MATH. SCAND. 67 (1990), 61-72

CONFORMAL WELDING OF RECTIFIABLE CURVES

CHRISTOPHER J. BISHOP

1. Introduction.

Suppose D, and D, are two Jordan domains on the Riemann sphere, C, and
that y: I'y - I';, is a homeomorphism of their boundaries. We say that a confor-
mal welding (or conformal sewing) exists if there is a Jordan curve I' in C with
complementary domains Q; and Q, and conformal mappings ®;: D; — Q; for
i = 1,2 such that y = ®; ' o0 @, (this makes sense because both mappings extend
to be homeomorphisms from I'; to I'). Another way of expressing this is to say
that the topological sphere created by identifying I'; and I', by Y has a conformal
structure which is consistent with the conformal structures of D, and D,. If the
welding exists we say it is unique if there is only one such conformal structure on
the identified sphere (this the same as saying I' is unique to Mobius transform-
ations). In general we are interested in knowing when a welding exists, if it is
unique and how the geometry of I depends on the D,, D, and .

In this note we will be concerned with the special case when I'y and I', are
rectifiable curves of equal length and y: I'y —» I, is isometric (i.e., preserves
arclength). It is known that the conformal welding need not exist in this case [10],
but one might hope that if it did exist that I would be well behaved, say rectifiable
(e.g., see [2, Question 6.61]). However, this is not the case.

THEOREM. There exist rectifiable domains D, and D, and an isometry  of their
boundaries so that the conformal welding exists, but the corresponding curve I' has
positive area.

In fact, we can take D, = D, and ¥ to be an orientation reversing isometry. If
E is a closed plane set with positive area then we can always find a homeomor-
phism & of the sphere which is conformal off E but which is not a Mdbius
transformation. Composing this map with the conformal mappings ®; and @,
therefore shows:
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COROLLARY 1. The conformal welding corresponding to an isometric identifica-
tion of rectifiable domains need not be unique.

A locally rectifiable curve I' is called chord-arc if there exists a C = 1 such that
for any two points z and w on I the shortest arc on I between z and w has length
at most C|z — w|. I is a quasicircle if the diameter of the shortest arc between
zand wisatmost C |z — w). It follows from known results (e.g. [6],[11] and [18])
that if y is an isometry between chord-arc domains then the conformal welding
exists and is unique and that the corresponding curve I must be a quasicircle. It is
also easy to show that the Hausdorff dimension ([5]) of a quasicircle is strictly
less than 2, so that the example in the theorem cannot be a chord-arc domain.
However, the proof of the theorem will also give.

COROLLARY 2. Forany 1 £ d < 2 there exist chord-arc domains and an isometry
¥ so that the corresponding I' has Hausdorff dimension greater than d.

If the domains are chord-arc with constants close to 1, the corresponding
I’ must also be chord-arc (hence locally rectifiable) [6]. Thus Corollary 2 is only
possible for curves with large chord-arc constant. In the next section we will
review a few facts about quasiconformal mappings which will allow us to reduce
to constructing quasiconformal mappings instead of conformal ones. In Section
3 we will give the construction and deduce the corollaries. For further back-
ground on conformal welding see [14] and [17]. Welding of rectifiable domains
via isometries is discussed in the papers [9] and [10]. Some other constructions
involving conformal welding and rectifiability are given in [3] and [16]. Finally,
I would like to thank the referee for many helpful comments and corrections to
the original manuscript.

2. Quasiconformal Mappings.

By Lemma 1 of [14], to show that a conformal welding exists it is enough to
build quasiconformal mappings which induce the homeomorphism . To ex-
plain this and to see why we can reduce the theorem to this case, we will briefly
review some of the basic definitions and results about quasiconformal (q.c.)
mappings. For more details the reader is referred to Ahlfors’ book [1].

Suppose 2 = Cis adomain and ¢ is a homeomorphism of Q into C. ¢ is called
quasiconformal with constant K = 1 (or K-q.c.) if ¢ is absolutely continuous on
almost every horizontal and vertical line in Q and

K—1
K+1 0%l

10p| <
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satisfies ||y, ||, < 1 and is called the complex dilatation of ¢. One important
property of q.c. mappings is that they are absolutely continuous with respect to
area, i.e., |E| = 0 iff |p(E)| = 0. Another is the measurable Riemann mapping
theorem: given any measurable u on C with |jul|, = k < 1 there is a K-q.c.
mapping ¢ with dilatation g and K = (1 + k)/(1 — k). Moreover, ¢ is unique up
to Mdbius transformations.

