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INVOLUTORY ANTIAUTOMORPHISMS OF
VON NEUMANN AND C*-ALGEBRAS

JORUND GASEMYR

1. Introduction.

In this paper we study the relation'ship between involutory antiautomor-
phisms of C*- and von Neumann algebras on one hand and Jordan algebras on
the other. If A is either a C*- algebra or a von Neumann algebra with an
involutory antiautomorphism « (i.e. a *-preserving antiautomorphism of order
two), we will denote by A* the self-adjoint part of its fixed point algebra. We will
find conditions under which the following statements are true.

1. A* generates A.

2. The Jordan structure of A* determines the conjugacy class of a.

3. If ¢: A* — APis a Jordan isomorphism, then ¢ can be extended to a *-auto-

morphism of 4 implementing a conjugacy between « and f.
(Two antiautomorphisms « and § are said to be conjugate if there exists a *-auto-
morphism ¢ of 4 such that ¢ oao ¢ ~! = B. The set of involutory antiautomor-
phisms conjugate to a is called its conjugacy class.) Our results generalise
previous results by Stermer and Hanche-Olsen, [2] and [7]. We also prove
partial analogues in the C*-algebra case of results by Stermer [7] concerning
closeness of antiautomorphisms.

2. Antiautomorphisms of von Neumann and C*-algebras.

For every JW-algebra P (i.e. a weakly closed Jordan subalgebra of the selfad-
joint part of some von Neumann algebra) there exists a unique von Neumann
algebra W*(P) called the universal von Neumann algebra of P and a Jordan
isomorphism y: P - W*(P),, with the following property: If M is a von
Neumann algebra and ¢: P — M,, is a Jordan homomorphism, there exists
aunique *-homomorphism ¢: W*(P) - M such that ¢ oy = ¢. Moreover, there
exists a canonical (involutory) antiautomorphism @ of W*(P) which is uniquely
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determined by the property that Y(P) = W*(P)e [2]. Reference [2] also defines
JW-factors as well as JW-algebras of types I,, II and III analogously with von
Neumann algebras.

2.1. LEMMA. Let P be a JW-algebra of the form C(X, Q) where X is a compact
Hausdorff space and Q is a JW-factor of finite dimension. Let N = W*(Q) with
canonical antiautomorphism ®, then W*(P) = C(X, N) with inclusion map induced
by the inclusion map of Q in N and canonical antiautomorphism ®p given by

Pp(f)(x) = B(f ().

Proor. We may identify C(X, N) with Co(X) ® N via an isomorphism that
takes f x ato f ® afor f eC.(X) and ae N. Since Cr(X) generates Cc(X) and
Q generates N, it follows that P generates C(X, N). Let ¢: P - M,, be a normal
Jordan homomorphism into the self-adjoint part of a von Neumann algebra M.
Then ¢ restricts to a homomorphism ¢, on the constant functions in P, which
may be extended to a C*-homomorphism @o: 1 ® N - M by the universal
property of N relative to Q. We define ¢: Co{(X)@ N > M by ¢(f®@a) =
(¢ (Re f) + i¢p (Im f)) x Po(a). Then clearly ¢ is a normal C*-homomorphism
extending ¢. By the uniqueness of the universal von Neumann algebra, it follows
that W*(P) = C(X, N). The antiautomorphism &, is seen to leave P pointwise
invariant, thus @, is the canonical antiautomorphism.

A Jordan subalgebra A of an associative algebra Bis said to be reversible in B if
all elements of the form a, a, ...a, + a,a,_...a, with a;e 4 for all i belong to A.
A representation of a Jordan algebra into an associative algebra is said to be
reversible if its image is a reversible subalgebra. Note that the class of JW-
algebras of type I, can be further subdivided into types I, , corresponding to the
spin factors ¥, of dimension n + 1, generated by n anticommuting symmetries.

2.2. THEOREM. Let M be a von Neumann algebra and a an involutory anti-
automorphism of M. Let M* be the self-adjoint part of the fixed point algebra of M.
Then,

(@) M* has no part of typel, ,, ne{4,6,7,8,...} U {c0}.

Suppose in addition that M* generates M, then

(b) If M* has no part of type 1, s, there exists an isomorphism y: M — W*(M?)
leaving M* pointwise fixed such that o =y ' o® oy, where ® is the canonical
antiautomorphism of W*(M?).

