singleton or
a 1-sphere.

This test procedure yields the following result valid for a large class of Lie
groups. For a convenient formulation let us denote with &(g) the set of hyper-
plane algebras in the Lie algebra g (see [9]) which bound a global half-space
Lie-wedge. Also recall that a ray semigroup in a Lie group is a subsemigroup
generated by its one-parameter subsemigroups [8]. If G is a simply connected Lie
group such that each simple factor of g/rad g is either compact or isomorphic to
s1(2, R) then all maximal closed ray semigroups are half-space semigroups (cf.
[11]). This may very well be true for a much larger class of Lie groups, but this is
still unknown.
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1.18. THEOREM. Let M be a homogeneous manifold with a causal structure given
by the data (G, H, W) such that G is simply connected and H is connected. Suppose
that W is sufficiently round and that every maximal closed ray subsemigroup of G is
a half-space semigroup. Then the following conclusions hold:

(i) If there exists e € &(g) such that e n W < b, then M is strictly causal.

(i) IfenintW £ & for all e€ £(g), then M is totally acausal.

(iii) Ifthere exists anee &(g) suchthat e nint W = &, and e n W & b, then either
M is strictly causal (if W is global) or else M is causal if and only if
Hn{exptx: t >0} = & for all xe(W ne)\b.

We shall illustrate effectiveness of the algorithm by detailing it for some low
dimensional examples including those of Levichev [14].

Methods.

The approach to the causality of homogeneous manifolds which we have
outlined requires a good deal of technical information on the Lie theory of
semigroups which is not yet well known. Much of the current status of this theory
is contained in [8]. However, even given that source, we still have to provide
many additional details for the proofs of the results specified above. This we will
have to do in the main body of the paper. A systematic theory of partial orders on
smooth manifolds endowed with cone fields in the frame work we use is recent.
For further background see J. D. Lawson’s and K. H. Neeb’s articles [12] and

[16].

2. Proofs and details.

Our first task is to prove Proposition 1.3.

First we show that S is a semigroup. Indeed, suppose that g,, g, € S and that y,,
y, are causal curves with y;(0) = my and y,(1) = n(g;). Then we define a curve
n: [0,1] = M by n(t) = g, y,(t). Since by assumption the group action on
M preserves metric and orientation, i.e., the field of future cones, it follows from
the chain rule that » is a causal curve from n(g,) = y,(1)to g, y,(1) = g, n(g;) =
n(g,£,)- Thus the concatenation of y, and # is a causal curve from m, to n(g,g1)
which by a change of parameters, shows that g,g, € S. Since the concatenation of
admissible trajectories is again admissible, the set S(W) is a subsemigroup of G.
By assumption, W is Ad (H)-invariant; therefore the set of W-admissible trajecto-
ries and hence S(W) is invariant under Ad(H). In particular, this implies
HS(W) = S(W)H is a semigroup.

In order to show S = HS(W) we need to relate admissible curves in G and M.

2.1. DeFINITION. (i) A lifted causal trajectory is a piecewise smooth map
y: [0,1] = G such that poy: [0,1] - M = G/H is a causal trajectory.

(ii) We write S,, for the set of all points g € G such that there is a lifted causal
trajectory y with p(y(0)) = my = H and with y(1) = g.
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2.2. LemMAa (The Lifting Lemma). Let p: E — B be a locally trivial fibration of
C® manifolds. Then every differentiable curve y: [0,1] — B lifts differentiably.
That is, for a given point xq€ E with p(x,) = y(0) there is a differentiable curve
I': [0,1] - E with I'(0) = xq such that y = poT.

PrOOF. We first prove a sublemma.

SUBLEMMA. Suppose that ¢: I — R"is a C* function on an interval I < [0, 1]
with 0e I + [0, 1] and with ¢(0) = 0. Given an ¢€[0, sup I'] we find a C*-func-
tion @: [0,1] —» R" with ¢(t) = &(t) for 0 <t < supl — &

Proor. Let a: [0,1] - [0,1] be a C®-function such that aft) =1 for

0§tgsupI——aanda(t)=0forsupT~%§t§ 1. Define

o) = a(t)-o(t) for 0Lt <supl;
R for sup ISt < 1.

This function does what we want.

For a proof of the Lifting Lemma we let J denote the set of r € [0, 1] such that
there is a smooth A: [0,r] - E with 4(0) = x, and p(4(¢)) = y(¢t) for te[0,r].
Obviously, J is an interval containing 0. We claim that J is open and closed in
[0, 1]. In order to prove the claim let s = sup J. There is an open neighborhood
U of y(s) and a diffeomorphism y: F x U — p~}(U) such that p(y(x, u)) = u. We
choose 0<s <s<s"<Z1 if s<1, else s"=s so that y([s,s"]) = U. Set
m = 4(s' + s). Then meJ and there is a partial lifting 4: [0,m] — E by the
definition of J. Now there is an open euclidean n-cell C" such that C* x U is
mapped homeomorphically onto an open neighborhood W of A4(m). Let
I = [r,m] with s’ £ r < m be such that A([r,m]) = W. Then there is a smooth
function ¢: I — C" such that Y((t), y(t)) = A(t) for te[r,m]. If r <’ < m then,
by the Sublemma in part (a), we find a smooth function @: [m,s”] - C" which
agrees with @ on [m,r']. Thus, if we set