Now suppose we have curves I'y, I'; and I' and a homeomorphism ¥ as
described in the introduction, but instead of conformal mappings we are given
q.c. mappings @, and @, with dilatations u; and u,, such that y = &; 10 ®,.
Define a dilatation u by

—po, (W), z=&(w), weD,
wz) = —ﬂoz(W), z = ®y(w), weD,
0, zerl.

Clearly |1l < max(||g ]l 42]ls) < 1 so there exists a q.c. homeomorphism
¢ with dilatation u. One can also show (see [1, page 10]) that

Koo = 0

on D;fori = 1,2 so that the homeomorphlsms 451 @pod, and d;z @o P, are
conformal from D, and D, to Ql and Qz, the complementary domains of the
curve I' = o(I). Also,

Y=(P) lod =(F;) 'od,

sothat I’ corresponds to a conformal welding of the curves I'y and I, via . Since
¢ is absolutely continuous with respect to area, I has positive area iff I' does.
Thus to prove the theorem, it suffices to construct quasiconformal mappings @;
such' that y = @5 ' o0 ®,. This is much easier than constructing the conformal
mappings directly, and will be done in the next section.

To prove Corollary 1 we define a dilatation u by u(z) = 1/2 if zeI' and
0 otherwise. Let ¢ be a q.c. homeomorphism with this dilatation and set
I' = ¢(I'). Since I has positive area, ¢ is not a Mobius transformation. Thus
I'and T both correspond to conformal weldings of Dy, D, via i, but they are not
related by a Mobius transformation. Thus the theorem implies Corollary 1. (This
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argument shows a welding is not unique whenever I' has positive area. The
converse is false; one can have nonuniqueness even when dim(I') = 1 [12], [4].)

Corollary 2 is slightly more complicated since quasiconformal mappings do
not, in general, preserve Hausdorff dimension. However, a result from Gehring
and Vaiisild’s paper [8] gives the inequality

dim (E)

dim(o(E)) 2

where K is the q.c. constant of ¢ (this is a consequence of Mori’s theorem, see [1]).
Therefore to prove Corollary 2 it will be enough to build the curve I' and the
associated homeomorphisms @;,i = 1,2 so that the Hausdorff dimension of I' is
large (close to 2) and the q.c. constant of &; is small (close to 1).

3. The Construction.

We will construct I'y, I',, Dy, D,, ®;, &, and I' as limits of uniformly
convergent sequences {I'}}, {I'3}, ..., {I"}.

We begin by setting DY = (—4,4) x (0,4) and D =(—4,4) x (—4,0) and
letting I'] and I' be their boundaries. Let I' = R and let ®9: D9 — {Im(z) > 0} be
quasiconformal and equal to the identity on (—2,2) x (0,2). We define @9 by
symmetry. We fix intervals Jo=[—1,1]< I, Ko=[—-1,1]<T9 and
Iy=[-1,1]cTI®

Now suppose we have constructed I'}, D}, @} for i = 1,2 and I'" such that &7
I'} > I'" are homeomorphisms with q.c. extensions to D! and such that
Y" = (9%) ' o] is a length preserving homeomorphism from I} to I'}. Also
suppose that we are given collections of line segments .9, ¢, and /£, in I'", I'} and
I'} respectively such that for each I € .#, there are corresponding line segments
Je ¢, and K e X, such that ¢}(J) = I and ?%(K) = I and that &} and & are
affine on J and K respectively. Note that since " is an isometry we must have
£(J) = £(K) (¢ denotes length). Our induction hypothesis also includes the as-
sumption that for each Je #,, @1 is affine and conformal on a rectangle R in
D% which has J as one side and has width 8,£(J)/2 (8, will be chosen below).
Moreover the reflection of this rectangle across J is contained in the complement
of DY. Similarly for ¢} and K € %,

Now fix a triple of line segments I, J and K as above. We will describe how to
modify the curves I}, I'; and I'" by replacing the line segments I, J and K by more
complicated polygonal paths. We will also define new mappings ¢} so that the
desired properties still hold. Making this modification on every line segment in
the collections .#, ¢ and o will give us I"*!, I'}* ! and I'}*1.

To ease notation we will drop the n’s and merely write I' = I'", I'; = I'} and
', = I'}. Let B, e and n be positive numbers which will be chosen later. It will be
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convenient to assume however that ¢ ! = 2N is an even integer and that

(eB)"! = 2M + 1 is an odd integer. We also wish to fix an integer L < N.