(©) If M*isof typel, s,then M is of type 1, and ais centralon M. If s,,5,,53,54
are anti-commuting symmetries in M%, ss = 5,5,5354 andy: M* - M ® M is given
by

1) Y(s)) =5 D s;,i = 1,2,3,4.

(2) Y(ss) =55 @ —ss.

(3) ¥(z) = z @ z, z in the center Z of M?,
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then y is a Jordan isomorphism, and with the imbedding y, M @ M is the universal
von Neumann algebra W*(M®). The canonical antiautomorphism is given by a @ o.

PROOF. (a). Supposene{4,6,7,8,...} u {00}, and let = be a factor representa-
tion of the I, , part of M* onto a JW-factor P. Let z be the central support
projection of m, then zM* =~ P, thus, P is of type I ,. The map n(x) - zx is then
areversible representation of P, which is impossible by [2, 6.2.5] Thus, M* has no
part of type I, ,.

(b). Let M* = P, @ P, ® P, where P, is the type I, ,-part, and P; is type
I, 3-part of M* By [2, Theorem 6.3.13], P, is of the form C(X, V,) with X a com-
pact Hausdorff space and V, the three-dimensional spin-factor. By [2, Section
6.2.5], V, is reversible in every representation, so in particular V, is reversible in
W*(V,). From this and lemma 2.1 it follows that P, is reversible in W*(P,). If &, is
the canonical antiautomorphism of W*(P,), then P, = W*(P,)®2. Indeed, choose
ze W*(P,)®2, then z is a limit of sums of elements of the form x = a,4,...a, and
y =ibyb,...b,, with a;, b; € P,. Define the linear map A: W*(P,) > W*(P,)®* by
Aw) = 1/4(w + a(w) + w* + a(w*)), then A(z) = z, A(x)e P, because of the re-
versibility of P,, while A(y) = 0. Thus, zis a limit of elements from P,, so it follows
that ze P,. Similarly P, = W*(P;)®* where &, is the canonical antiautomor-
phism of W*(P;). Clearly, W*(M*) = W*(P,) @ W*(P,) @ W*(P;) with canoni-
cal antiautomorphism ¢ = ¢, @ ¢, @ &;, where @, is the canonical anti-
automorphism of W*(P;). By hypothesis, M* has no part of type I, 5,s0 by (a), P,
has no part of type I,. Thus, by [2, Theorem 7.3.3] and the above argument,
M* = W*M%®. Now, let ¢: W*(M*) - M be a normal C*-homomorphism
satisfying ¢(x) = x, x € M* (that.is, ¢ is the canonical extension of the inclusion
map). Let e be the central projection in W*(M*) such that eW*(M?) is the kernel
of ¢. By the uniqueness of ¢, ¢ = 20 ¢ 0 P, so that p 0 @ = a0 ¢. It follows that
P(e) eker ¢ so that P(e) is a sub-projection of e. Since P has period two, it follows
that @(e) = e. Thus e e M* which implies e = 0. Thus ¢ is an isomorphism (it is
onto since M* generates M). Putting y = ¢~ %, this yields the desired result.