wn _ 140 for 0st<r
410 = {W@(t), wWt) for m<t<s,

then 4’ is a smooth partial lifting of y over [0, s”] This proves s” € J. Firstly, this
shows that s e J which guarantees that J is closed. Secondlyif s = 1,the J = [0, 1]
and J is open trivially. If s < 1, then s < 5" means that J is a neighborhood of
s and so J is open in this case, too. As an open closed interval of [0, 1], the set
J must be equal to [0, 1] and the Lemma is proved.

Now we can conclude the proof of Proposition 1.3 (i):
By the definition of S(W) and the left invariance of the wedge field g+ W(g),
the semigroup S(W)H is exactly the set of endpoints of W-admissible trajectories
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starting from a point of H. These project onto causal trajectories of M starting
fromm, = H.However, by the Lifting Lemma, every causal trajectory in M start-
ing from my lifts to a W-admissible trajectory of G starting from some point of H.
Hence, by Definition 2.1 (ii) we conclude S = S(W)H.

Next we finish the proof of Proposition 1.3 (ii):

We show first that SN S~ = H implies that M is causal. Since clearly H is
contained in S n S~ it suffices to show that n~!(p([0,1])) = SN S~ ! for any
closed causal curve y: [0,1] = M. Let to€[0,1] and go€n ™ (y(to)). Now con-
sider the curve n: [to,1] — M defined by n(t) = g4 * - 7(¢), then n is a causal curve
from mg to go ! - (1) = n(gq !). Hence we have g, '€ S and thus goe SN S~ 1.

Conversely,if ge S 1 S~ ! we have to show that there is a closed causal curve in
M which passes through m, and n(g). But we find causal curves y, and y, from m,
to n(g) and n(g ~!) respectively, so that translating y; by g~ ! and concatenating
the resulting curves yields the desired causal loop.

The next task is the proof of the three reduction theorems.
The first lemma in this line is of a purely algebraic nature.

2.3. LEMMA. Let S be an arbitrary semigroup in a group G containing 1 and
H any subgroup of G normalizing S. For an element s€ S, the following statements
are equivalent:

(i) There is an element he H such that she SH is a unit in SH.

(ii) sis a unit in SH.

(iii) sSN H * &, that is, there is a t € S such that ste H.
IfU=S8Sn(SH)™ !, then SH n(SH)™! = UH.

Proor. All of these equivalences are elementary. Since H is contained in
SH ~ (SH) ™!, right and left multiplication with elements of H transforms units of
SH into units. Hence (i) and (ii) are equivalent. If (i) holds, then s ! € SH and thus
sS n H + J, hence (iii), and vice versa.

The last assertion follows from the preceding.

We now return to the causal data (G, H, W) for a homogeneous manifold
M = G/H with a causal structure.

2.4. LEMMA. (i) The semigroup U = S~ n S(W) is the set U(H; W) of all points
on W-admissible trajectories starting in 1 and ending in some point of H.

(i) SnS™! = UH.

(iti) If h = L(H) = W, then (U U U~ '), the analytic subgroup generated by all
W-admissible trajectories from 1 to a point of H, is the arc component of 1 in UH.

V) hecLlU)c LSAS HALESW) and <(LU)Y) c LUH), where
{KLU)») is the Lie algebra generated by L(U).



ON THE CAUSAL STRUCTURE OF HOMOGENEOUS MANIFOLDS 131

Proor. It follows from the definitions of U(H;W) and S(W) that
UH; W) = {seS(W)|sS(W)nH,;} + &. In fact, if y is W admissible with
to) = sand y(1)€ H then s~ 'y(to + t) e S(W)for all non-negative t. In particular
we have s(s'y(1))esS(W) ~ H. Now we know that U(H; W) is the set of all
elements of S(W) which are invertible in S(W)H, i.e. we have shown (i).

Further, (ii) is a consequence of Lemma 2.3. For a proof of (iii) we observe first
that U is arcwise connected by definition, whence (U u U ~ 1) is contained in the
arccomponent C of 1 in UH. On the other hand, <U u U~ ') contains Hy, the arc
component of 1 in H, because of ) = W. We note that C is also the arc component
of 1in<dUVU ' )H. But (FUVU ' SHYKUVU DS 2 H(HAUWU™Y),
and this last group is a homomorphic image of the group H/H, which is
countable. Thus the analytic subgroup (U u U ') has countable index in the
analytic group C. Hence the two agree.

(iv) The preanalytic (cf. [8]) semigroup U = UH n S(W) has the Lie wedge
L(U) = L(UH) n L(S(W)) as tangent object. Since C contains the subgroup gener-
ated by all one parameter semigroups of U it follows that ({L(U)>) = L(C) =
L(UH).