First we describe the modification of I" along I. Rescale so that /(I) = 1. We
modify I by removing I and replacing it by the polygonal curve illustrated in
Figure 1. P consists of M “towers” each of height § and of width ¢f. The new
curve is still Jordan by our induction hypothesis.

The replacements for the line segments J and K are much more complicated.
Roughly speaking we will replace J and K by polygonal arcs Q, and Q, which
consist of M “hourglasses” (see Figures 2, 4 and 6) instead of rectangular towers
as in P. Each of these “hourglasses” can be mapped quasiconformally to the
towers in P by a mapping with a uniformly small g.c. constant. However, the size
of the hourglasses will be much smaller than that of the corresponding towers,
and hence we are adding much less length to I'y and I', than we are to I". This
explains why I can have infinite length, but I'; and I, will remain rectifiable. The
tricky part of the construction is to arrange for the homeomorphism @5 ! 0 @, to
preserve length.

We start by defining what we mean by an hourglass. For non-negative integers
k,land m and a positive n we define a polygonal region H(k, [, m, n) as follows (see
Figure 2). It consists of 2k squares of side length 1, 2m squares of side length
(1 — n)'and 2! trapezoids each similar to a symmetric trapezoid with base lengths
land 1 — n and height 1 — 5. Of course, each of the remaining sides has length
A= \/1_:2—n-_i-_37]3/—4(which is <1ifnis small enough). For each0 < j < I there
are exactly two trapezoids so that the longer base has length (1 — n).

H(Za 2) 27 77)
Figure 2



66 CHRISTOPHER J. BISHOP

These 2(k + | + m) quadrilaterals are placed end-to-end to obtain the 12-gon
“hourglass” pictured in Figure 2. Note that H(k,0,0,#) is merely a 2k by 1 rec-
tangle and that H(k, I, m,n) can easily be mapped to the rectangle H(k + | + m,
0,0, n) by a homeomorphism which is just an affine mapping on each of quadrilat-
eralsin H(k, I, m,n) and maps that quadrilateral onto the corresponding square in
H(k + 1 4+ m,0,0,7). In fact, this map is conformal except on the trapezoids an
explicit calculation shows it is quasiconformal with dilatation u bounded by 3#.

We would like to build Q, and Q, by attaching scaled copies of these
hourglasses in a row and defining the maps @; in terms of the q.c. maps described
above. Unfortunately it seems impossible to do this and still get the isometric
properties without introducing some further complications.

The first of these complications involves defining a “modified hourglass”
H(k, 1,m,n). To obtain H we will take a copy of H(k,l,m,7) and slightly perturb
some of its sides. If | = 0 we make no changes. If | & 0 we replace all but the
largest trapezoids in H by the region in the center of Figure 3. More precisely, if
the trapezoid T has base length (1 — 5} then the top edge of T is simply replaced
by a polygonal curve of length (1 — )~ A. If this curve is chosen correctly the
modified trapezoid T can be still be mapped to a square by a q.c. mapping which
is affine on the 3 original sides and which preserves length on the new side. The
dilatation of this mapping can be taken less than C\/;. To see this, consider the
middle picture in Figure 3. We are replacing a line segment of length A(1 — n)’ by
a polygonal arc of length A(1 — )~ !. Therefore the new polygonal arc must be
(1 —n)~* ~ 1 + 5 times as long as the original line segment. Thus the “bump”
shown in the figure can be taken to have length about (1 — #)//2 and height
proportional to \/r_;(l — 1) by the Pythagorean theorem. From this it is easy to
construct the desired mapping. For example, triangulate the perturbed trapezoid
by connecting each vertex of the polygon to a point in the center and then build
a map which is affine of each piece. The dilatation on triangles corresponding to
the original sides will be about C,, and on the remaining pieces it is no more than

(1—ny1x

A1 —n)tt

(1-n)*

(1 —n)A
Figure 3
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C./n. On the two largest trapezoids in H we also replace the top edge by
something longer, but now the new edge has length 1 (see left side of Figure 3). As

above, the dilatation can be taken to be bounded by C\/r;.