(c). Note that the anti-commutation relations between the elements s;,
i=1,2,3,4, show that s; = 1/2(s;5,5354 + 54535,5;), so that s M® Also it is
seen that s5 is a symmetry anti-commuting with s;, t = 1,2, 3,4, so that sy, s,, 53,
S4 and ss form a spin system. Thus if P is the Jordan algebra generated by the
elements s;, then, by [2, 6.3.9], the JW-algebra ZP generated by P and the center
Z of M* equals M* M* = zP, and the map ¢ is a well defined Jordan isomor-
phism. Suppose first that M* = Vs, the six-dimensional spin factor. Then by
[2,7.1.12], W¥(M*®) = M, @ M, where M; is isomorphic to M,(C), i = 1,2. We
want to prove that the canonical extension  of y is an isomorphism. We have
V(SO (s2 W (s3)W(sa) + W(sa)P(s3)W(s2)(s1) + 2(ss) = 4ss @ 0,50 that 1 0 =
s3@®0 lies in the C*-algebra generated by Y(M*). Clearly, also 0 @ 1 lies in
this algebra. Since M* generates M, it follows that y(M®) generates M @ M.
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Thus § is surjective so that iy must be an isomorphism. Thus M @ M with
imbedding y is the universal von Neumann algebra if M® is a factor. Note that
172((s (52 )0 (s3)(sa) + Y(sal(sa)P(s2)Y(s1)) = 55 D ss ¢ Y(M?), so Y(M?) is
not reversible in M @ M. From this it follows that if ¢: V5 — N, is a Jordan
isomorphism into the self-adjoint part of a von Neumann algebra N such that
¢(Vs) is a reversible sub-algebra of N,, generating N, then the surjective
homomorphism ¢: W*(V5) - N can not be an isomorphism since otherwise
Vs = ¢ ' o ¢(Vs) would be a reversible sub-algebra of W*(Vs). It follows that
N =~ M,(C), since N is a homomorphic but not an isomorphic image of
M,(C) ® M/(C). Now, in the general case, let N be the C*-algebra generated in
M by P. Then P is a reversible sub-algebra of N. To see this, note that if x is
a symmetric product of n of the symmetries s;,i = 1,2,...,5, then, by permuting
the order of the symmetries in the product and cancelling all terms of the form
s? = 1, we may assume that n < 5. Note also that if ¢ is a permutation of the set
{1,2,3,4,5}, then 5,(1)Sq(2)S(3)Sea)S«(s5) = + 1. Thus, it suffices to prove
1/2(S5(1)55(2)50(3)Se(a) F Sa(a)Se(3)5+(2)5+1) € P for any permutation o of {1,2,...,5}.
This is obvious if 6(i) F 5 for each i; if 6(i) = 5 for some i, we replace ss by s;5,5354
in the first summand, and by s453s,s, in the second summand, and use cancella-
tion again. Thus P is reversible in N as asserted. Thus by the same proof that was
used in part (b), (using the map A), P = N* Thus, using the factor case proved
above, N @ N with the imbedding y|p is the universal von Neumann algebra of
P. Obviously, Z + iZ commutes with N, so by lemma 2.1, W*(M?%) = W*(ZP) =
(Z+iZ)® N ®(Z + iZ) ® N with the imbedding . Since ZP = M* generates
M, itis clear (Z + iZ)N = M. Since N = M,4(C), it follows that M is of type L,.
Since « is the identity on Z, and Z + iZ is the center of M, it follows that « is
central on M. Finally « @ « is an involutory antiautomorphism of M @ M
leaving Y(M?) pointwise invariant. This completes the proof.

2.3. COROLLARY. Let M be a von Neumann algebra, and a and B involutory
antiautomorphisms of M. Suppose ¢: M* — M* is a Jordan isomorphism, and that
both M* and M? generate M, and have no parts of type 1, 5. Then ¢ extends to an
automorphism ¢ of M such that = poaod™*.

ProoF. By part (b) of the preceding theorem, M is the universal von Neumann
algebra of M* By [2, 4.5.6], ¢ is normal, so ¢ has an extension to a normal
C*-homomorphism ¢: M — M. Similarly ¢! has an extension to a normal
C*-homomorphism ¢ ~!: M — M. Clearly, ¢ ! o § restricts to the identity on
M?*, and since M* generates M it follows that #~! o § equals the identity on M.
The same argument with M* replaced by M? shows that ¢o ¢! equals the
identity on M. It follows that ¢ is an automorphism of M. Clearly ¢ and fo poa
have the same restrictions to M*, hence they are equal on M. This implies the
conjugacy of « and f via ¢.
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2.4. ExaMmPLES. The following examples (a) and (b) show that the Jordan
structure of the fixed algebra does not determine the conjugacy class of the
antiautomorphism unless special assumptions are made for the abelian part of
the fixed poin algebra.

Example (c) shows that the assumption that M* and M” have no parts of type
I, s is necessary in the above corollary.

We denote by ¢, the transposition map on M,,(C) and by g the quaternionic flip

on M, (C) defined by
< a b )_ d —b
Ne al)T{-c af

(a) Put 4 = C([—1,1]). Define « and f by
of)x)=f(x), xe[—-11]
B(N)x)= f(—x), xe[—1,1]

Then, clearly, 4* = Cg([—1, 1]), whereas A# =~ Cg([0, 1]), so that 4* and A*
are isomorphic via the map ¢(f)(x) = f(1/2(x + 1)). But « and g are not conju-
gate since Yy oxoyy ~! = a for each automorphism s of 4.