As in the introduction, we let I" denote the analytic subgroup C generated by
the arcwise connected subsemigroup U, given its Lie group topology. After
Lemma 2.4, the group C is the arc componentof 1inS n S ~!. We set ¢ = L(I')and
A=TnH.

Then

¢={XeglexpR-X < HU}.

2.5. LEMMA. Suppose that V is some Lie wedge in ¢ = g. The two semigroups
Sr(V) and S(V) are well defined subsemigroups of I' and G, respectively, according
to Definition 1.2. In particular, we have S(V) = C = G. Then

) Sr(V) = Sa(V).

PROOF. Suppose that ge I'. The inclusion map j: I' — G induces an inclusion
map T,(I') - T,(G) (which is, in fact, the inclusion ¢ — g transported via dp,(1)
where p,(x) = xg). Under this inclusion Vi(g) =dA,(1)V gives exactly
Ve(g) = dA,(1)(V) Clearly, every V-admissible trajectory y: [0,1] - I in I' is
mapped under j to a V-admissible trajectory y: [0, 1] — G of G. But conversely, if
7: [0,1] - Gisa V-admissible trajectory in G, then y(t) € V5(y(t)) = T,,(I'), and as
a consequence y(t)e C for all te[0,1], and the corestriction of y to C lifts to
a V-admissible trajectory in I' which maps onto y under j. Thus, the V-admissible
trajectories of I' and G are in a natural bijective correspondence which, on the
level of the graphs of functions, becomes equality. In particular, (4) follows.

Relation (4) allows us to speak of the semigroup S(V) unambiguously as
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subsemigroup of I' as well as of G. A similar thing can be said of the semigroup
U as we shall see now:

2.6. PrROPOSITION. (i) U = C and

) U=U<Si nSWnc) where Sp=Sq swno-

(i) I' = UrA.
(iii) Ur = S(W ).

PRrOOF. (i) Since I is the underlying Lie group of the analytic group generated
by U, clearly U = I', and U is the set of all elements on W-admissible trajectories
from 1 to some point in H. Since these trajectories are contained in I' they are in
fact W N c-admissible, and by Lemma 2.5, equation (5) follows.

(ii) The right side is clearly in the left one. However, C is the arc component of
UH, and if ¢ = uhe C with ue U and heH, then h = u"'ce C n H. Since the
underlying groups of C and I', as well as those of C n H and 4 agree, the left hand
side is in the right one.

(iii) We have U = Ur. By (i) and (ii) above we note I' = U4 <« S(W n )4 =
Sr I', whence Sy = I' and thus U = U = S(W N ¢).

Note that Proposition 2.6 (iii) together with Lemma 2.4 (ii) completes the proof
of Theorem 1.7.

2.7. LEMMA. Suppose that ) = W and that G = S(W)H. Then G = {S(W)).

Proor. We now observe, that it is no loss of generality to assume G simply
connected: We consider the universal covering p: G - G, set H = p~'H and
identify g with L(G) in such a fashion that poexpg = expg. Then
p(Sg(W)) = Sg(W). But conversely, every W-admissible trajectory in G starting
from 1 has a unique lifting to a W-admissible trajectory in G starting from 1 (cf.
Lemma 2.2). Hence also Sg(W) = p(Sg(W)). Thus G = Sg(W)H.

If now the assertion is true for simply connected groups, then (Sg(W)) = G
and thus (S(W))> = p({Sg(W)>) = p(G) = G.

Hence we assume now that G is simply connected. We observe that H normal-
izes S(W), hence A = (S(W))>. From G = S(W)H < AH = G we now conclude
that the analytic subgroup A is normal in G. Since G is simply connected, A4 is
closed. But H, = S(W) < A,and H/H, is countable. Hence G/A is countable, and
this shows G = A.

2.8. THEOREM. Suppose that G is a connected Lie group and H a closed subgroup,
W a Lie wedge in g containing V). Further we assume that W invariant under Ad H.
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Then

i) U=SWny,

(i) C=S(Wnce)HNT), and

(iii) I is generated by the semigroup S(W n ¢).

(iv) The set of invertible elements of S(W)H is S(W n ¢)H, and
(v) <expc) is the path component of 1in SN S~ 1.

ProorF. By Proposition 2.6 we know that U=S(Wnc¢ and
I' = S(W n ¢)(H n I). It follows from this and the definition of the group I' that it
is generated by S(W n ¢) (see also Lemma 2.7). By Lemma 2.4 (i) and Lemma 2.3,
the set of invertible elements of S is UH = S(W n ¢)H.

2.9. CorOLLARY. Under the circumstances of Theorem 2.8, the following condi-
tions are equivalent:
(1) U = H,.
2) I' = H,.
(3) c=b.
4) S(Wn ) < Hy.
(5) Ur = H,.

PROOF. (1) = (2): If (1), then Hy = <U u U~ ') < H,. Hence (2).

(2) and (3) are clearly equivalent.

(3) = (4): If (3), then S(W N ¢) = S(W n b) = S(h) = H,.

(4)=(1): If (4), then by Theorem 2.8 we have '=S(Wn¢)HANT)c
HoH = H and thus I = H,. This implies U = H,. The reverse inclusion follows
directly from Lemma 2.4 (i) since f = W.