If m = 0 these are the only changes we need to make. However if m $ 0, we
make one additional change. Moreover, we will only need | = L. In this case
H has two “small” squares of size (1 — »)* which are adjacent to trapezoids. We
replace the top edge of each of these squares by a polygonal arc whose length is
(1 — n)t~14,1i.e., the length of one of the sides of the adjacent trapezoid. This can
be done in such a way that the modified square can be mapped by a q.c.

homeomorphism to a square with dilatation less that C\/;y and which is affine on
the 3 original sides and which preserves arclength on the modified edge. Thus
H has been built so that each quadrilateral in H has had one side replaced by an
arc with the same length as the corresponding edge in the hourglass H(k + 1, L,
m—1,n)ifm > 0or H(k + 1,1 — 1,0,n)if m = 0. Moreover, the resulting “hour-
glass” can be mapped in a q.c. manner (with small dilatation) to the rectangle
H(k + 1 + m,0,0,7) in a way which preserves arclength (up to a constant
multiple) on each side of a quadrilateral (different constants for different sides
and quadrilaterals of course). See Figure 4.

FI(Z’ 2,2,n)
Figure 4
D,
L I LMy
— .
B/2 %
Qo
1 B
Figure 5

We are now ready to build the path Q. Scale J so that /(J) = 1. Let Q, be the
curve in Figure 5.

Divide the edge of length 1 parallel to the original segment J into 2M + 1
intervals {I;} each of length ¢f. We define Q, by attaching a hourglass to every
other interval. More precisely, for j = 1,..., M we attach a copy of H; = H(k(j),
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I(j), m(j), n) (scaled by a factor of ¢f) to I, where k(j), I(j) and m(j) are integer
valued functions defined as follows.

N—-j+1, 1Z£jsEN
k() =31, N<jEsM-N
jJ—=M+N, M—N+15jsM

i—1, 1SjSL+1
) =1L N<jsM-L-1
M—j, M-LZjsM

m(j) = N — k(j) — I(j)

This determines Q, and hence the modification we make to the curve I'; on the
line segment J. The curve Q, is sketched in Figure 6 for the case N = 3, M = 3
and L = 1.

Because of the construction of the hourglasses there is a piecewise affine
homeomorphism of Q, to P which extends to a piecewise affine q.c. mapping of
each hourglass to the corresponding rectangle in the complement of I'. This
mapping agrees with the map @, along the intervals {I;} in the definition of Q,
(because @, is affine and conformal in this region by induction) and so we obtain
a new q.c. mapping 451 from the modified domain D1 to the complement of the

D,

D,

Q1

Q@2

D,
Figure 6
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modified curve I". The dilatation of this mapping is no more than the maximum of

C./n and the norm of the dilatation of the original @,.

To build Q, we do exactly the same thing except that certain of the hourglasses
in the construction need to be replaced by the modified hourglasses H. More
precisely, for J = 1weattach ascaled copy of H(M,0,0,n)to I,. Forj = 2,... N we
attach H H(k(]) I(j), m(j), ) to the interval I,;_,. The rest of the curve is
defined by making Q, symmetric with respect to the perpendicular bisector of K.
The curve Q, is pictured in Figure 6. (Note that Figure 6 is drawn so D, lies above
Q; and D, lies below Q,.)

As before we replace the line segment K in I', with an appropriately scaled
copy of Q, to obtain a new curve r , bounding a domain D2 Also as before there
isa homeomorphlsm of I 2 to I which extends to be a g.c. homeomorphism ¢2 of
D, to one side of I. This homeomorphism agrees with @, along the ends of the

hourglasses and has dilatation no larger than the maximum of Cﬁ and the
dilatation of @,.

Fmally, and most importantly, it follows from the construction that
|// (¢2) lo d>1 preserves arclength. This involves considering several cases, but
we leave the verification to the reader since Figure 6 makes the argument quite
clear. The main point is to observe that if the sides of two quadrilaterals are
identified by the map 15 then these two sides must have the same length (this is
what the modifications in H were all about). On each of the quadrilaterals the
maps d;, and 52 were chosen to preserve arclength up to a multiplicative
constant, so the constant for corresponding edges must be the same. Hence
Y preserves arclength.

Thus we have described how to modify I'", I'! and I, on the intervals 1, J and
K. We now carry out this procedure on all the intervals in the collections .7, %,
and ;. This gives us the (n + 1)th generation curves I'}*?,. ... To complete the
induction step we need only define the collections of line segments %, , ;, F,+1
and . ;. To each line segment J € ¢, consider the M hourglasses in the copy of
0, replacing J. Of these M — 2N are of the form H(1,L, N — L — 1,n)andin each
of these are two line segments of length 2(N — L — 1)(1 — n)". We take all of these
segments to be in the collection ¢, ;. Thus for each J € ¢, we obtain

| #n+ 1
3. =2(M — 2N
D g M
arcs J e F.+1 and each has length
(3.2) {’(f) = (1 — ) ep2(N — L — 1)¢(J).