Clearly the symbol C could be replaced by the symbol L* in this argument to
give a corresponding von Neumann algebra example.

(b) Put A = {f eL*([0,3],M,(C)): f(x)eC,0 < x £ 1}. Define a by

f(x), 0sxs1

H = {tz(f(x)), 1=x<3
Define § by

f(x), 0=sxs1

BN =14(f(x), 1=x=2

B(f(x), 2sx<3.

Then 4% = L3([0,1]) ® L™([1, 3], Hx(R)), 4% = L}([0,2]) @ L*([2,3], H,(R)),
where H,(R) denotes the symmetric real 2 by 2 matrices. Thus A* = A*, but, since
o does not restrict to a quaternionic flip anywhere, « 4 S.

Compare with [7, Theorem 3.3] and note that the isomorphism between 4*
and 4% is not central in the examples (In example (a) the involution B is not central
either).

() Put M = M,(C) ® M,(C)and « = B = q ® t,. It is shown in [3] that M*
and M? are isomorphic to Vs. Let s,, s, 53 and s, be anti-commuting symmetries
in M* and put ss=s5,5,5;5,. Then the map ¢: M* - M? defined by
&(s;) = s;,i = 1,2,3,4, ¢(ss) = —ss is a Jordan isomorphism of M* onto M?
which has no extension to a C*-homomorphism on M.
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2.5. DerFINITION. Suppose A and A’ are reversible Jordan sub-algebras of
associative algebras B and B’ respectively. A Jordan homomorphism ¢: 4 — A4’
is said to be reversible if P(xyXx3...%X, + XpXp—1...X1) = O(x1)P(x3)... d(x,) +
d(x)P(X,—1). .. P(xy1), Xy, X3,...,X,€ A. Note that if « is an involutory anti-
automorphism of M such that M* has no type I, 5 part, and if ¢: M* > N, is
a normal Jordan homomorphism into the self-adjoint part of some von
Neumann algebra generated by M*, then K = W*(M*),so that ¢ can be extended
to a C*-homomorphism ¢: K — N.

2.6. THEOREM. Let o and B be involutory antiautomorphisms of a von Neumann
algebra M with fixed point algebras M* and M" respectively. Suppose ¢: M* — M?
is a reversible Jordan isomorphism, and suppose that M* and M? generate M.

Then ¢ can be extended to an automorphism ¢ of M such that f = $oaod!.

ProOOF. Let w, be a central projection in M such that M*w, is the type I, s part
of M* and put w; = 1 — w,. Let ¢, be the restriction of ¢ to M*w,. Then ¢, is
aJordan isomorphism onto M?¢(w,). Since clearly, M*w, and M# ¢(w,) generate
Mw, and M¢(w,) respectively, it follows, by the same argument as in the proof of
corollary 2.3, that ¢, extends to a C*-isomorphism ¢,: Mw,; —» M¢(w,) such
that f(x) = ¢, oao ¢ *(x), xe Mg(w,). Now choose anti-commuting symmet-
ries sy, 83, 53,54 and ss = 1/2(s; 5,535, + 54535,5;) in M*w, and define the Jordan
isomorphism y: M*w, - Mw, @ Mw, asin part (c) of theorem 2.2. Let ¢, be the
restriction of ¢ to M*w,. Then, by theorem 2.2, part (c), there exists a C*-homo-
morphism ¢,: Mw, @ Mw, - M¢(w,) such that ¢, 0y = ¢,. Then we have

432(0 @ s5) = 1/4$2('ﬁ(31)'/’(Sz)w(ss)l/’(s:t) + Yl(sa)¥(s3)¥(s2)¥(s1)) — 1/20320‘//(55)

= 1/42(51)P2(52)P2(83)P2(54) + P2(84)P2(53)P2(52)P2(51))

— 1/2¢,(ss)

= 1/2¢;5(ss5) — 1/2¢5(s5) = 0
The last step is justified by the reversibility of ¢. Thus $,(0 @ 1) = ¢,(0 @ s2) =
0, hence ¢, extends to a C*homomorphism ¢,: Mw, — M¢(w,). Again arguing
asin the proof of corollary 2.3 we conclude that ¢, is an isomorphism and f(x) =
000 ¢; 1(x),xe Mp(w,). Define the automorphism é: MM by ¢(x) =

1(xw,) + P (xw;). Then @ is the desired automorphism. Thus, the assertion
follows. This completes the proof.