(5) is equivalent to (1) in view of Proposition 2.6.

2.10. CoRrOLLARY. Under the circumstances of Theorem 2.8 and the assumption
that S generates G, the following conditions are also equivalent:
(1) G = S(W)H, that is, G = S.
(2) U = S(W), that is, S~ < S(W).
(3) I' = G, that is, U algebraically generates G.
@ c=g.

ProOF. We recall the Definition of U as S™! nS(W) and the equation
S = S(W)H (Proposition 1.3(i)). Thus (1) implies (2). As S(W) < S, (2) implies that
§ is a group. Since S generates G, this implies (3). Clearly, (3) and (4) are
equivalent. By Theorem 2.8 (v), (4) implies (1).

2.11. PRrOPOSITION. Let (G, H, W) denote the data of a homogeneous manifold
M = G/H with a causal structure. Then
() M is causal if and only if U = Hy ifand only if SN S™! = H.
(i) M is totally acausal if and only if G = S(W)H = S.
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(iii) The group H#(S(W)) = S(W)n S(W)~! is the set of all points on closed
W-admissible trajectories. In particular, #(S(W)) < U.
(iv) If M is causal, then #(S(W)) = H,.

ProoF. (i) By the homogeneity of M, the manifold M is causal if and only if
every closed trajectory starting from my = H is constant. This is the case if and
only if every W-admissible trajectory y: [0,1] - G with y(0) = 1 and y(1)eH
satisfies ([0, 1]) € H. By Lemma 2.4 (i), this means exactly U = H. Since U is path
connected, this inclusion is equivalent to U = H,. The reverse containment,
however, is always true. To prove the last equivalence we recall from Lemma 2.4
(ii) that SN S~! = UH. Therefore, U = H, implies SN S~ = HyH = H. Con-
versely,S NS~ = Himplies U < H and then U < H,,since U is pathconnected.

(ii) By the homogeneity of M we know that M is totally acausal if for every
me M there is a causal trajectory from mg to m. This is equivalent to saying that
for every g € G, there exists a W-admissible trajectory starting from 1 and ending
in gH. This is equivalent to G = S(W)H.

(ii) If x is on a closed W-positive trajectory y: [0, 1] — S(W) starting at 1, say
x = (r), then t— x " 1y(t + r)is a W-positive trajectory [0, 1 — r] — S(W)leading
from 1 to x~!. Thus x~ ! e S(W), i.e., x e #(S(W)). Conversely, if x e #(S(W)),
then there are W-positive trajectories p: [0,1] — S(W) from 1 to x and
o: [0,1] - S(W) from 1 to x~*. Then the concatenation of p and t+» xa(t) is
a closed W-positive trajectory containing x.

(iv) Suppose now that Hy=U. It follows from Hy < S(W) that
Hy, < A#(S(W)). By (iii) above we have s#(S(W)) = H,. Hence (iv) is proved.

Note that Proposition 2.11 (i) proves Remark 1.6.

We are now ready to prove the reduction theorems. We begin with the First
Reduction Theorem.

Recall that we are in the situation of Definition 1.4. By Lemma 2.5, the
semigroup S(W) is unambiguously contained in G as well as in Gy . Accordingly,
Hy c U(H; W) = U(H n A; W). Now by Proposition 2.11, the manifold M is
causal if and only if Hy = U, and My is causal if and only if U(Hy; W) = H,.
Since the semigroups U(H n A; W) and U = U(H; W) agree, the first assertion
follows.

Now M is totally acausal if and only if G = S(W)H and My, is totally acausal if
and only if Gy = S(W)Hy,. But S(W)H n A = S(W)(H N A) and the underlying
groups of Gy and A on the one hand and Hy and H n A on the other agree.
Hence G = S(W)H implies Gy = S(W)Hy. Also G = S(W)H implies
G = {S(W)u S(W)~ !> by Corollary 2.10. Since S(W) = <expgw) as W < gy,
we conclude gy = g. Conversely, suppose that this condition is satisfied together
with Gy = S(W)Hy,. Then gy = g implies G = Gy, consequently Hy, = H, and
G = S(W)H follows.
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Next we prove the Second Reduction Theorem 1.8.

From Proposition 2.6 (i) and Theorem 2.8 (i) we know Uy = U = S(W n¢),
and the group I is algebraically generated by U by its very definition.

We shall now prove the equivalence of conditions (1) through (5) in Theorem
1.8.

(5) <= (1)=(2): By Proposition 2.11, M is causal iff U = H,. By Corollary 2.9,
this isequivalent to Ur = Hy, = 4,. But I' is the analytic subgroup of G generated
by U = H, hence is also equal to Hy. This implies that .# is singleton.

(2) = (3): Trivial.

(3)=4): If A is causal, then by Proposition 2.11 (i), Uy = 4,. Then (5) in
Proposition 2.6 implies Hy = U = Ur = 4y = H,. Thus I' = H,, and then also
A4 = H,.