We can now define the collections £, ., and .%,,, simply as the collection
{#3*1(J)} and {y"*1(J)} for J € 4, . Itis easy to check that these are indeed line
segments and satisfy the desired conditions.
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This completes the induction step. So given sequences of parameters {f,}, {¢,},
{n.} and {L,} we can construct a corresponding sequence of curves and maps.
We easily pass to a limit to obtain curves I'y, I’ and I" and the mappings &,, @,
and Y. All that remains to show is that I'; (and hence I',) is rectifiable and that
I' has positive area. For this construction we may take {#,} to be a constant
sequence,say 1/10=n=n, =9, =....

First we will show I'; is rectifiable by uniformly bounding the length of the
{I'?}. Note that

AT < 4Q1) Y 4V)
Fn
SC@N +1D2M +2)1 —n"2N Y 2(J)
FIn-1
< @B =)~ 3 £J)
a'n -1

S I,
The last inequality holds for given ¢, and g, if we choose
log 8 + [loge2 B,

llog(1 — )|

We will choose 8, ~ ¢, so if g, is small enough we can satisfy (3.3) and also choose
L, so that

(3.3) L,

v

(3.4) L, =

The inequality above implies

(ry) =3 Ary"\r) saryy27" <o

as desired. Thus I'; (and hence I';) is rectifiable as long as (3.3) holds.

Next we claim that I" will have positive area if we choose the parameters {e,}
and {B,} correctly. To see this let F, be the union of all the £(I) by 8,(I) rectangles
centered along the line segments I €.4,. Then N, F, = I and F,.; < F, so it
suffices to show |F,| > 0, independent of n. However, using (3.1), (3.2) and (3.4)
gives

IFn+1| = 2 ﬂn+ll(1)2

Fn+t

; ﬂn+l(Mn - 2Nn)(2(Nn - Ln - l)enﬂn)zzf(l)z
Fn

;. ﬁn+ 1((8an)-1 - 28; 1)((‘t:n-l - 8;1/2 - 2)8nﬁn)2ﬁn_l |Fn|
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2 Bos1(6aBn) (1 — B)(1 — /20 — 26,)B,|F,|
=P gy = S - 26021

En
2 (1-2""%F,|
The last inequality holds if we choose
g <47"
€ > Priry (1 =27,

and so that (¢,B,) ! is an odd integer as required. Since IT(1 — 2™") > 0, I' has
positive area.

To prove Corollary 2 one first notes that I'y and I', will be chord-arc curves as
long as (3.4) holds and ¢, and §, are uniformly bounded away from 0. Fix a value
ofd = 2 — vin Corollary 2 and let n be fixed small enough that the maps @, and
&, constructed above are g.c. with constant K < 1 + v/2. Fixaneand lete, = ¢
forallnand §, ~ (1 — ¢)e for all n. Then the Hausdorff dimension of the resulting
I'isclose to 2 if ¢ is close to 0. We will not prove this, but simply note that it is not
much different than the calculation above which showed I' had positive area.
Thus by the result of Gehring and Viisidld mentioned in Section 2, we can get
dim(I') > d by taking ¢ small enough.

4. Remarks.

First of all, the construction could have been organized so as to give a single
rectifiable domain D and an orientation reversing isometry of its boundary
instead of two distinct domains. The only changes would be to construct Q; using
both modified and unmodified hourglasses in such a way that the orientation
reversing isometry from Q, to itself had the desired g.c. extension to D,. This is
only slightly more difficult than what we did.

The isometry i we constructed is very special among all the isometries from I'y
to I',. Infact, by adapting an argument of Oikawa [14] we could construct the
curves so that the i we construct is the only isometry from I'; to I'; for which
a conformal welding exists.

For chord-arc curves, however, a welding exists for any isometry with the
correct orientation. How special is the isometry in Corolary 3 among all the
isometries from I'; to I';? These isometries are naturally parameterized by points
of I', (there is one sending some fixed point of I'; to each point of I';) and so it
makes sense to ask, for example, if the set of isometries for which the correspond-
ing curve I' = I';, has dimension greater than one is small, say length zero.
A easier problem would be to prove that the welding of a chord-arc curve with
a smooth curve, say a circle, always gives a chord-arc curve.
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We should also mention that the construction in this note can be used to give

a negative answer to a question asked in [15]. Other counterexamples are given

in

1.
2.

3.

4.
5.
6

14.

15.

16.
17.

18.

[3] and [13].
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