2.7. COROLLARY. Letaand f be involutory antiautomorphisms of a C*-algebra
A. Suppose that A* and A® generate A. Suppose that there exists a reversible Jordan
isomorphism ¢ from A® onto AP. Then ¢ can be extended to an automorphism of

A satisfying pooogp™ ! = B.
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Proor. We extend o and B by ultra-weak continuity to involutory anti-
automorphisms of A**. Then clearly the fixed point algebras are the ultra-weak
closures A* and AP respectively. Similarly ¢ can be extended to an isomorphism
from A% onto A°. Since ¢ is ultra weakly continuous, it follows, by induction, that
¢ is reversible on A% Thus, ¢ can be extended to an automorphism of 4**
satisfying B = ¢ oo ¢ ! by theorem 2.6 (denoting the extensions to 4** by the
same symbols as the original maps). Since A* generates A, it follows that
¢ restricts to an automorphism of A.

Examples (a) and (b) of section 2.4 also show that the fixed point algebra does
not always generate the original *-algebra. As the next theorem shows, this is due
to the presence of a type I, part in the fixed point algebra.

2.8. THEOREM. Let M be a von Neumann algebra and o an involutory anti-
automorphism of M. Let M* be the self-adjoint part of the fixed point algebra of a.
If M* has no part of type 1, then M* generates M.

ProOF. Let z be the central projection in M such that Mz is the non-type I part
of M. Then, clearly, Mz is invariant under a. By [ 5, appendix 3] there exist central
projections w;, w, such that z =w; + w, + a(w,) with the center of Mw,
pointwise fixed under « (see also [ 1, prop. 2.7]). Then by [7, Proposition 3.1.,and
lemma 3.2], Mw, = W¥M°w;) and, by [2, Theorem 7.4.7],
M(w, + a(w,)) = WX MY w, + a(w,))). (Ma(w,) = (Mw,)° via the map o, and
M%w, + a(w,)) = (Mw,),, via the map x — x + «(x)) Thus, Mz = W*(M*?z), and
in particular Mz generates Mz. If z' is a central projection in M such that Mz’ is
the type I, part of M, n = 2,3,...0r n = oo, then z’ can be split as an orthogonal
sum z' = w; + w, + a(w,) in the same way as the projection z above. For the
non-central part of a,- the proofis then the same as above. For the central part
we refer to the classification of involutions of type I algebras given in [7,
proposition 2.6] together with the fact that in each of these cases the fixed point
algebra generates the full algebra (see e.g. the remark after corollary 4.6 of [3]).

This completes the proof.

2.9. COROLLARY. Let A be a C*-algebra with an involutory «, such that the fixed
point algebra A* has no abelian representations. Then A* generates A. If A* has no
representations of type 1, s, A = CU*(A%), where CU*(A%) denotes the universal
C*-algebra of A*

PRrROOF. Let B be the C*-algebra generated by 4% in A. Then a restricts to an
involutory antiautomorphism of B and B* = A% Let r: A* —> B* be the restric-
tion map. Then r is surjective by the Hahn-Banach theorem. Clearly, the map
r*: B** _, A** restricts to the identity map from B* into A% By ultra-weak
continuity r* restricts to a reversible isomorphism from B* onto A° (the ultra-
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weak closures are with respect to B** and A** respectively). Since A* = B* has
no abelian representations, neither A% nor B* have parts of type I, so, by theorem
2.8, they generate A** and B** respectively. Clearly r* is the unique extension of
r*|z to an ultra-weak—ultra continuous C*-homomorphism B** — A**, so, by
theorem 2.6, r* is an isomorphism. In particular, r* is surjective so that r is
injective. It follows from the Hahn-Banach theorem that B = A. The last claim
follows from theorems 2.2 and 4.4 of [3].

2.10. THEOREM. Suppose o and B are involutory antiautomorphisms of the von
Neumann algebra M and that M* = MP®, then o = B.