(4) = (5): The relation I' = Hy, in view of Lemma 2.4 (i), means U = H,,.
We now turn to the proof of Theorem 1.9.

2.12. THEOREM. For a piecewise smooth curve y: [0,1] — G with y(0) = 1 the
following conditions are equivalent:
(1) 9()e(W nbp)(y(t)) for all te[0, 1] for which the derivative exists.
(2) 7(t)e W(y(t)) and y(t) e H(T) for all te[0, 1] for which the derivative exists.
(3) 7(t) e W(y(t)) and y(1)e H(T)for all t € [0, 1] for which the derivative exists.

Proor. The following implications are simple: (1) = (2), (2) = (1), and (2) = (3).
The hard implication is (3) = (2) which we prove now:

We suppose (3) and assume that (2) is false in order to derive a contradiction.
Then there is an se€ [0, 1] such that y(s) ¢ H(T). Let U be a compact neighborhood
of 1 such that y(s)¢ UH(T). By [8], Theorem V.2.7 there exists a closed proper
right ideal I of T with

(@) T<c UH(T)uU L

Notice that UH(T) is closed in G. We choose a neighborhood N of 1 in such
a fashion that

(ii) YON NI =,
and
(iii) YN " UH(T) = &.

By [8], Proposition VI.1.13, there is a trajectory f: [0,1] - T < G such that
there are elements X,,..., X,e Wand numbers 0 =ro <r; <...<r,_; < 1=
r, for which f(1) = exp X, ...exp X, and

(iv) f(t) =expX,...expXy_,exp(t — r—)(r — re-1) "' Xi for
-1 St<ry,
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and that, moreover
v) f(®ey)N forall te[0,1].

From (v) we know f(s)€y(s)N, hence f(s)¢é UH(T) by (iii). Therefore f(s)el
from (i). Since I is a closed right ideal, (iv) implies then that f(t)e I for all te [s, 1],
in particular f(1)el. Hence f(1)ey(1)N n I, and this is a contradiction to (ii).
This contradiction proves the claim ([0, 1]) = H(T).

Now we prove assertions (1), (2) of Theorem 1.9 and the subsequent condition
Q)

In fact, (1) is an immediate consequence of Theorem 2.12 in view of the
definition of the semigroups S(W) and S(W N br).

For a proof of (2) we note that (1) implies

1" S(Wnbhp) ! =S(W) !~ H(T).
The intersection of the respective sides in (1) and (1’) yields
H(S(W nbr)) = H(S(W)) » H(T),

and since H(S(W)) = H(T), equation (3) follows.
ByLemma2.4(ij)wehave U = S(W)n H = S(W)n 5#(T),whence U = S(Wnhr)
by (1). This completes the proof of (1), (2) and (3).

We proceed with the proof of Proposition 1.12.

The implication (i) =>(ii) is trivial. Conversely, under the assumption
L(T) = W, if H — T then H is contained in the group of units of T which by [8],
Theorem V.2.8 and Lemma V.2.2 is a connected subgroup with Lie algebra
br = W(T)n —(T) = b. Therefore H = H,.

We now proceed to prove Theorem 1.13.

We first remark that (expW) c S(W)c T = §(_VI7) By the First Reduction
Theorem 1.5 we may assume that the Lie algebra g is generated by W. From [§]
V.1.16 we then know that intT =int{expW) and T =intT Hence
intS(W)=intT is dense in S(W). Also, by Proposition 1.3 (i) we have
S = HS(W). Hence the open semigroup P = H int T is dense in S. We claim that
G = P implies G = P and thus G = S. Indeed let g€ G. Then gP~ ! is open and
hence intersects the dense set P. Thus there is a pe P with pegP~! and so
gepP c P.

Now if L(T) = g, then T = G and thus int Tis dense in G. Then P is dense in G,
whence G = S by the preceding. This means that M is totally acausal. Thus the
first part of Theorem 1.13 is proved.

Next assume that L(T) = W and H < T. Then W is global and by Proposition
1.12 we have H = #(T) = H, = S(W). Hence S =S(W)and H=SnS ' c
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T T ! = H. Thus M is causal by Proposition 1.3 (ii). Hence M is strictly causal
as W is global.

Before we proceed with the classification we need some special results in the
Lie theory of subsemigroups of Lie groups which we collect in the following
section.

3. Some results on Lie wedges.

3.1. DEerINITION. Let W), < W, Lie wedges in a Lie algebra g, whose edges we
denote with b, and b,, respectively. We shall say that W, fits well into W, if
hnW, =,

3.2. THEOREM. Consider two Lie wedges W, = W, in the Lie algebra g. Suppose
the following hypotheses:

(0) W; does not fit well into W,.

(C) Every nonzero boundary point of W, is a C'-point: 0W < CY(W)u {0}.

Then either W, = b, = g or W, is a half-space semialgebra whose boundary b, is
a tangent hyperplane of W, and a hyperplane subalgebra.

PRrOOF. By condition (0) we find an x € Wj\b, with xeb,. Since xe H(W,) it
follows that x is in the boundary of W, and then, being in W}, in the boundary of
W,. Next, a subtangent vector to W, at x is, a fortiori, a subtangent vector to W, at
x. Thus T (W) = T,(W,) = H(W,). Now (C) applies and shows that T,(W,) is
a hyperplane. This implies that H(W,) contains a hyperplane. Thus either
H(W,) = g, that is, W, = g, or else H(W,) is a hyperplane itself. In this case, W, is
a half-space semialgebra with H(W,) = T(W,).

We notice that hypothesis (C) is satisfied if and only if the pointed cone W, /b,
satisfies (C) in g/b,, and that is the case in particular if the latter is Lorentzian.
We recall that E, = T, n W is the exposed face generated by x ([8], Definition
1.2.6 and Proposition 1.2.7). If W is a Lie wedge with edge ) = W n — W, then

(6) [(bWlecW-—-W
(See [8], Theorem 1.2.12.(1).) We recall that x € E'(W) if and only if
(7) EW)=R*-x+b.

(See [8], Definition 1.2.1).
The following is an application of the observation that the intersection of two
Lie wedges is a Lie wedge:

3.3. PRrROPOSITION. If W is a Lie algebra g and the tangent space T, = T.(W) of
X is a subalgebra, then E, is a Lie wedge with edgey = W~ —W.If x is an E*-
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point, then [x,h] = R-x + b, that is, R-x + b is a Lie algebra, and if x &1, then
b is a hyperplane subalgebra in it.

ProoF. Since W and T, are Lie wedges, and since ) « T, we know that
E.,=T,nW is a Lie wedge with edge . In particular, by (6), we have
[x,b] < E, — E,. If xe E}(W), then (7) implies [x,§] = R-x + b and since b is
a subalgebra (see [8], Corollary II.1.8), the proposition is proved.

3.4. COROLLARY. Under the circumstances of Theorem 3.2, suppose, in addition
that W, satisfies the following condition:

(E) Every nonzero boundary point of W is an E*-point: W < E}(W)u {0}.

Then either h, = g or Wy n b, is a half-space semialgebra R* - x + b, with
boundary algebra by, and some x e C{(W,).

Proor. By Theorem 3.2 W, is either g or else a half-space semialgebra with
H(W,) = T(W,) for some x € C!(W,). From Hypothesis (E) we know that x is an
E'-point. Now Proposition 3.3 applies and shows that W, nb, =
Win T (W) = E, = R*x + by.

We recall, that, as a consequence
Wi nbhy) —Winbh)=R-x+ b,

is a Lie algebra. (Cf. also [8], Proposition I1.2.13.)
Observe again that Condition (E) is satisfied if it is satisfied by W/h in g/b. It
therefore holds, in particular, if W/} is Lorentzian.

4. The classification.

We are now ready to prove Theorem 1.15.

Since W is not global by the assumption of Case (I1I), we conclude from [8]
VI1.5.2 that W does not fit well into L(T). Since W is sufficiently round. Theorem
3.2 applies and shows that L (T') = gor L(T)is a half-space semialgebra bounded
by hr. But L(T) = g is ruled out in Case (III).

Thus T is a half-space semigroup. Hence T is, in particular, a maximal
subsemigroup of G. Now HT is a subsemigroup containing 7. Hence either
H < T,or G = HT. Now H/H, is countable and H, = T. Thus G = HT implies
that G is a countable union of translates of T. Thus T has inner points by the Baire
Category Theorem and thus the interior int T of T is dense in T. As in the proof of
Theorem 1.13 we then prove G = HS(W). That is, M is totally acausal.

Our next project is the proof of Theorem 1.16.

Since W is sufficiently round, Corollary 3.4 applies and shows that W n by is
a half-space semialgebra in a = (W n bhr) — (W n hr) with b as boundary hyper-
plane algebra.
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Wehave Hy « U = C,whencel) = ¢. Now Theorem 1.9and W n by = ashow
U = UH; W)= UH;W nbr) = S(Wnbhr) = S(a) = (expa),

and thus ¢ = LKU U U™ Y) c L({expa)) = a.

Werecall # = I'/(I n Hyand note Hy = I' n H and L(I"' n H) = ¢n }). Hence
dim .# = dim¢/(c ") = dim¢/h < dima/h = 1 by what we have just shown.
Suppose dim .# = 1. A one-dimensional homogeneous space of a Lie group is
homeomorphic to R or to S*. If the manifold .# were homeomorphic to R then it
would be causal, whence by the Second Reduction Theorem 1.8 it would have to
be singleton, a contradiction. Hence .# is a circle.

The situation of Theorem 1.16 can be described in greater detail.

4.1. COROLLARY. If, under the circumstances of Theorem 1.16, the reduction
M is acircle,in which case then M is not causal, then either A = I ~ H contains the
commutator group of I’ and # is the circle group, or else there is a closed connected
normal subgroup N of I' contained in A such that T'/N is a covering group of
PSL(2; R) and A/N is a planar subgroup of I'/N. If I is simply connected, then H is
not connected.