PROOF. Let z be the central projectionin M such that Mz is the abelian part of
M® Letw = 1 — z. Then, by theorem 2.8, M*w = M*w both generate Mw so that
o and  have common restrictions to Mw. Thus we may assume that M* is
abelian. By [5, appendix 3] and [7, lemma 2.3 and proposition 2.6] there exist
central projections z,, z, and z3 in M such that z,, z,, ®(z,) and z; are orthogonal,
zy + 25 + a(z,) + z3 = 1, a restricts to the identity on Mz, and a is of the form
1® q on Mz, which is homogeneous of type I,. A similar decomposition with
respect to f obviously gives the same projections z, and z;. Then z,f(z,) is
a subprojection of z, in M? = M® which implies that f(z,) is orthogonal to
z,. Thus, if xe Mz, then, f(x)e Ma(z,) so that (x + a(x)) — (x + B(x)) =
a(x) — B(x)e Ma(z;) n M* = {0}. It follows that a(x) = f(x) so that « and f co-
incide on Mz,, hence also on Ma(z;). Obviously, « and f§ coincide on Mz,. Also
note that the antiautomorphism g does not depend on the choice of matrix units
for M,(C) since g(x) = x"*det x and hence a and B coincide on Mz;. This
completes the proof.

ReEMARK. This result also holds for C*-algebras. Indeed, if 4 is a C*-algebra
with involutory antiautomorphisms a and B, and if 4* = 4%, the « and f have
extensions (also called « and B) to A**, with fixed point algebras A* and A*
respectively. Hence we can apply theorem 2.10.

2.11. THEOREM. Let A be a C*-algebra, a: A — A an involutory antiautomor-
phism and suppose u is a unitary in A with a square root v in the C*-algebra C*(u)
generated by u. Then

(a) If u) = u, then B = a Ad u is an involutory antiautomorphism conjugate to
o via Ad v.

(b) If B: A — A is an involutory antiautomorphism with |a — B|| < 2 and aff =
Adu, then B ~ o via Ad v.

PRrOOF. It is trivial to check that o Ad u is an antiautomorphism of period 2.
Let v be a square root of u. Since ve C*(u), a(v) = v. So Adv*oao Adv(x) =
v*a(vxv*)y = (v*)2a(x)v? = u*a(x)u = a(uxu*) = o Ad u(x). Denote by & and ff the
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extensions of « and B to A**. Note that & — f = (a — f)** and & — f| =
I — By**|| = la — Bl < 2. See for instance [2, Lemma 1.21]. By the proof of 7,
Theorem 4.2], o(u) = d&(u) = u, so a ~ B by part (a).

2.12. THEOREM. Suppose A is a simple C*-algebra, o and B are involutory
antiautomorphisms of A with |o — B|| < 2, then o ~ B.

ProoF. Since |ja — B|| < 2, we have |aff — 1] < 2. By [4], « and S lie on
a norm continuous one-parameter group of automorphisms of 4, and since 4 is
simple aff = Ade™ for some he A, by [6, Corollary 4.1.14]. Also, by [4], the
spectrum of u = €™ is not all of the unit circle, so we can choose h such that
ih = logue C*(u). Define v = e'/?* Then v? = u and v e C*(u). The assertion then
follows from proposition 2.11.

2.13. ExamprLE. The following example shows that we need not have
o ~ o Adu even if a(u) = u. Let A = C(T, M,(C)) where T is the unit circle in C.
i0
Put o £)(0) = t,(f(6)) and put u(d) = [g (1)] Then a(u) = u,s0 f = a Aduisan
involutory antiautomorphism.

. . b
Choose an arbitrary unitary matrix » = [z d]eR” = {xeA:p(x) = x*}. We

a b\, a6) b
b ([c dD (6) = £20(Adu(O) ([cw) dw)])

_[a®) ()
B [b(())e"’ d(6) ]

_|a®) o)

- [5(0) Jw)]
If ¢(6) # 0 for every 0T, we get &(0)%/c(0)|> = e~ * so that (c(9)/|c()])* = e .
Since the function 8 — ¢ % defined on T has no continuous square root, this is
impossible. Thus we must have ¢(f) = 0 for some 6 T. Since v is unitary we also
have b(6) = 0. It follows that R” has the following property. There exists projec-
tions p,, p, such that for each unitary f € R there exists 6 such that f(6)is a linear
combination of p, () and p,(6). This property is clearly preserved under isomor-
phisms, and, since R* = C(T, M,(R)) does not have this property, we conclude

that R* & R# sothata 4 B. Thus the existence of a square root of u is necessary in
proposition 2.11, part (a).

have
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