ProoFr. If the reduction of M is a circle, then M cannot be causal by the Second
Reduction Theorem 1.8. We can factor the largest normal connected subgroup
N of I" contained in 4 without changing .# or the causal structure. Then
I' @ R/nZ for some neZ or I' is a covering group of PSL(2, R). The third case
which could occur as a one-dimensional homogeneous space, namely, that I' is
isomorphic to the 2-dimensional solvable group of all

(g a’fl), a>0,beR,

can be excluded since in this case H, is conjugate to the subgroup of diagonal
matrices, and this group is its own normalizer so that 4 = 4, and .# couldn’t be
compact. In the first case, since .# is diffeomorphic to S, we have 4 = mZ with
m|n and either m or n non-zero. In the second case, 4, is a planar two dimen-
sional subgroup, and the normalizer of 4, is 4,Z with the discrete center Z of I.
Hence 4 is a subgroup of 4,Z. .

Suppose that I' is simply connected and H is connected. Then 4 is connected
since Hy = 49 < 4 = HN T = H,. But then I'/4 cannot be homeomorphic to
st

It is an exercise to pursue the semigroup S(Wn ¢) in all of these cases (cf. [8],
Section V.4, notably Proposition V.4.17 fI., Section V.5).

Through the following result we look at the situation of Theorem 1.16 in
a different fashion.
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4.2. PROPOSITION. Let M be a homogeneous manifold with a causal structure
given by (G, H, W) such that H < T and that L(T) is a halfspace. We assume that
W is sufficiently round. Then M is causal if and only if H n {exptx: t > 0} = &
for all xe(W nbhp)\b.

Proor. Suppose that M is causal and let x be any element of W N by such that
Hn{expt-x: t >0} + . Weshall show that x e b. Recall that the curve exp tx
is W-admissible (cf. [8], VI.1.16). Therefore exp toxeH n {exp tx: t > 0} implies
Ay, = {exptx: 0 <t < to} = U.Then A4, is contained in H, by Proposition 2.11
(i) and Lemma 2.4 (i). Hence x€l).

Conversely, suppose that M is not causal. We have to find an xe (W nh)\h
such that H n {exp tx: t > 0} + . Since L(T) is a half-space and every bound-
ary point of W is an E'-point, W # L(T) and we are in Case (I1I). Since M is not
causal, .# is not singleton by the Second Reduction Theorem 1.8. Hence we
know from Theorem 1.16 that .# is a circle. Now Corollary 4.1 applies. Factor-
ing the largest connected subgroup N of Hy = 4, which is normalin I pass to the
quotient I'/N and temporarily assume that either 4, = {1} and I'/4 is a circle
group, or else I' is a covering group of PSL(2) and 4 a two dimensional subgroup
(such that 4 is not connected if I' is simply connected). In both cases, there is
a one-parameter semigroup exp R*x with xe(W nh)\h which hits H non-
trivially. Lifting this one parameter semigroup in I'/N to I brings us back to the
general case and the assertion is proved.

Our results show that the situation is considerably simpler if H is connected. In
fact, it suffices that H < T, which is certainly the case if H is connected. If we are
willing to consider covering manifolds of our original manifold M we can of
course restrict ourselves to connected H. In fact, the canonical map

p: M=G/HNT)->G/H=M,

is a covering. If the causal structure on M is given by the data (G, H, W) then the
manifold M carries a causal structure given by the data (G,H n T, W). It is clear
that M can only be causal if M is causal, since then p maps causal loops to causal
loops. The converse is false, as can be easily seen in the abelian case.

4.3. PROPOSITION. Let M and M be as above, then the causality semigroup S of
the data (G, H n T, W) equals S(W) and the question mark “?” in the Classification
Table does not occur for M.

ProoF. This follows immediately from (H n T)S(W) = § (see Proposition 1.3
applied to M).
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We still owe an explicit proof of Theorem 1.18 which we present now:

Suppose that the general hypotheses of Theorem 1.18 are satisfied. Since H is
connected we have H < T by Proposition 1.12 and thus the rightmost column in
the classification table is missing.

(i) If e e &(G) then e bounds a global half-space Lie-wedge by definition, and
en W < b < by then implies that L(T) = L({exp W) and thus that W is global
[8]. A glance at the Classification Table shows that M is strictly causal.

(i) Under the assumptions of (ii), the ray semigroup {exp W) is not contained
in any maximal ray semigroup. Hence it must equal G and thus M is totally
acausal.

(iii) Under the hypotheses it is possible that L(T) = W. Then M is strictly
causal according to the Classification Table. Assume the opposite. Then we are
in the situation of Proposition 4.2 and the final assertion of Theorem 1.18
follows.

5. Examples.

Itis clear from Section 4 that any proposition on the existence or non-existence
of semigroups with appropriate given tangent wedges will yield examples of
causal or non-causal manifolds. For an account of propositions of this type we
refer to [8]. In this paper we restrict our attention to examples to which the
classification table and the algorithm applies. The hyperplane subalgebras in any
Lie algebra are completely classified [9]. For semisimple algebras this classifica-
tion is simple and indeed common knowledge. For solvable algebras the situ-
ation is more complicated. The general case is composed of these two opposite
cases.

We illustrate the situation by first discussing the three dimensional solvable
group manifolds. This discussion produces a class of examples including those of
Levichev [14].

5.1. ExampLE (cf. [8], Section IL.3). The following list contains all three
dimensional solvable Lie algebras, described in terms of a basis (e;, e,, e3) and the
corresponding commutator relations.

) [e1,e3] = de; + we,
[82,63] = —we, + lez,
where 4, weR and w #+ 0.

[e1,e3] = 4ey
[ez.e3] = ey + ey,

(i)
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where AeR.

[e1,e3]=4,e4
(i) [e2, €3] = 4,65,

where Ay, A, €R.

The hyperplane subalgebras are given by

(i) the plane Re, + Re,,

(ii) all planes that contain Re,,

(iiia) all planes, if 1; = 4,,

(iiib) all planes which contain either Re, or Re,, if 1; + 4,,

respectively.

The corresponding groups G are simply connected with the possible exception
of those corresponding to (i) or (ii) with 4 = 0. In the second case, &(G) still
contains all hyperplane subalgebras as will be observed in Example 5.2 below. In
the first case one verifies directly that the analytic subgroup H corresponding to
the hyperplane Re; + Re, is closed whether the group G is simply connected or
not. However, only for simply connected G does H bound a half-space semi-
group. Hence &(G) = & for G not simply connected.

5.2. ExaMpLE. If M is a nilmanifold, i.e., the homogeneous space of a nilpotent
group G, then the hyperplane subalgebras of g are exactly the hyperplanes
containing the commutator algebra (cf. also [8], Theorem IL.7.5). If G is simply
connected then &(G) contains all of these hyperplanes. If G is not simply connec-
ted and the center of the Lie algebra is contained in the commutator algebra then
the center is still contained in all codimension one analytic subgroups and the
same conclusion holds.

Using a result analogous to [8], Theorem I1.7.5 we find

5.3. ExampLE. If M = G/H with G a complex Lie group then the only hyper-
planes in g which are subalgebras are the ones which contain the commutator
algebra (cf. [8], Theorem I1.7.6).

Let us give an example which is no longer a group.

5.4. EXAMPLE. Let G = M be the (simply connected) oscillator group and
W any of the invariant cones in g (cf. [3]). The results of [3] and the Classification
Table show that M is strictly causal. Since the only hyperplane subalgebra of g is
the commutator algebra, which is a support hyperplane of W, the causality may
also be seen from Theorem 1.18. If now H = {exp(nx): neZ, xeg\[g,a]} thenit
follows from the explicit description of §'in [3] that S = HS = G.

5.5. ExaMpLE. If M = G = SO(3) x R then &(G) is {so(3) x {0}}.
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Note that any 4-dimensional Lie algebra has the property that maximal ray
semigroups are half-space semigroups, so that the methods condensed in The-
orem 1.18 apply. In particular, one can calculate all hyperplane subalgebras. As
an example we consider the 4-dimensional solvable Lie group which occurs as
a transitive subgroup of motions for the Einstein space of maximal motion
T35 (cf. [1], [17] and also [8], Section IL.5).

5.6. ExaMPLE. Let G be the semidirect product of R" and R where R acts on R"
as the group of linear isomorphisms e with an endomorphism C of R". Then the
Lie algebra g is the corresponding semidirect sum of R” x R with R acting on R"
via C. We write an element of G as (v,r) and an element of g as (X, T). Then the
multiplication is

©,)w,s) = (v + €w,r +5)

and taking the derivative of the inner automorphisms at the identity (0, 0) we find
that the adjoint action is given by

Ad(v, (X, T) = (X — TCu, T).

The intersection 4 of all hyperplane algebras is a characteristic ideal [9]. In the
present case it is of the form J x {0} with a C-submodule J of R" containing all
real Jordan factors for non-real eigenvalues and containing, for each real eigen-
value A and each generalized eigenspace V*, the smallest submodule ¥ such that
the induced action of C on V*/V;} is semisimple, that is, by scalar multiplication.
For a classification of the hyperplane subalgebras of g, we may factor 4 and thus
assume that J = {0}. Now R" is a direct sum of eigenspaces V; of C and C is
diagonalizable. The hyperplane subalgebras are R x {0} and, for each 4 and
each hyperplane E in V;, the hyperplanes (E + Y, +,V,) x {0}) ® F with any
one dimensional vector subspace F of g not contained in R" x {0}.

For n = 3 we have the possibilities dim J = 0,2. If dim J = 2, then g/4 is the
2-dimensional non-abelian algebra, all of whose 1-dimensional subspaces are
hyperplane subalgebras yielding precisely the hyperplane subalgebras of g. The
case dimJ = 0 is the case that J is diagonalizable. The spectrum of J has
cardinality 3, 2, or 1. The classification of hyperplane subalgebras in the preced-
ing paragraph then provides a complete list in each case. If J has only one
eigenvalue, then g is an almost abelian Lie algebra and every hyperplane is
a hyperplane subalgebra (cf. [8]).
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